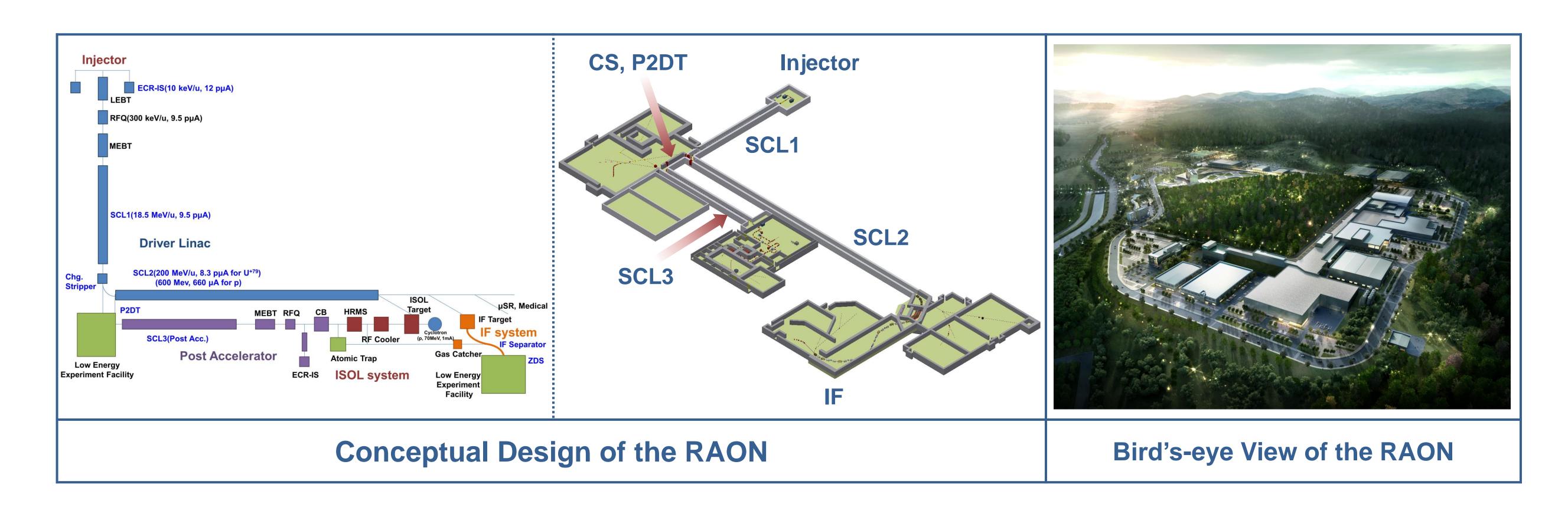
Commissioning of the Cryogenic System for SRF Test Facility of RAON


J.H. Shin, C.J. Choi, K. Lee, K.S. Yang, S.W. Yoon, H.M. Jang, Institute for Basic Science

Purpose of SRF Test Facility Cryogenic System

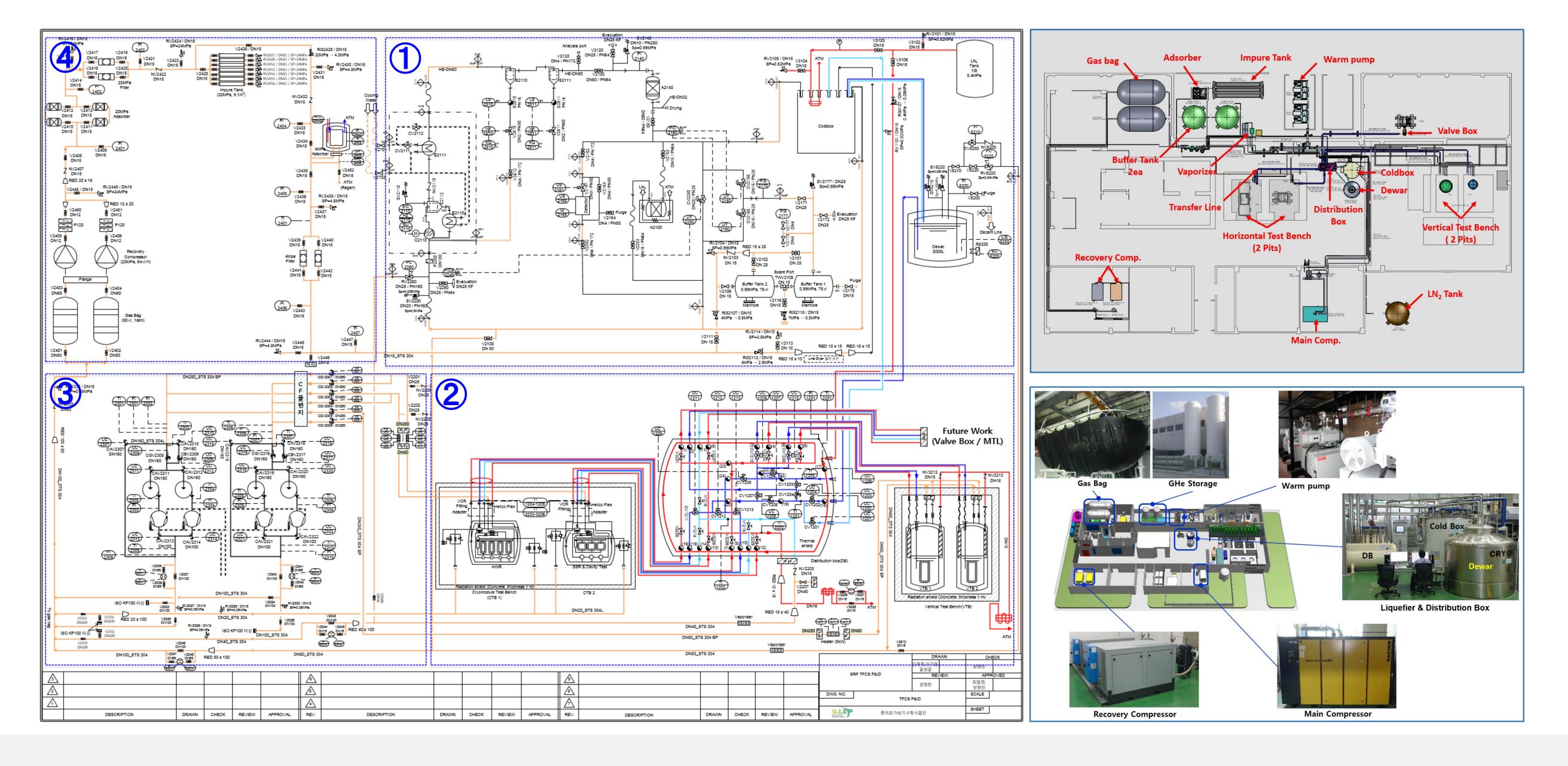
Test of cold components of RAON

The RAON is designed to combine the IF and ISOL accelerator systems.

- Injector (ECR-IS)
- Cryomodule (SCL 1,2,3, CS, P2DT)
- IF System (Superconducting Magnets)

Design and Layout of the SRF Test Facility Cryogenic System

The cryogenic system for SRF test facility


- 1 : Helium Liquefying System
- ②: Helium Distribution System & Test Benches
- ③: Warm Pumping System
- 4 : Helium Recovery System

Test Categories

- Vertical cryostat test -> For a single bare & dressed cavity
- Cryomodule test → QWR, HWR1, HWR2

Horizontal and vertical test benches for cryomodule and cavity at 4 K and 2 K

Returned gas helium: To be recovered and purified using helium recovery system

Specification of SRF TFCS

System	Components	Spec	Remark
	Coldbox	330 W, 140 L/h	
HRS	Compressor	10 bar, 60 g/s	
	Dewar	3,000 L	
HDS	DB/VB	1.3 bar ~ 3 bar	LHe / She
	Warm pump	1125 m ³ /h	4ea
Warm Pump	Flow meter	$0.4 \sim 65 \text{ m}^3/\text{h}$ $0.1 \sim 16 \text{ m}^3/\text{h}$	
	Heater	10 kW	
	Gas bag	1bar, 50 m ³	2ea
	Compressor	230 bar, 64 m ³ /h	2ea
Recovery System	Impure tank	200bar, 9.1 m ³	
Cycloni	Adsorber	200 bar, 70 bar(cryo)	
	Buffer tank	10 bar, 75 m ³	2ea
	QWR	4 K test	LHe supply
Test	HWR	4 K / 2 K test	SHe supply
Benches	SSR	4 K / 2 K test	LHe supply
	Vertical Stand	2 K / 4 K test	LHe supply

Results of Commissioning

We successfully performed the acceptance test of coldbox. The liquefaction rate of the coldbox is as as follows.

Liquefaction Rate	Guarantee	Test
Constant Level	120 L/h 330 W	168 L/h 368 W

We also carried out the performance test of helium transfer line using supercritical helium. The results of heat load are as follows.

		SHe supply	GHe return	LN2 shield
	Simulation	0.093 W/m	0.086 W/m	0.101 W/m
	Test	0.095 W/m	0.127 W/m	0.077 W/m

Additionally, we could check the performance of the TFCS through the tests of cryomodule, cavity and superconducting magnet.

We are making an effort to optimize the TFCS by continuous operation of the cryogenic system.

