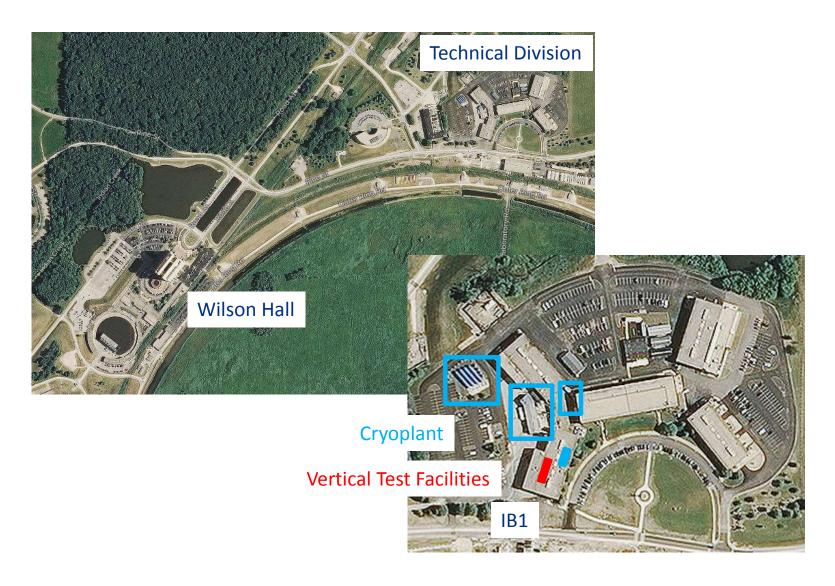


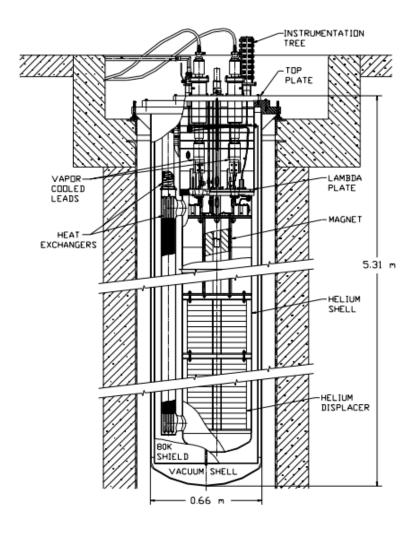
Operational Experience of the Fermilab Vertical Test Facilities


Roger Rabehl and Bruce Squires 2016 Workshop on Cryogenic Operations 27 October 2016

Agenda

- Overview of Industrial Building 1 (IB1)
 - Cryogenic Infrastructure
 - Vertical Test Facilities
- Cryogenic Infrastructure Improvements
- Vertical Test Facilities Improvements
- Operations Issues and Resolutions

Fermilab


IB1 Cryogenic Infrastructure

- CTI-Sulzer 1500 liquefier
 - 3-stream cold box with 2 turboexpanders and LN₂ precooling
 - > 300 liquid liters/hr @ 23 psia
 - Compressor skid with two Sullair C25L oil-flooded rotary screw compressors (1710 cfm each @ 3550 rpm)
 - 10,000 liter LHe storage dewar
 - Six 30,000 gallon GHe storage tanks
 - 10,000 gallon LN2 storage dewar
- Supports Vertical Test Facilities (the focus of this talk) and Horizontal Test Facilities (cryostated magnets (Tevatron, SSC, LHC) and HTS current leads)

Vertical Test Facilities

- Vertical Magnet Test Facility (VMTF)
 - Two-bath vertical dewar
 - 4.5 K saturated
 - 1.9 K subcooled
 - 30 kA powering capability
 - Magnets up to ~0.6 m
 diameter, ~3.6 m length

Vertical Test Facilities

Vertical Cavity Test Facility (VCTF)

Three vertical dewars, saturated LHe baths

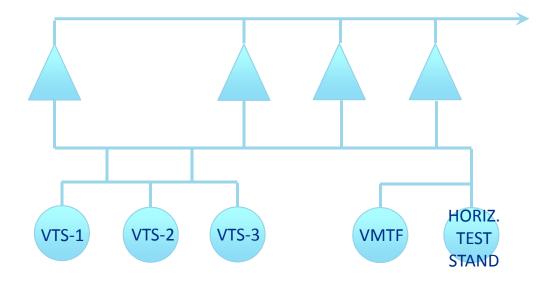
Vertical Test Stand 1 (VTS-1)

- Commissioned in 2007
- 26.3 in (0.67 m) inside diameter
- LHe bath 80 in (2 m) deep (typ.)
 - ~700 liters of sat. 2 K liquid
- VTS-2 and VTS-3
 - Commissioned in 2014
 - 36.3 in (0.92 m) inside diameter
 - LHe baths 80 in (2 m) depth (typ.)
 - ~1400 liters of sat. 2 K liquid
 - 2 ft (0.61 m) greater usable depth
 - Stacked cavities

- Compressor Slide Valve Change
 - Replaced 1st stage slide valve
 - System stability

Rotary Screw Compressor Slide Valves		
		Volume Ratio = 2.0
		Volume Ratio = 2.6
		Volume Ratio = 3.5
		Volume Ratio = 4.8

- Gas storage installed
 - In 2008, added three 30,000 gallon helium gas storage tanks.
 - 4 of 6 tanks are plumbed at each end.
 - Operational availability: 6 storage tanks matches GHe storage capacity with LHe storage dewar capacity
 - VCTF and VMTF upset this balance.


Operational availability: allows continuous purification of GHe

inventory

- Additional 2 K pumping capacity installed
 - Operational efficiency
 - Redundancy
 - Flexibility

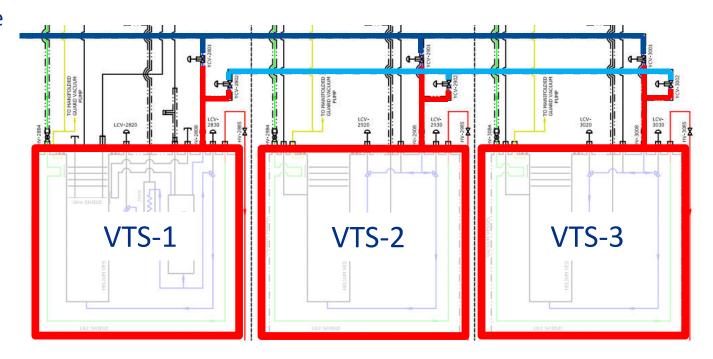
- Each skid has a Roots blower backed by a liquid ring pump
 - 3.75 g/s at 31 mbar inlet pressure (T_{sat} = 2 K)
- Local and remote control

Vertical Test Facilities Improvements

- Helium recovery installed
 - Recover helium gas after quenching high stored energy (>1 MJ) superconducting magnets in VMTF.
 - Previously had to vent helium to atmosphere (~\$1.2k/quench,
 50 quenches/magnet test typ.).

 Solution was to reconfigure (when necessary) one of our six helium gas storage tanks as a quench tank. Operational in

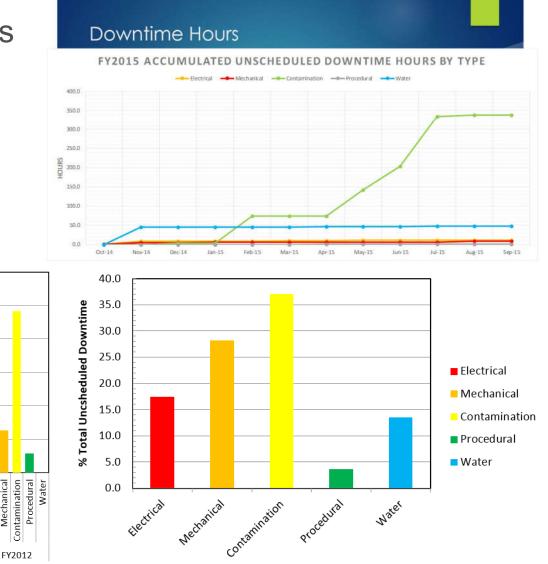
June 2012.



Vertical Test Facilities Improvements

- Interdewar transfer of LHe installed
 - Operational efficiency: maximize utility of LHe

Plant LHe supply



Contamination statistics

Contamination Procedural

FY2010

FY2009

Contamination Procedural

FY2011

600

500

400

300

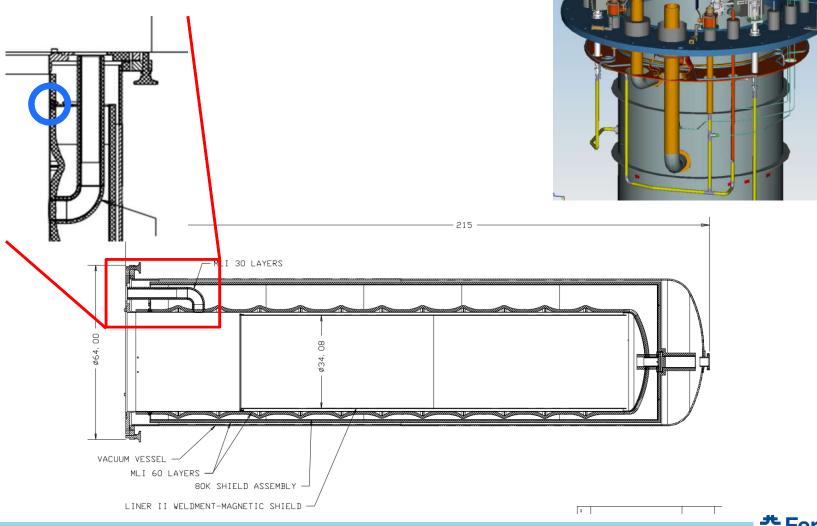
100

FY2008

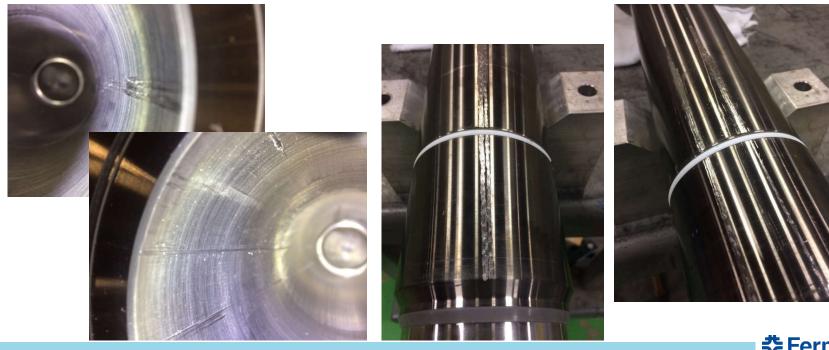
Hours of Unscheduled Downtime

- Sources and mitigation
 - Fittings
 - Positive pressure venturi effect
 - Subatmospheric
 - Pump and backfill operations
 - Normal operations
 - Eliminate compression fittings
 - Rupture disks
 - Pin holes
 - Ruptures due to system upsets

VMTF magnet cool-down clamshell HX



Water frost ring inside VTS cryostats


- System-wide contamination mitigation
 - 60 g/s Mycom compressor and two LN2-cooled charcoal bed purifiers being added to the IB1 system
 - Process all flows (pumped, subatmospheric flows and positive pressure flows) from Vertical Test Facilities

Operations Issues and Resolutions: Valves

- Valves: galling between valve stem and valve body ID
 - Valves hardly used. Manufacturing defect? Debris?
 - Honed/polished the jacket IDs
 - Turned down the stem ODs and had them chrome-plated.
 Radial gap increased from 0.005 in to > 0.010 in.

Summary

 A number of measures have been taken to increase the availability, efficiency, and flexibility of the IB1 cryogenic system.

Questions?

