Opportunities for Participation in DUNE

Eric James Neutrino – Latin America Workshop April 28, 2016

Fermilab

LBNF/DUNE

- LBNF (75% U.S. 25% International)
 - Far Site Facilities
 - Cryostats/Cryogenics
 - Near Site Facilities
 - Beamline
- DUNE (25% U.S. 75% International)
 - Far Detector (Four 10 k-ton Fiducial Modules)

Fermilab

- Near detector

DUNE Project Scope

- Design, construct, and install four 10-kton fiducial mass Liquid Argon detectors for operation within the deep underground area of the Sanford Underground Research Facility (SURF) in South Dakota.
- Design, construct, and install a near neutrino detector at Fermilab to provide the necessary inputs for constraining systematic uncertainties on the precision measurements to be extracted from the deep underground detectors.

DUNE Far Detector Scope

- Detection Capabilities
 - Full reconstruction of neutrino (accelerator, atmospheric, and supernova) interactions and nucleon decays
 - Photon collection for event timing (non-accelerator)
- Scope is the active detector: Time Projection Chamber (TPC), photon detection system, readout electronics, DAQ, installation, and integration

DUNE Far Detector Conceptual Design

- Detector Parameters (One 10-kton Module)
 - 58 m x 12 m x 14.4 m (~50 times larger than ICARUS)
 - Alternating Anode and Cathode Plane Assemblies resulting in four
 3.6 m drift volumes
 - Modular design to facilitate underground transport and installation

Fermilab DUNE

DUNE Far Detector Alternative Design

- Alternative Design Features
 - One drift region (bottom to top)
 - Modular design to facilitate underground transport and installation

Germilab

- Large S/N possible due to signal amplification in gas phase

DUNE Near Detector Scope

- Detection Capabilities
 - Measurement of absolute and relative electron neutrino, electron anti-neutrino, muon neutrino, and muon anti-neutrino spectra in the neutrino beam produced at Fermilab
 - Ability to operate in a higher-rate environment
- Scope is the active detector: dipole magnet, targets, straw tube tracker, electromagnetic calorimetry, muon ID detectors, readout electronics, DAQ, installation, and integration

Fermilab DUNE

- Detector Parameters
 - 3.5 m x 3.5 m x 7 m Straw Tube Tracker
 - 4π electromagnetic calorimetry and muon ID in dipole B field (0.4T)
 - Pressurized Argon Target

Guilde Fermilab

DUNE Priorities

- Two equally important (and competing) priorities for DUNE from now through 2019 are
 - Design, construction, installation, commissioning, and operation of ProtoDUNE Detectors
 - Preparations for CD-2
- These are the key activities that get DUNE to the planned installation of the first 10-kton far detector at SURF in the early 2020's and ensure its leadership position within the international landscape for the CP-violation measurements

Opportunities with DUNE

★ DUNE is a long-term scientific program

- New collaborators are welcome
- Potential to start small and ramp-up over the coming years

***** Opportunities exist in many areas

- Hardware development
 - Particularly within protoDUNE @ CERN
- Simulation and Reconstruction
- Scientific studies
- Theoretical input
- Accelerator and beam-line

★ Opportunities to build long-term scientific partnerships

- DUNE is a major "LHC-experiment-scale" international collaboration
 - foresee partnerships crossing national boundaries
 - Should aim to use DUNE to help strengthen/broaden scientific/technical base in participating institutes/countries

LBNF/DUNE - Schedule Summary Overview

Fermilab

Far Detector Opportunities

- The four 10 k-ton fiducial modules will be constructed sequentially
 - Collaboration strategy allows for evolution of detector design from module to module
 - Dual-phase approach is considered an option for 2nd and subsequent modules
- Expressions of interest from collaboration institutes who would like to take responsibility for production of module 1 & 2 detector components will be solicited in late 2017
 - Allows time for interaction with funding agencies to secure funding on timescale of 2019

Involvement in Detector Prototyping

- The DUNE collaboration considers both the single-phase and dual-phase development paths to be critical program components and places a high-value on contributions to these efforts
- Additional resources are needed to fully maximize the scientific impact of the prototyping program
- Relatively modest contributions to this program can have a big impact on the final designs for the far detector modules

Level of Involvement

- The timescale for the DUNE prototyping efforts is short and not everyone interested in participating in DUNE will be able to make significant capital contributions on this timescale
- However, contributions of scientific and engineering resources to these efforts are invaluable and create a path towards opportunities for future, more-significant involvement in far detector construction

- Allows for intellectual participation in the detector designs at the earliest stages

- Provides experience with detector construction techniques developed during prototype development

Far Detector Prototyping Program

- DUNE has well-developed plans for a series of detector prototypes that will provide input to the process leading to the final design(s) for the DUNE far detector modules
- Benefits of the prototyping program are
 - Mitigation of risks associated with current detector designs
 - Establishment of construction facilities required for full-scale production of detector components
 - Early detection of potential issues with construction methods and detector performance
 - Provides required calibration of detector response to particle interactions in test beam

DUNE Far Detector Prototyping

17 04.28.16 Eric James | Opportunities for Participation in DUNE

Fermilab

35-ton (Fermilab)

18 04.28.16 Eric James | Opportunities for Participation in DUNE

Fermilab

WA105 1x1x3 m³ (CERN)

19 04.28.16 Eric James | Opportunities for Participation in DUNE

Germilab

ProtoDUNEs

20 04.28.16 Eric James | Opportunities for Participation in DUNE

♣ Fermilab DUNE

ProtoDUNE Schedule Highlights

- Test Beam Facility available August 2016
- Begin Production of first APA Plane October 2016
- Cold Electronics Production Run March 2017
- ProtoDUNE Cryostat available April 2017
- First APA Planes Arrive at CERN May 2017
- Detector Installation Complete February 2018

Near Detector Opportunities

- Current planning calls for installation of the near detector on the timescale of 2026
 - Allows for further development of the current conceptual design
 - Other options including liquid argon and high-pressure gas TPCs are under study
- Collaboration task force has been charged with developing the simulation tools needed to study these different options
 - Goal is to be able to provide these tools on the timescale of spring 2017

Near Detector Opportunities

- As in the case of the far detector, the collaboration plans to solicit expressions of interest from collaboration institutes who would like to take on responsibilities for construction of near detector components
- The timescale for assigning these responsibilities is still under discussion
 - First step is to perform the physics studies necessary to settle on the final design

Summary

- DUNE is ballistic and goals are ambitious
 - Operating full-scale prototypes in 2018
 - Beginning far detector construction in 2020
 - Near-term decisions on near detector design
- Opportunities exist for getting involved at levels within the collaboration
- Involvement in the near-term prototyping program is an opportunity for creating a pathway towards future participation in the far detector construction project