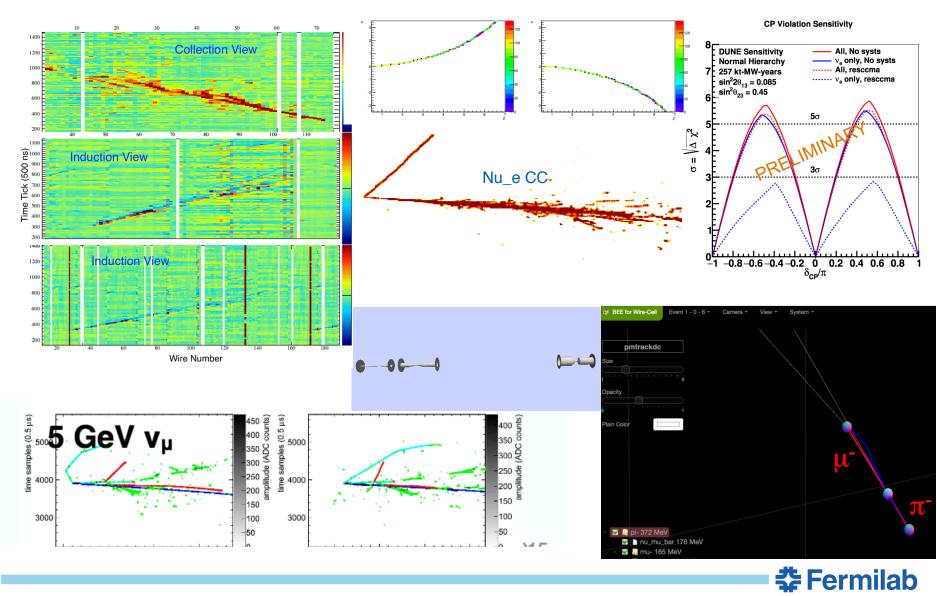
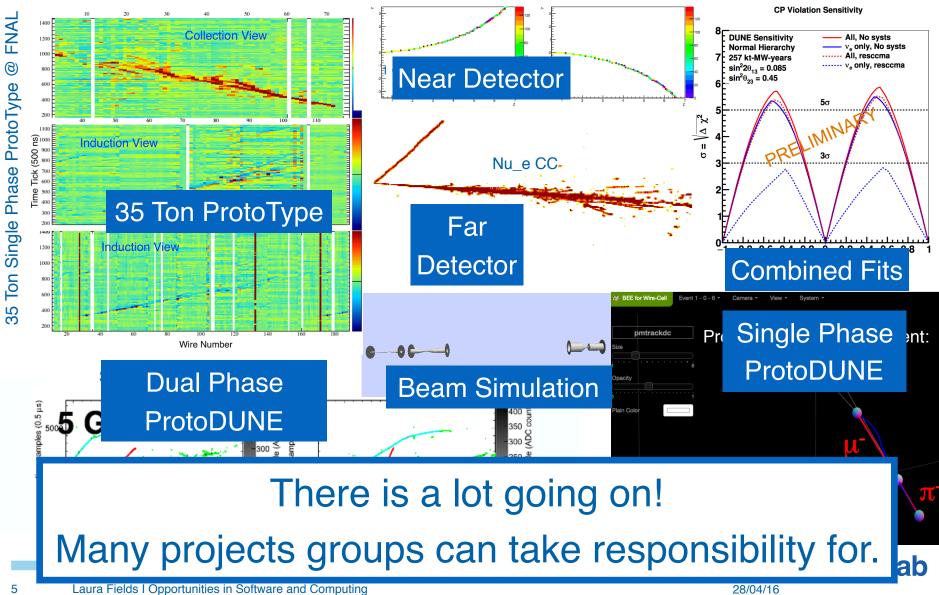


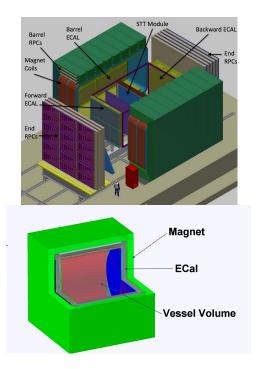
Opportunities in Software And Computing

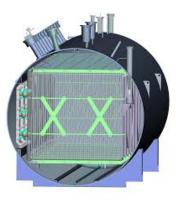
Laura Fields


- Ongoing simulation/reconstruction efforts in DUNE
- Opportunities in protoDUNE software & computing
- Development of community tools for DUNE

A Note About Commitment

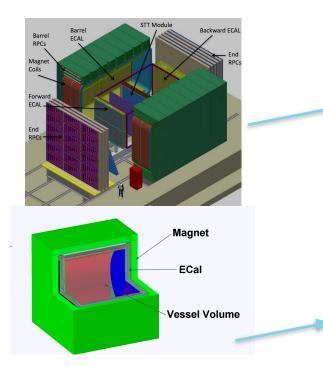

- I'll discuss opportunities with a range of commitments
- Most collaborators are only able to devote a small fraction of their research time to DUNE
 - Some of these small contributions have had a big impact
 - Valuable contributions to S&C projects have been made by undergraduate students working for only a few months
- But there is a major need for collaborators who can devote large fractions of time to DUNE software/computing, and commit for long periods
 - Ability to be resident at Fermilab or CERN for a period is very useful
 - Such commitments are likely to lead to a huge impact to the experiment

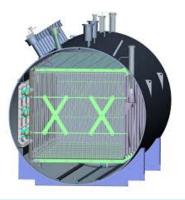




4

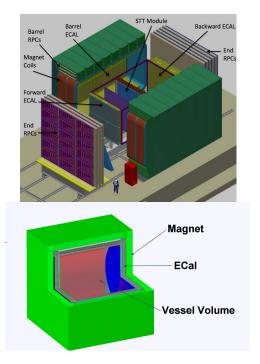
28/04/16

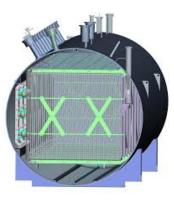




6

- Near Detector Simulation and reconstruction is an area of critical need for the collaboration
- Near Detector task force is currently analyzing relative merit of three detector options
 - Fine Grained tracker
 - High Pressure Gas TPC
 - Liquid Argon TPC
- Near detector software and computing current coordinated by task force

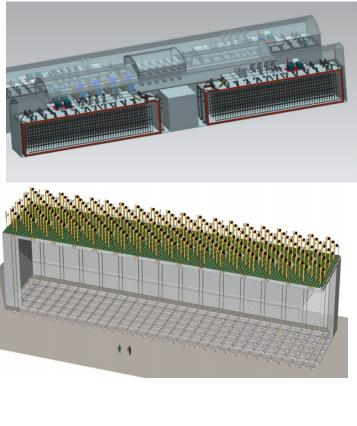

7


• Fine grained tracker Needs:

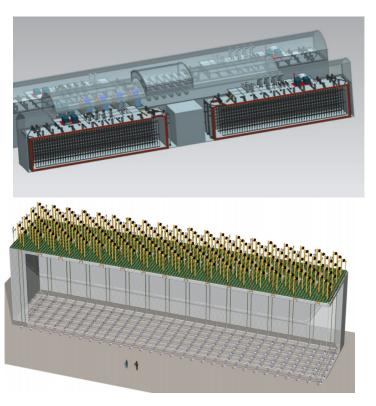
- Development of real (not "fast") reconstruction algorithms
- Detector electronics simulation
- Validation of background subtraction

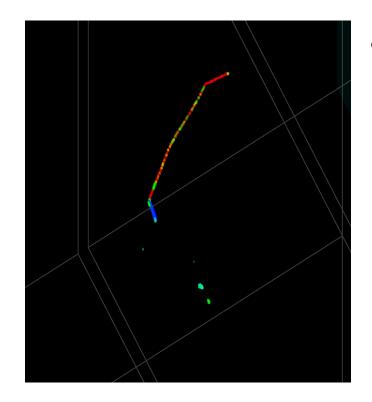
• High Pressure Gas TPC Needs:

- Development of real (not "fast") reconstruction algorithms
- Detector electronics simulation
- Adaptation of T2K ND280 reco libraries
- Liquid Argon TPC Needs:
 - Reco of LAr events in magnetic field (how are resolutions, PID, etc different)?
 Fermilab

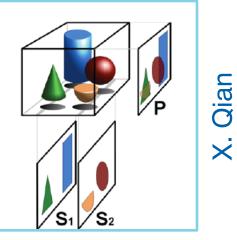


8


- Opportunities exist to get involved in simulation of any of the three detector options on all levels:
 - Simulation
 - Reconstruction
 - Event Selection
 - Simulated analyses:
 - Neutrino-electron scattering
 - "Low-nu"
 - How well can the three detector options perform these high-priority measurements aimed at flux constraint?


- Far detector effort currently focused on the goals of the far detector optimization task force, which was charged with:
 - Developing full sim/reco chain
 - Producing optimization studies (e.g. wire pitch, photon detector configuration, etc)
 - Developing simulation/ reconstruction of SNB and Proton Decay physics

- Far detector needs:
 - Neutrino event selection
 - Neutrino event classification and energy measurement
 - Systematic uncertainty evaluation
 - Wire angle, spacing, orientation

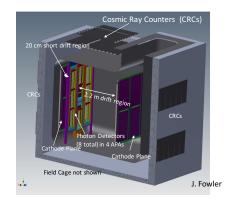


Bee Event Display p -> K nubar in Far Detector http://www.phy.bnl.gov/wire-cell/

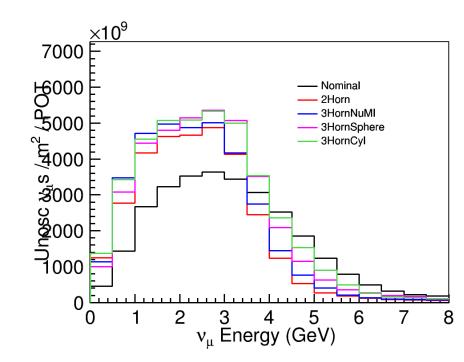
 Another far detector need: development of reconstruction using Wire-Cell reconstruction package

Wire-Cell Imaging:

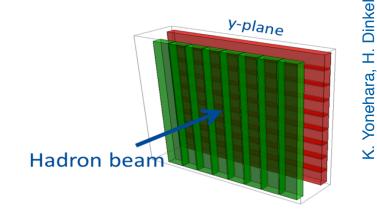
- 2D images at fixed time slice are reconstructed
- 2D images are then stitched together to form 3D object

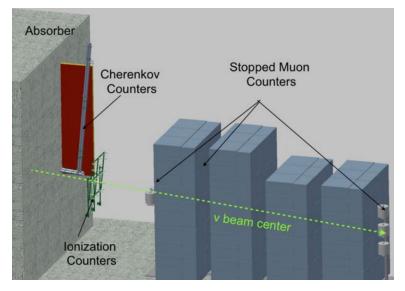


• One area of potential involvement: development of direct 3D pattern recognition.


- 35 Ton ProtoType Needs
 - On a short timescale data is already taken
 - Noise filtering
 - **Disambiguation** with just two planes
- Célio Moura from UFABC is contributing to this effort

Beam Simulation effort:


- Currently focused on beam optimization task force charge of identifying and comparing various beam options
- Have identified several idealized designs that produce substantially better flux
- Over the next months/years, work will shift to developing detailed simulation of conceptual and preliminary designs



Beam Simulation Effort:

- We know the LBNF/DUNE beam will be **more intense** than any existing neutrino beam
- To meet our physics goals, it must also be the best understood
- We need people to
 - Develop detailed Geant4
 geometries
 - Validate geometry and physics models
 - Develop of muon and hadron monitor simulations

General Software/Computing Needs:

- Each group needs a software release manager and quality control testing
- Batch system interfaces -- we have ways to submit jobs to Fermigrid and OSG. Need to expand resource pool to include CERN resources

Fermilab Grid Computing Center

CERN Data Centre

- General Software/Computing
 Needs:
 - Help with data management infrastructure
 - For general long term use but specifically for ProtoDUNE in near future
 - Have model for distributing data from detector to external sites
 - Hosting such a site at your institution (even a small one) would help build distributed data model
 - Bonus: local access to data for analysis!

Fermilab Grid Computing Center

CERN Data Centre

- ProtoDUNE DAQ/Online Activities
 - RCE, SSP, and Penn Board (trigger) firmware
 - Online disk buffer farm
 - DUNE-specific artDAQ components
 - Board Reader modules
 - Fragment generators
 - Aggregators
 - Event building
 - Online monitoring of data
 - Compression
 - Online event display
 - Run control
 - Conditions database
 - Data cataloging tools -- good run list, web pages, and data curation

ProtoDUNE DAQ/Online Activities

- RCE, SSP, and Penn Board (trigger) firmware
- Online disk buffer farm
- DUNE-specific artDAQ components
 - Board Reader modules
 - Fragment generators
 - Aggregators
 - Event building
 - Online monitoring of data
 - Compression
- Online event display
- Run control
- Conditions database
- Data cataloging tools -- good run list, web pages, and data curation

28/04/16

American Institutions have a proven track record at Fermlab — CBPF students wrote MINERvA's online monitoring system

This is an area where Latin

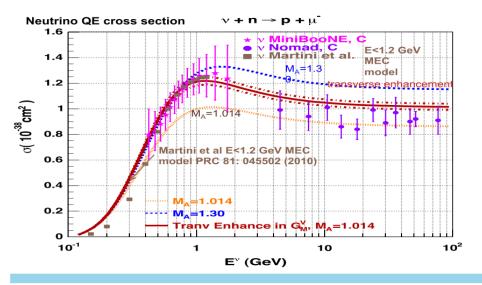
- **ProtoDUNE: Single-Phase** Opportunities for Involvement:
 - Signal processing, noise filtering, and deconvolution
 - Hit finding and disambiguation (TPC and photon-detector)
 - Track and shower reconstruction
 - Photon-detector/TPC association algorithms
 - MC interface and tuning; running MC samples and cataloging.
 - Event selection
 - Cosmic-ray rejection
 - Analysis design and systematic uncertainty estimation
 - pion/kaon cross sections
 - electron and photon selection and energy measurement
 - proton ID
 - muon range and multiple scattering measurement
 - space charge constraints
 - detector alignment

- **ProtoDUNE: Dual-Phase** Opportunities for Involvement:
 - Signal processing, noise filtering, and deconvolution
 - Hit finding and disambiguation (TPC and photon-detector)
 - Track and shower reconstruction
 - Photon-detector/TPC association algorithms
 - MC interface and tuning; running MC samples and cataloging.
 - Event selection
 - Cosmic-ray rejection
 - Analysis design and systematic uncertainty estimation
 - pion/kaon cross sections
 - electron and photon selection and energy measurement
 - proton ID
 - muon range and multiple scattering measurement
 - space charge constraints
 - detector alignment

- ProtoDUNE: Dual-Phase Opportunities for
 - Signal processing, noise filtering, and de
 - Hit finding and disambiguation (TPP
 - Track and shower reconstruction
 - Photon-detector/TPC asp
 - MC interface and tupⁱ
 - **Event selection**
 - Cosmic-ra
- Residency at certain may be required for some, allency also expect to have a significant Analy

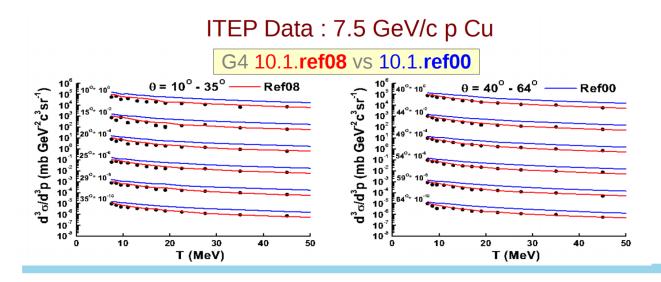
*m*straints

gnment



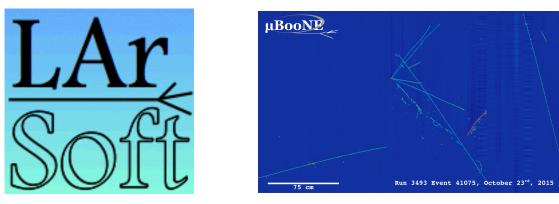
ht.

 There is intense development underway of many HEP and Neutrino software tools that will be used by DUNE


Bodek, Christy, Coopersmith EPJ C (2014) 74:3091

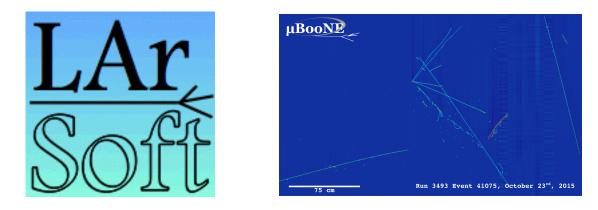
- An Example: The GENIE Event Generator
 - Ongoing development of many, many models
 - Ongoing work to develop validation and tuning infrastructure that will incorporate data as it comes in over the next decade and determine tunes used for DUNE

- There is intense development underway of many HEP and Neutrino software tools that will be used by DUNE
 - Another Example: Geant4
 - Active development of models and physics list
 - Work towards systematic uncertainty framework underway
 - Re-engineering for new computing architectures


- There is intense development underway of many HEP and Neutrino software tools that will be used by DUNE
 - Another Example: Geant4
 - Active development of models and physics list
 - Work towards systematic uncertainty framework underway
 - Re-engineering for new computing architectures

This is another area of demonstrated success by Latin American groups:

- Rodrigo Castro group @ UBA: working on an alternative integration method to improve speed of Geant4.
- Sergio Novaes group @ UNESP: working on GeantV project to reengineer for new hardware architectures.



- There is intense development underway of many HEP and Neutrino software tools that will be used by DUNE
 - Another Example: LarSoft
 - Also engaged in re-engineering for new computer architectures (e.g. enabling multithreading/vector units)
 - Efforts underway to pull forward algorithms tested and used by MicroBooNE for DUNE
 - Many infrastructure expansions that will eventually aid DUNE (e.g. event display improvements)

- There is intense development underway of many HEP and Neutrino software tools that will be used by DUNE
 - Another Example: LarSoft
 - LArSoft development is a great way to simultaneously contribute to DUNE and other experiments
 - An example: A. Higuera (former Guanajuato grad student now at the University of Houston) has developed standardized track/shower efficiency calculations for DUNE that were immediately adopted by MicroBooNE

Conclusion

- DUNE is going to be awesome!
- That awesomeness requires an immense amount of software and computing work over the next decade
- There are lots of places your group can make an impact
- Two areas with a lot of opportunities:
 - ProtoDUNE Software/Computing
 - Near Detector Simulation

Conclusion

- Where to find more infomation
 - Spokes people (Mark Thomson and André Rubbia) and/or S&C coordinators (Tom Junk and Amir Farbin) should be your first contacts
 - Working groups / conveners can be found on the DUNE at Work page
 - https://web.fnal.gov/collaboration/DUNE/SitePages/Home.aspx
 - Software and computing mailing lists: <u>https://web.fnal.gov/project/</u> <u>LBNF/SitePages/LBNF%20and%20DUNE%20Mailing</u> <u>%20Lists.aspx</u>
 - General questions go to dune-communication@fnal.gov
 - Those interested in developing community tools can join the Simulations for Neutrinos Fermilab mailing list
 - <u>simulations_for_neutrinos@listserv.fnal.gov</u>

Thanks for Listening!

