

LONG-BASELINE OSCILLATION PHYSICS IN DUNE

Elizabeth Worcester (BNL)
Neutrino – Latin America Workshop
April 28, 2016

Overview

- Introduction to long-baseline neutrino oscillation
- Oscillation sensitivity in DUNE
- Systematic uncertainties
- Additional physics topics

Oscillation Parameters

- NuFit 2014
 - http://www.nu-fit.org/
 - Includes results through NOW 2014
 - θ_{13} , θ_{12} , Δm^2_{21} , $|\Delta m^2_{32}|$ each known to a few percent
 - θ_{23} known to ~6% (octant unknown)
 - Some preference for δ_{CP} < 0
- Further constraints expected from existing and planned experiments:
 - Hints from T2K and NOvA suggest δ_{CP} < 0
 - External constraints on mixing angles improve early sensitivity
 - Measurements or hints of MH or δ_{CP} value could influence run plans
- Ultimate DUNE goals include precise measurements of θ_{13} , θ_{23} , Δm^2_{32} , and δ_{CP} for unitarity and sum rule tests

v_e Appearance

$$P(\nu_{\mu} \to \nu_{e}) \approx \frac{\sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2}(\Delta_{31} - aL)}{(\Delta_{31} - aL)^{2}} \Delta_{31}^{2} + a = G_{F} N_{e} \sqrt{2}$$

$$\alpha \sin 2\theta_{13} \cos \delta \frac{\sin(aL)}{(aL)} \frac{\sin(\Delta_{31} - aL)}{(\Delta_{31} - aL)} \cos \Delta_{32} - a = G_{F} N_{e} \sqrt{2}$$

$$\alpha \sin 2\theta_{13} \sin \delta \frac{\sin(aL)}{(aL)} \frac{\sin(\Delta_{31} - aL)}{(\Delta_{31} - aL)} \sin \Delta_{32}$$

$$\Delta_{ij} = \frac{\Delta m_{ij}^{2} L}{4E}$$

- v_e appearance amplitude depends on θ_{13} , θ_{23} , δ_{CP} , and matter effects measurements of all four possible in a single experiment
- Large value of $\sin^2(2\theta_{13})$ allows significant v_e appearance sample

Matter and CP Asymmetry

Charged-current coherent forward scattering on electrons:

- CC process occurs for electron neutrinos only; muon and tau have only NC interactions with electrons
- Normal hierarchy: matter effect enhances appearance probability for neutrinos and suppresses it for antineutrinos (opposite for IH)

CP asymmetries in $\nu_{\,\mu} \,{\to}\, \nu_{\,e}$ at 1 st osc. node

Matter asymmetry very important for long-baseline experiments!

Matter and CP Asymmetry

Total Asymmetry at 290km

Degeneracy between CP and matter asymmetry for 1st oscillation node at short baseline

Matter and CP Asymmetry

Total Asymmetry at 1000km

Longer baseline breaks degeneracy between CP and matter asymmetry

DUNE

Measure v_e appearance and v_μ disappearance in a wideband neutrino beam at 1300 km to measure MH, CPV, and neutrino mixing parameters in a single experiment.

Signal Efficiency

DUNE CDR:

- Expected efficiency from analysis of parameterized Fast MC
 - Detector performance parameters based on previous experiments and simulations
 - Reconstruction/analysis efforts underway to demonstrate performance with DUNE simulation
- Current generation of experiments have much to contribute to understanding of reconstruction/analysis in LArTPCs

Sensitivity Calculations

DUNE CDR:

- GLoBES-based fit to four FD samples
- Two neutrino beam line designs considered
- GENIE event generator
- Reconstructed spectra predicted using detector response parameterized at the single particle level
- Simple systematics treatment
- GLoBES configurations to be made public soon

DUNE Sensitivity

DUNE CDR:

Mass Hierarchy

CP Violation

Width of band indicates variation among differing neutrino beam designs. Exposure is 300 kt.MW.yr = 40 kt x 1.07 MW x $(3.5v+3.5\overline{v})$ years. Includes simple normalization systematics and oscillation parameter variations.

Oscillation Parameter Sensitivity

DUNE CDR:

DUNE Sensitivity Over Time

DUNE CDR:

Physics milestone	Exposure kt · MW · year	Exposure kt · MW · year
	(reference beam)	(optimized beam)
1° $ heta_{23}$ resolution $(heta_{23}=42^{\circ})$	70	45
CPV at 3σ ($\delta_{\mathrm{CP}} = +\pi/2$)	70	60
CPV at 3σ ($\delta_{ m CP}=-\pi/2$)	160	100
CPV at 5σ ($\delta_{ m CP}=+\pi/2$)	280	210
MH at 5σ (worst point)	400	230
10° resolution ($\delta_{ m CP}=0$)	450	290
CPV at 5σ ($\delta_{ m CP}=-\pi/2$)	525	320
CPV at 5σ 50% of δ_{CP}	810	550
Reactor θ_{13} resolution	1200	850
$(\sin^2 2\theta_{13} = 0.084 \pm 0.003)$		
CPV at 3σ 75% of δ_{CP}	1320	850

Interesting measurements will be made throughout the DUNE physics program!

CP Violation

Initial beam power: 1.07 MW at 80 GeV Planned upgrade to > 2 MW

Systematic Uncertainty

DUNE CDR:

- CPV measurement statistically limited for ~100 kt-MW-years
- Sensitivities in DUNE CDR are based on GLoBES calculations in which the effect of systematic uncertainty is approximated using uncorrelated signal normalization uncertainties.

•
$$v_{\mu} = \overline{v}_{\mu} = 5\%$$

•
$$v_e = \bar{v}_e = 2\%$$

• Uncertainty in v_e appearance sample normalization must be ~5% \oplus 2% to discover CPV in a timely manner.

Sources of Uncertainty

Source of Uncertainty	MINOS v_{e}	T2K ν _e	Goal for DUNE $v_{\rm e}$
Beam Flux	0.3%	3.2%	2%
Interaction Model	2.7%	5.3%	~2%
Energy Scale (v_{μ})	3.5%	Included above	Included in 5% ν_{μ} uncertainty
Energy Scale (v_e)	2.7%	2.5% includes all FD effects	2%
Fiducial Volume	2.4%	1%	1%
Total Uncertainty	5.7%	6.8%	3.6%
Used in DUNE sensitivity calculations:			5% ⊕ 2%

DUNE goals are for the *total* normalization uncertainty on the v_e appearance sample. The DUNE analysis will be a 3-flavor oscillation fit such that uncertainties correlated among the four FD samples will largely cancel.

Strategy for Flux

- Constrain absolute flux with near detector measurements of fullyleptonic neutrino interactions
 - Cross-sections known to high precision
 - Neutrino-electron scattering:
 ~3% stat. (E_v < 5 GeV)
 - Inverse muon decay: ~3% stat. (E_v > 11 GeV)
- Constrain flux shape using low-v₀ method: 1-2%
- Low- v_0 measurement for both v_e and v_μ flux, in combination with hadron production data (NA61/SHINE), constrains ND/FD flux ratio at the 1% level

120 events in MINERvA → 13% constraint on NuMI flux, statistically limited (J. Park thesis)

arXiv:1201.3025 (Bodek et al.): 1

Cross Sections per Nucleon for Neutrino on Carbon with v Cut

Strategy for Interaction Model

- Prospects for improved interaction models:
 - Improved models becoming available
 - Intermediate neutrino program measurements in LAr TPCs

ND constraint:

- High precision near detector designed to constrain cross-section and hadronization uncertainties, resolving many individual particles produced by resonance and DIS interactions
- Argon nuclear targets in ND allows significant cancellation of crosssection uncertainties common to near and far detectors

FD constraint:

• Four FD samples allow cancellation of uncertainties that are correlated between ν_e/ν_u or $\nu/\bar{\nu}$

Improving Interaction Models

- Worldwide effort that will benefit DUNE!
- Alternative models being implemented in GENIE include:
 - Long- and short-range correlations among nucleons
 - Effect of random phase approximations
 - Meson exchange currents
 - 2p-2h effects in CCQE
 - Effective spectral functions
 - Coherent pion production
 - Alternative model of DIS interactions
 - Variation of tunable parameters within existing models
- Comparisons among generators
- Neutrino interaction data available or coming soon from:
 - ArgoNeuT, MINERvA, CAPTAIN-MINERvA, NOvA-ND, T2K-ND280, μBooNE, SBND, ICARUS, ...
- Electron-argon scattering data coming soon from JLab

DUNE collaborators active in all of these efforts!

Constraints on Cross-Section Ratios

- Theoretical and experimental constraints on variation in v/\bar{v} and v_e/v_μ cross-section ratios determines how much four far-detector samples can constrain uncertainty from cross-section models
 - Current nominal variation for DUNE studies is 10% for v/\overline{v} and 2.5% for v_e/v_μ
 - Even a consensus on the right order of magnitude for these uncertainties would be valuable

MINERVA CCQE arXiv:1509.05729

Strategy for Detector Effects

- DUNE LArTPC expected to perform better than existing appearance experiments in reconstruction of v_e interactions
 - Purity of quasielastic-like sample improved by detection of low-energy hadronic showers
 - Low threshold and good resolution improves calorimetric reconstruction
 - Experience from Intermediate Neutrino Program LArTPCs expected to inform simulation, reconstruction, and calibration of DUNE's far detector
- Calibration program
 - LArIAT, CAPTAIN, DUNE 35-ton prototype, protoDUNEs
- Improved neutrino interaction model will reduce impact of imperfect reconstruction of neutrons and lowenergy protons on analysis

DUNE 35-ton APAs:

Additional Physics Topics

- ν_τ appearance
 - Expect >100 events per year at far detector (dependent on flux)
 - Higher energy tune would produce larger samples
- Individual effort could impact on make huge impact to pics! New physics affecting longbaseline oscillation
 - NSI
 - Long-range interactions
 - Large extra dimensions
 - Lorentz/CPT violation
 - Mixing with sterile ν
- Phenomenology
 - Sum rules; impact of CP violation; quantification of goals for precision parameter measurements

NC NSI discovery reach (3σ C.L.)

Summary

- DUNE will be sensitive to neutrino mass hierarchy, CP violation, and precision measurements of oscillation parameters θ_{13} , θ_{23} , Δm^2_{32} and δ_{CP} in a single experiment.
- DUNE will be sensitive to new physics.
- DUNE will make interesting physics measurements at every phase of experimental operations.
- Reconstruction and event selection are critical.
 - Still work in progress
- Constraint of systematic uncertainty is critical.
 - Still work in progress
 - Existing and near-future experiments are making many measurements needed to constrain DUNE systematics
- Theory/Phenomenology input is critical.
 - Improving/understanding neutrino interaction models
 - Understanding impact of precision measurements