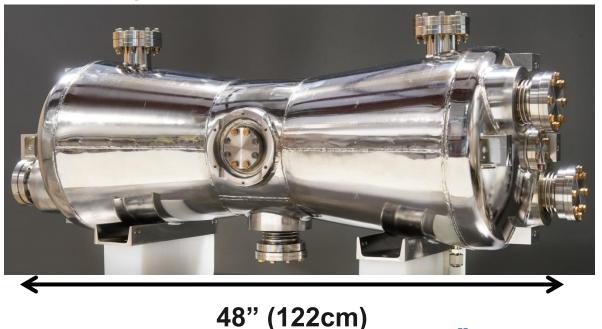


Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science


Superconducting RF: HWR Status

Zachary A. Conway, Argonne National Laboratory Contributors: A. Barcikowski, B.M. Guilfoyle, C.S. Hopper, M.P. Kelly, M.J. Kedzie, S.h. Kim, P.N. Ostroumov and T.C. Reid PIP-II Machine Advisory Committee Meeting 15-17 March 2016

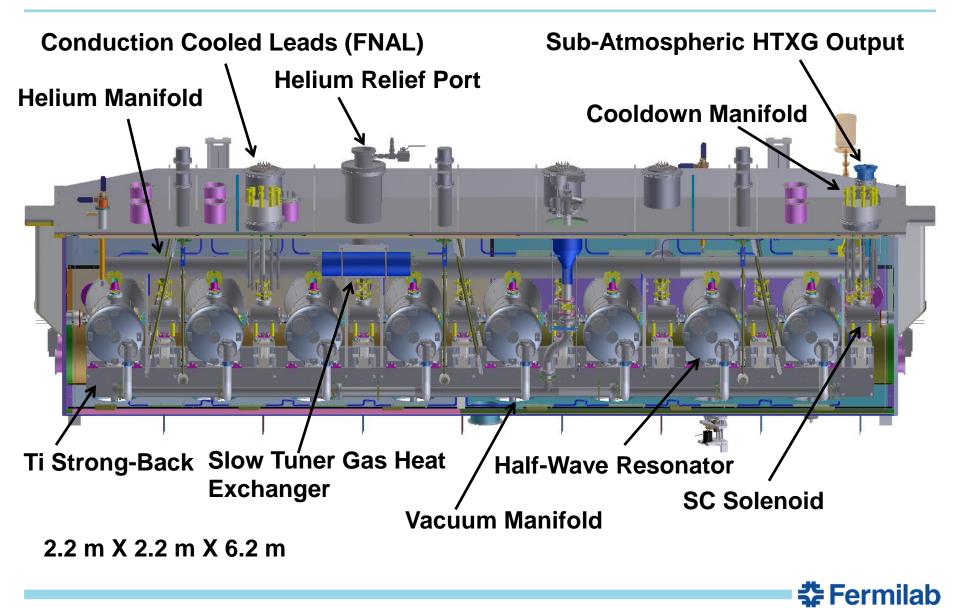
Overview

- Work scope.
- Status reports:
 - Half-wave resonators.
 - Fabrication/Processing.
 - Cold testing.
 - Sub-systems.
 - RF couplers.
 - Solenoids.
 - Tuners.
 - BPMs.
 - Cryomodule.
 - Testing.
 - Assembly.

- Progress toward FY2016 deliverables.
- FY2017 plans.
- g. Summary.
- 162.5 MHz β = 0.11 Half-Wave Resonator (HWR)

🚰 Fermilab

3/15/2016


Scope of Work

- Provide FNAL with a 2 K superconducting half-wave resonator cryomodule operating at 162.5 MHz for the acceleration of H⁻ beams from 2.1 to 10.3 MeV.
 - Delivered to PXIE for beam commissioning starting in 2018.
- HWR Cryomodule Major Tasks:
 - Develop the 2 K design, build the hardware (except the conduction cooled magnet leads), off-line pre-commission, deliver and install the cryomodule.
 - The cryomodule will have 8 162.5 MHz half-wave resonators, 8 6 T superconducting solenoids with integral return and steering coils and 8 beam position monitors (BPMs).

3/15/2016

 Satisfy all functional requirement specifications and Interface Document conditions.

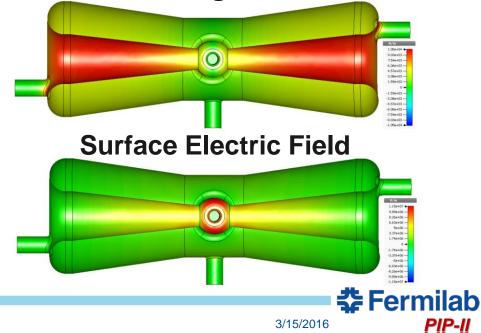
Half-Wave Resonator Cryomodule

3/15/2016

Technical Developments

- Novel design of half-wave resonators: double conical structure to reduce peak fields and cryogenic load while providing a high shunt impedance.
- Integrate into the superconducting solenoid a return coil and x-y steering coils without additional magnetic shielding.
- Cold, low-particulate clean, beam position monitors.
- Compact lattice suitable for the acceleration of several mAs of H⁻ or proton beams.
- When finished the half-wave cryomodule will be the first superfluid helium cooled TEM-class cryomodule.

🛟 Fermilab


What goes into a half-wave cavity?

- Cavity Design Parameters:
 - Beam physics design.
 - RF Performance.
 - Fabrication.
 - Polishing.
 - Cleaning.
 - Assembly.
 - Safety standards.

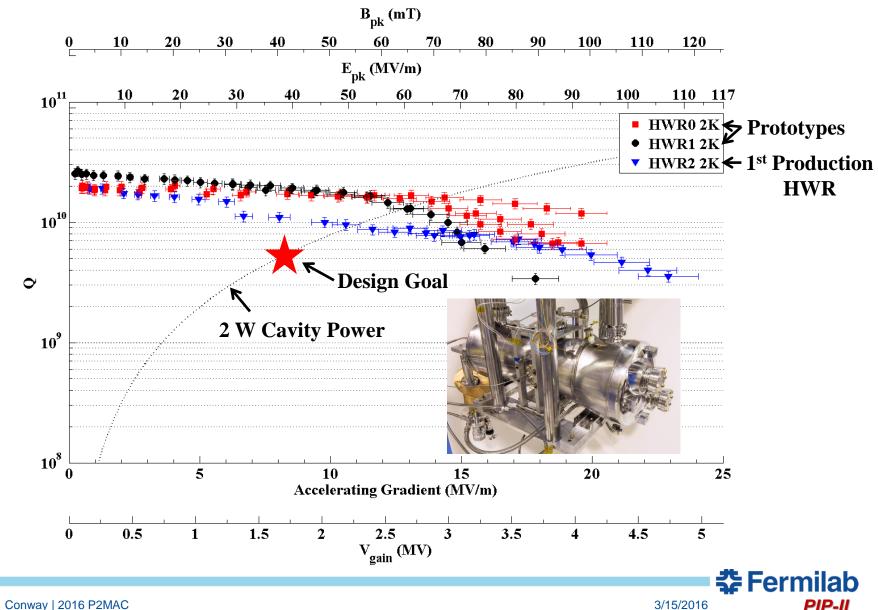
Cavity Type	HWR
Freq. (MHz)	162.5
β	0.112
l _{eff} (cm, βλ)	20.68
E _{pk} /E _{acc}	4.7
B _{pk} /E _{acc} (mT/(MV/m))	5.0
QR _s (Ω)	48.1
R _{sh} /Q (Ω)	272

Surface Magnetic Field

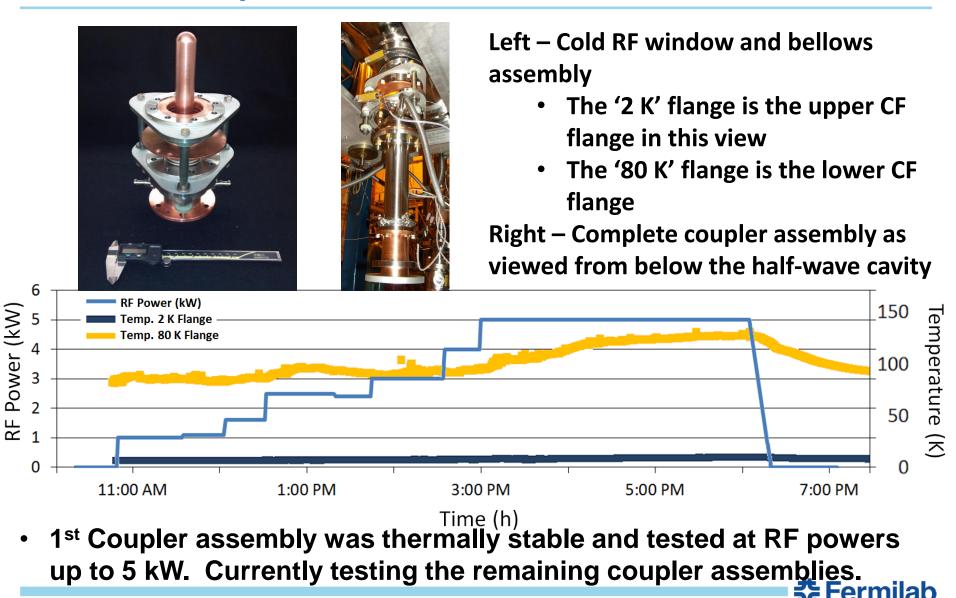
Half-Wave Resonator Fabrication Status

- We are building 9 total resonators.
 - The two prototypes are finished.
 - The remaining 7 production cavities are at various stages of finished:
 - All fabrication is finished. Only processing remains.
 - The first unit tested last month.
 - The second unit is ready for cold testing. Test will take place in the next several weeks.
 - Two units are ready for final light polishing (20 μm).
 - Three units are ready for hydrogen degassing at FNAL. After the hydrogen degassing they will be tuned and made ready for the final light polishing.
- Next:
 - Recent cavity test results.
 - Frequency tuning progress.

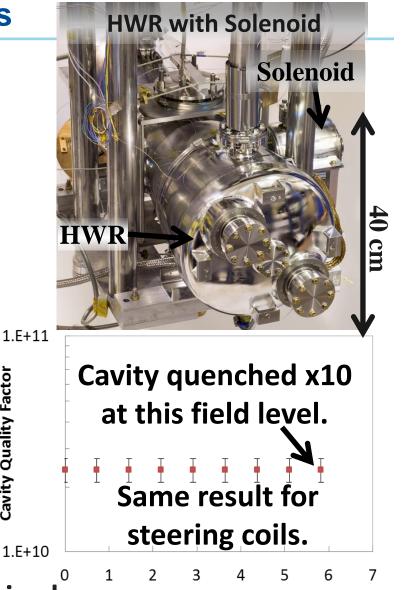
HWR


EP

🔁 Fermilab


ANL-FNAL Collaboration on SRF Cavity Processing

Half-Wave Resonator Q Curves



RF Power Couplers

Half-Wave Resonators & Solenoids

- Solenoid package integrates x-y steering coils.
- Important design issue:
 - Minimize stray field @ the RF cavity to prevent performance degradation due to trapped magnetic flux.
- Measured RF surface resistance with a sensitivity of ± 0.1 nOhm before and after each quench of the cavity.
- The cavity was quenched with the solenoid and the steering coils energized.
- Cavity Quality Factor No quantifiable change measured steering coils. 1.E+10 cavity in the RF surface resistance with the magnets energized. Magnetic Field at the Solenoid Center (T) 🌫 Fermilab

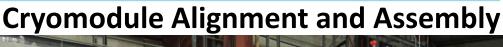
Tuners and BPMs

- All of the tuners have been fabricated.
 - A tuner was tested on the cavity during the last test to finalize the cavity frequency tuning numbers.
 - The remainder of the off-line cavity tests will have the production tuners included too.
- The BPMs are fabricated but not welded into their bellows/flanges. To be finished by the end of FY2016.

BPM 3.7" Per Side

3/15/2016

🗲 Fermilab


Half-Wave Resonator Frequency Tuning

- Target frequency at 2.0 K = 162.500 MHz.
 - Includes $\frac{1}{2}$ range of slow-tuner = 60 kHz.
 - Full slow tuner range = 120 kHz.
- During the last 2.0 K test the frequency = 162.461 MHz.
 - Need to tune frequency higher by 40 kHz.
 - This is due to a 40 kHz pre-load being applied to the slowtuner during installation.
- The second production cavity test will confirm the above number. Then we will fine-tune all of the cavities and confirm the correct f₀ during subsequent tests.

Cryomodule Assembly Status

- We have aligned and installed the Ti strongback in the cryomodule.
- We are preparing to cool this assembly down to:
 - Measure alignment changes.
 - Quantify the 70 K heat leak.
 - Initial cold leak checking.
- After this we will perform a "mock" assembly to verify our procedures.

🎝 Fer

	Deliverables	Status
1	Complete fabrication of magnet assemblies.	Finished
2	Complete fabrication of sub-systems (RF couplers, slow tuners and BPMs)	In progress.
3	Engineering cool down of the cryomodule to 80 K.	Going on right now.
4	Complete RF surface processing of 7 production cavities.	In progress ~75% finished.
5	Testing of 7 production cavities individually in the test cryostat.	In progress.

	Deliverables	Status
1	Assembly of the cryomodule.	Not started.
2	Vacuum and cryogenic testing of the cryomodule at LN2 temperature, 77 K.	Not started.
3	Delivery and installation at FNAL	Not started.

We are currently on target to meet our FY17 delivery goal.

Summary

- Progress is being made on all aspects of the cryomodule fabrication.
- We are in the early stages of the cryomodule assembly while we finish the cavities, couplers and sub systems.
- We are on track to deliver the cryomodule in FY17 in preparation for FY18 beam commissioning.

