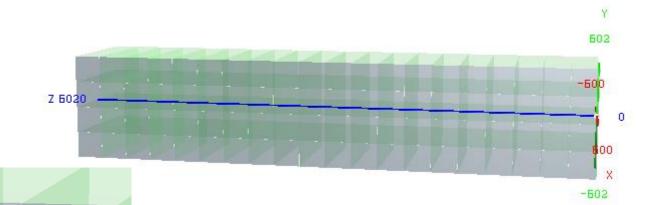
LArSoft Simulation of the DUNE 10kt Dual-Phase TPC

Vyacheslav Galymov IPN Lyon LArSoft Coordination Meeting 02.02.2016

Introduction

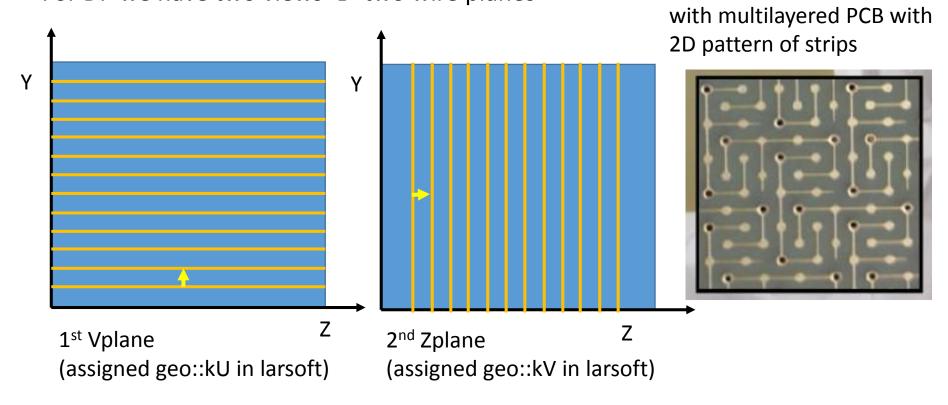
Currently the framework can handle only electric field direction along X axis (in SP geometry this is horizontal axis)


To follow single-phase DUNE geometry axis convection this means that field in dual-phase is also along horizontal direction (not vertical!)

• This is the solution adopted to proceed with DP implementation, which is part of the DUNE FD TF deliverables

Geometry Implementation GAr layer 1m **Buffer LAr** PMTs will go on this side 1.5m Z 2m 6290 **TPC** Active GAr layer 880 X v beam E-field X 880 Inner cryostat dimensions: 15.1 x 15.1 x 62 m³ -990 Active volume dimensions: 12.0 x 12.04 x 60.2 m³ GAr layer is on +x side (e^{-} drift to +x) Origin of coordinate system is the center of the -885

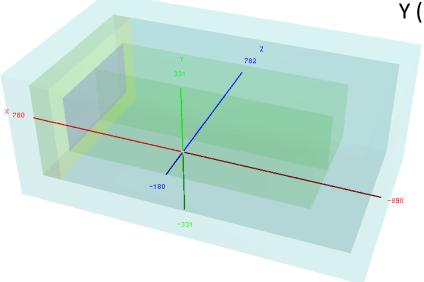
TPC active volume at the upstream end 3


Charge readout modules (CRM)

- Active volume consists of copy of identical rectangular prisms to be read out by 960 ch in "Y" and 960 ch in Z collection views
- The dimensions of each module are 3x3 m²
- There is a dead space between each module of 1 cm associated with a border size of 0.5 cm for each 3x3 CRM
 - This could be modified easily via perl script which generates GDML geometry file 4

"Wire" planes: representation of collection anode

To accomplish charge readout in larsoft need to define wire plane volumes with "wires" For DP we have two views → two wire planes The actual readout is done


The arrow indicates direction of increasing channel count (sorting)

"Workspace" geometry

For quick testing useful to have small version of the geometry

 \rightarrow Small number of channels

DP workspace geometry has been generated with just two CRM modules

Max drift is 12 m, but there are only 2 CRMs in Y (now changed to Z) == only 3840 channels

Status of geometry

- Geometry implementation is completed (with horizontal drift)
 - Missing light readout: optical detectors
- The gdmal files & geometry scripts are available from dunetpc version v04_33_00

DetSim updates

 New modular structure was presented at the <u>DUNE GM in Texas</u> by David Adams

Service calls in loop over channels

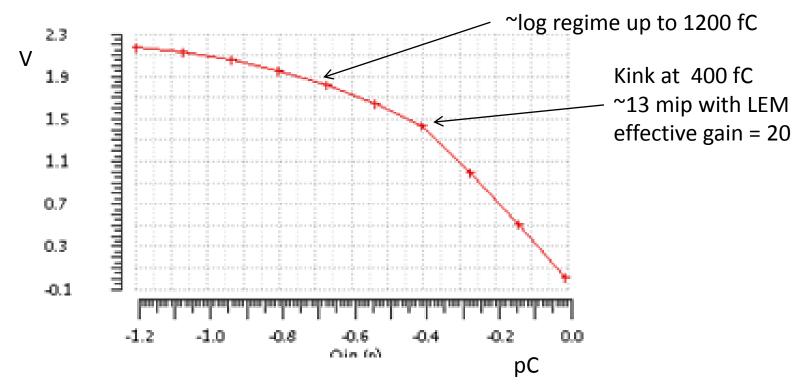
- SimChannelExtractService extracts signals from SimChannel
 - Signal shaping is included in this service
 - Extract signal from combs is handled in the service
- · ChannelNoiseService is used to add noise to the signal
- PedestalAdditionService adds pedestal and pedestal noise
- Conversion from floating signal to 12-bit integer count
 interface
- AdcDistortionService called to distort ADC signal
 - E.g. to add stuck bits
- · AdcSuppressService used to generate vectors of retained ticks
- AdcCompressService uses ADC vector and retention vectors to build the compressed data vector for each channel

Notation

• In the above, green (XXX) denotes an art service interface

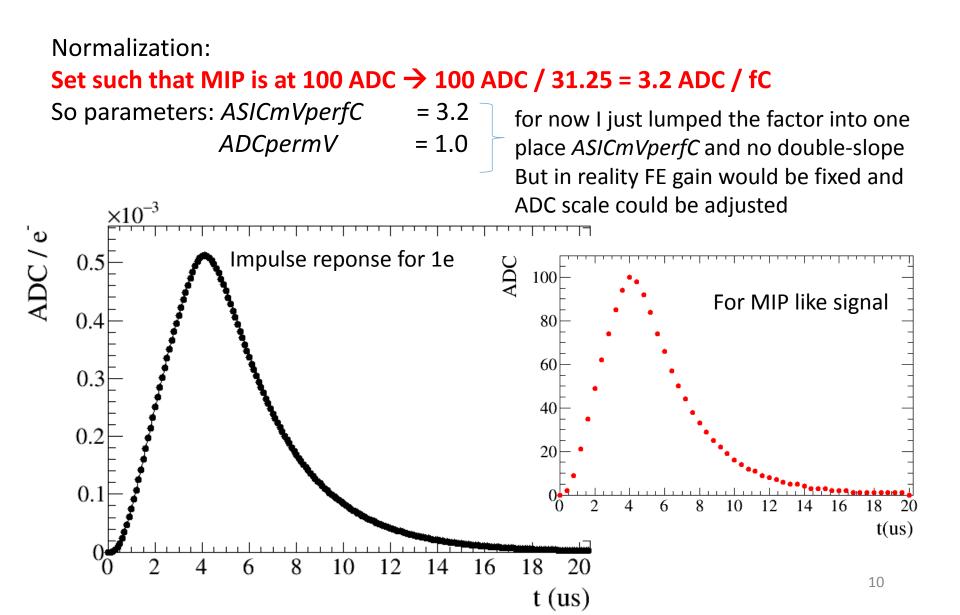
D. Adams, BNL New Detsim module

DUNE collaboration: FD sim/reco


January 14, 2016 8

- See dune/DetSim/Module/SimWireDUNE_module.cc
- Integrate DP DetSim with this updated structure

Dual-phase cold electronics


To increase dynamic range of the front-end electronics up-to 1200 fC the cryogenic amplifier have a double-slope feature:

- High gain up-to 400 fC (~13 mip with LEM gain of 10 per collection view)
- Smaller slope for high energy depositions

This is a complication for the convolution with FFT (and even more so for deconvolution) that has to be studied

Dual-phase response

DP signal service dune/Utilities/SignalShapingDUNEDPhase

DUNE dual-phase signal service
#
dunefddphase_signalshapingservice:
{
 ASICmVperfC: 3.2 # Amplifier gain in mV/fC
 ADCpermV: 1.0 # ADC conversion factor
 AmpENC: 1700.0 # Amplifier ENC for Cdet=450pF

The list to be expanded with my understanding of what is required for deconvolution

The parameters are set in signalservices_dune.fcl / dunefddphase_signalshapingservice

```
double max = 0;
for(size_t i = 0; i < ElecResp.size(); ++i)
{
    //convert time to microseconds, to match response function definition
    time[i] = (1.*i)*fRespSamplingPeriod*1e-3;
    ElecResp[i] = PreampETHZ(time[i]);
    if(ElecResp[i] > max) max = ElecResp[i];
    // end loop over time buckets
LOG_DEBUG("SignalShapingDUNEDPhase") << " Done.";
//normalize to 1e charge before the convolution
for(auto& element : ElecResp)
{
    element /= max;
    element *= fASICfCtomV * 1.60217657e-4; //mV
    element *= fADCmVtoADC;
    }
}
```

Calculation of the impulse response vector

- fRespSamplingPeriod could be
- the same or much finer than ADC sampling → Rebin later

Normalization of the response vector

DP channel extractor service

From DetSim/detsimmodules_dune.fcl

-}

signal extractor service for dune dual-phase detector
scxdp: {

service_provider: DPhaseSimChannelExtractService
DPGainPerView: 10.0

Our entry to point of access to SimChannel after GEANT simulation The key item is the DP amplification factor Could in principle specify LEM field value → convert to gain via some parametrized functional dependence inside the service

```
class DPhaseSimChannelExtractService : public SimChannelExtractService {
public:
    DPhaseSimChannelExtractService(fhicl::ParameterSet const& pset, art::ActivityRegistry&);
    int extract(const sim::SimChannel* psc, AdcSignalVector& sig) const;
private:
    // standard larsoft FFT service
    art::ServiceHandle
m_psss; < Signal service for DP:
    simulation of FE electronics
    unsigned int m_ntick;
    float fDPGainPerView; // gain in dual-phase</pre>
```

DUNE DP services (Utilities/services_dune.fcl)

dunefddphase_simulation_services:
{

LArFFT: LArG4Parameters: ExptGeoHelperInterface: LArVoxelCalculator: MagneticField: BackTracker: SeedService: DatabaseUtil: OpDetResponseInterface: IChannelStatusService:

Geometry: TimeService: DetectorProperties: LArProperties: SignalShapingServiceDUNEDPhase: SimChannelExtractService:

@local::dunefd_larfft @local::dunefd_largeantparameters @local::dune_geometry_helper @local::dunefd_larvoxelcalculator @local::no_mag @local::dunefd_backtracker @local::dunefd_backtracker @local::dunefd_database @local::dunefd_opdetresponse @local::dunefd_channel_status

Services common with SP

Not used & to be modified with DP light readout implementation

DUNE DP services (Utilities/services_dune.fcl)

<pre>dunefddphase_simulation_services { LArFFT: LArG4Parameters: ExptGeoHelperInterface: LArVoxelCalculator: MagneticField: BackTracker: SeedService: DatabaseUtil:</pre>	: @local @local @local @local @local @local @local @local	Geometry/geometry_dune.fcl dunedphase10kt_geo: { Name: "dunedphase10kt_v2" GDML: "dunedphase10kt_v2.gdml" ROOT: "dunedphase10kt_v2.gdml" SurfaceY: 147828
OpDetResponseInterface: IChannelStatusService: Geometry:	@local @local @local:	DisableWiresInG4: true } :dunedphase10kt geo
TimeService: DetectorProperties: LArProperties: SignalShapingServiceDUNEDPhase: SimChannelExtractService: }	@local: @local:	:dunefddphase_timeservice :dunefddphase_detproperties :dunefddphase_properties :dunefddphase_signalshapingservice :scxdp

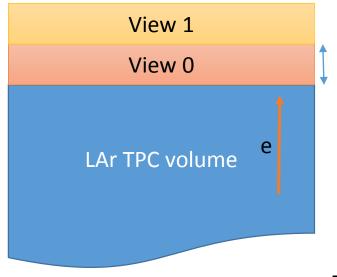
DUNE DP services (Utilities/services dune.fcl)

Utilities/timeservice dune.fcl

dunefddphase timeservice: @local::standard timeservice # dunefddphase timeservice.TriqModuleName: dunefddphase timeservice.InheritClockConfig: dunefddphase timeservice. G4RefTime: dunefddphase timeservice. TriggerOffsetTPC: dunefddphase timeservice.FramePeriod: 8000. dunefddphase timeservice. ClockSpeedTPC: dunefddphase timeservice. ClockSpeedOptical: 65. dunefddphase timeservice.ClockSpeedTrigger: dunefddphase timeservice. DefaultTrigTime: dunefddphase timeservice.DefaultBeamTime:

- false
 - # G4 time [us] where electronics clock counting start
 - 0. # Time [us] for TPC readout start w.r.t. trigger time
- # Frame period [us]
- 2.5 # TPC clock speed in MHz
 - # Optical clock speed in MHz
- # Trigger clock speed in MHz
- 0. # Default trigger time [us].
- # Default beam time [us]. 0

Geometry	Alocal··dupedphase10kt_geo
TimeService:	@local::dunefddphase_timeservice
DetectorProperties:	<pre>@local::dunefddphase_detproperties</pre>
LArProperties:	<pre>@local::dunefddphase properties</pre>
SignalShapingServiceDUNEDPhase:	<pre>@local::dunefddphase_signalshapingservice</pre>
SimChannelExtractService:	@local::scxdp
1	-


DUNE DP services (Utilities/services_dune.fcl)

<pre>dunefddphase_simulation_services { LArFFT: LaredPresenters</pre>	Calculated assuming mip at 100 ADC with 31.25 fC/strip @ Gain = 10 per view : 1fC to ADC = 3.2
Utilities/detproperties_dune.fcl	
<pre>dunefddphase_detproperties: # dunefddphase_detproperties.Sampling dunefddphase_detproperties.ElectronsT dunefddphase_detproperties.NumberTime dunefddphase_detproperties.ReadOutWin dunefddphase_detproperties.TimeOffset dunefddphase_detproperties.TimeOffset dunefddphase_detproperties.TimeOffset</pre>	ADC: 5.1267e-04 # Not sure where this is used amples: 20000 # drift length/drift velocity*sampling rate owSize: 20000 # drift length/drift velocity*sampling rate : 0. : 0.
TimeService: DetectorProperties: LArProperties: SignalShapingServiceDUNEDPhase:	<pre>@Local::dunefddphase_timeservice @local::dunefddphase_detproperties @local::dunefddphase_properties @local::dunefddphase_signalshapingservice</pre>

DUNE DP services (Utilities/services_dune.fcl)

LArG4Parameters: ExptGeoHelperInterface: LArVoxelCalculator:	Constraints of the second value should be large enough (max is actually 4 kV/cm) such that: $d_U/v_{d,U} = t_U \ll t_{sample}$, the charge depositions appear at the same time bin in two view time bin in two view The last value should be 0 Constraints of the last value should be 0
dunefddphase_properties: dunefddphase_properties.Te dunefddphase_properties.El dunefddphase_properties.Ef	ectronlifetime: 3.0e3 🗸 🛛 🗰 🚽 🚽
SignalShapingServiceDUNEDPhase:	<pre>@local::dunefddphase_properties @Local::dunefddphase_signalshapingservice @local::scxdp</pre>

Timing issue for DP

$$\Delta = 0.3$$
 mm, with drift velocity $v_d^0 @ \left(x \frac{kV}{cm} \right)$

Time of arrival in view 1:

$$t_1 = t_0 + \frac{\Delta}{v_d^0} = t_0 + \frac{0.3}{3.5} \rightarrow ~86 \text{ ns offset}$$

Though this is large enough compared to 400ns tick that one can get charge distributions between two views appearing shifted by 1 time tick in some cases

Ticks @ 2.5 MHz

400 ns

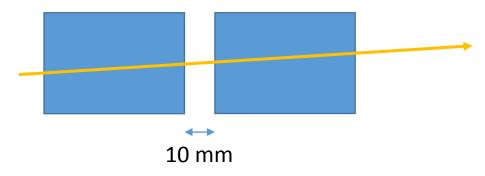
DUNE DP services (Utilities/services_dune.fcl)

dunefddphase_simulation_services:

LArFFT: LArG4Parameters: ExptGeoHelperInterface: LArVoxelCalculator: MagneticField: BackTracker: SeedService: DatabaseUtil: OpDetResponseInterface: IChannelStatusService:

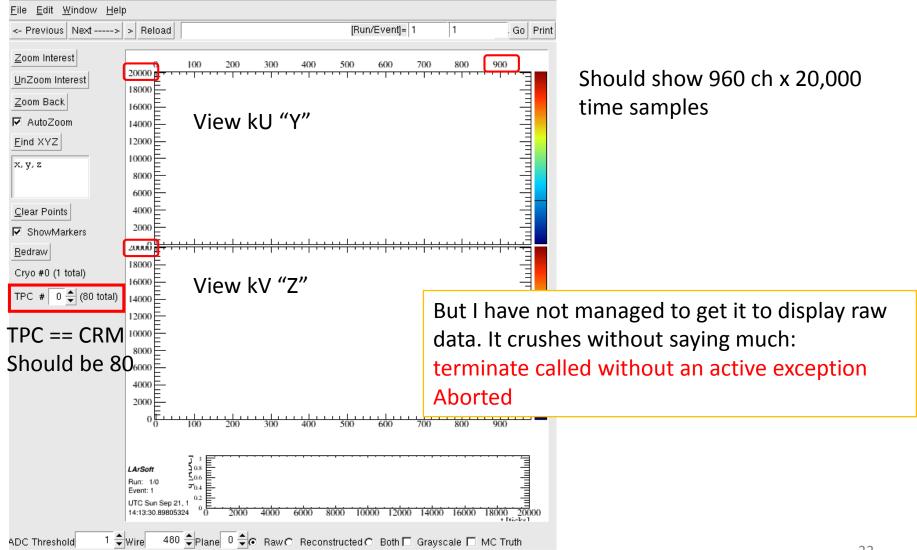
Geometry: TimeService: DetectorProperties: LArProperties: SignalShapingServiceDUN SimChappelExtractServic @local::dunefd_larfft Utilities/signalservices_dune.fcl # # DUNE dual-phase signal service # dunefddphase_signalshapingservice: { ASICmVperfC: 3.2 # Amplifier gain in mV/fC ADCpermV: 1.0 # ADC conversion factor AmpENC: 1700.0 # Amplifier ENC e for Cdet=450pF RespSamplingPeriod: 100. # in nano second } @local::dunefddphase_properties

SignalShapingServiceDUNEDPhase: @local::dunefddphase_signalshapingservice SimChannelExtractService: @local::scxdp


DUNE DP services (Utilities/services_dune.fcl)

```
dunefddphase simulation services:
                                  @local::dunefd larfft
LATFFT:
                                  @local::dunefd_largeantparameters
LArG4Parameters:
                                 @local::dune_geometry_helper
@local::dunefd_larvoxelcalculator
ExptGeoHelperInterface:
LArVoxelCalculator
                                  @local::no mag
MagneticField:
BackTracker
                                  @local::dunefd backtracker
 SeedService
                                  @local::dune seedservice
 DetSim/detsimmodules dune.fcl
 # signal extractor service for dune dual-phase detector
 scxdp: {
   service provider: DPhaseSimChannelExtractService
   DPGainPerView 10 0
                                                                   63
 SignalShapingServiceDUNEDPhase: @local::gunergophase signalshapingService
 SimChannelExtractService:
                                  @local::scxdp
```

Some warnings during execution

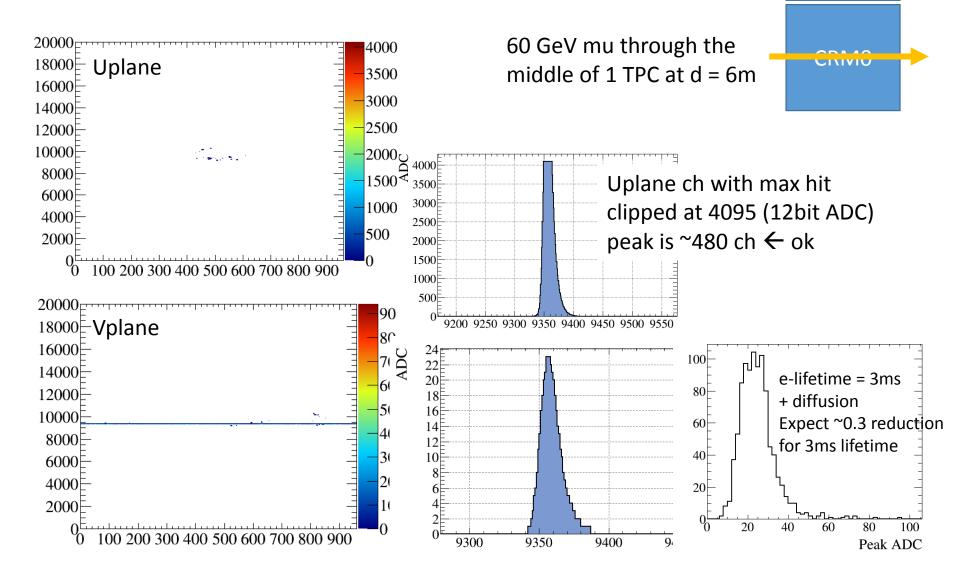

<pre>%MSG %MSG %MSG-w LArVoxelReadout: LArG4:largeant 22-Jan-2016 15:36:52 CET run: 1 subRun: 0 event: 1 unable to drift electrons from point (-0.0141596, -150.135, 300.11) with exception Geometry BEGIN Can't Find Nearest Wire for position (600.112, -150.693, 300.489) in plane C:0 T:1 P:1 approx wire number # 960 (capped from 959) Geometry END</pre>
<pre>%MSG %MSG-w LArVoxelReadout: LArG4:largeant 22-Jan-2016 15:36:52 CET run: 1 subRun: 0 event: 1 unable to drift electrons from point (-0.0141454, -150.135, 300.17) with exception Geometry BEGIN Can't Find Nearest Wire for position (600.112, -150.513, 300.496) in plane C:0 T:1 P:1 approx wire number # 960 (capped from 959) Geometry END</pre>
<pre>%MSG %MSG-w LArVoxelReadout: LArG4:largeant 22-Jan-2016 15:36:52 CET run: 1 subRun: 0 event: 1 unable to drift electrons from point (-0.0141384, -150.135, 300.2) with exception Geometry BEGIN Can't Find Nearest Wire for position (600.112, -150.606, 300.825) in plane C:0 T:1 P:1 approx wire number # 961 (capped from 959) Geometry END</pre>

These appear to be generated when a particle crosses the "dead" regions b/w or around CRMs

Event display

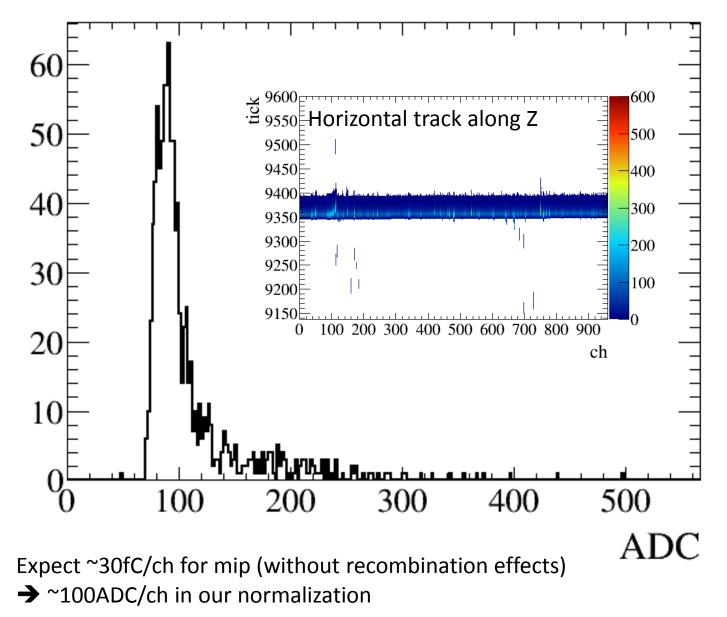
Configured evdservices_dune.fcl to pick up correct geometry and other services

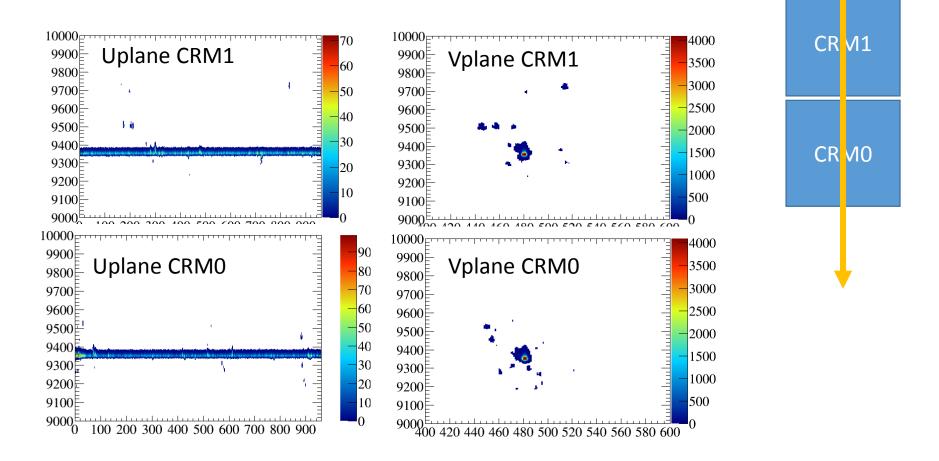
Basic check

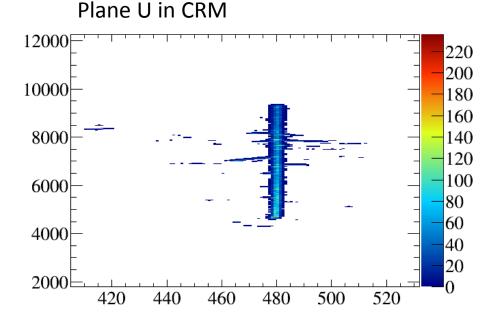

Created "analysis" module in dune/RawdataDisplay similar to the ones found for SP which dumps raw data into histograms

Example created with workspace geometry (= 2 CRMs):

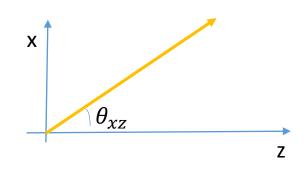
root [3] .1s TDirectoryFile* rawdraw rawdraw (RawEVDDP) folder fTimeChanU0:1 Time vs Channel(Plane U, TPCO) KEY: TH2I KEY: TH2I fTimeChanThumbU0:1 Time vs Channel(Plane U, TPCO) KEY: TH1I fADCMaxU0:1 Max ADC per channel (Plane U, TPCO) KEY: TH2I fTimeChanV0:1 Time vs Channel(Plane V, TPCO) fTimeChanThumbV0:1 KEY: TH2I Time vs Channel(Plane V. TPCO) KEY: TH1I fADCMaxV0:1 Max ADC per channel (Plane V, TPCO) KEY: TH2I fTimeChanU1:1 Time vs Channel(Plane U, TPC1) KEY: TH2I fTimeChanThumbU1:1 Time vs Channel(Plane U, TPC1) KEY: TH1I fADCMaxU1:1 Max ADC per channel (Plane U, TPC1) KEY: TH2I fTimeChanV1:1 Time vs Channel(Plane V, TPC1) KEY: TH2I fTimeChanThumbV1:1 Time vs Channel(Plane V, TPC1) fADCMaxV1:1 Max ADC per channel (Plane V, TPC1) KEY: TH1I

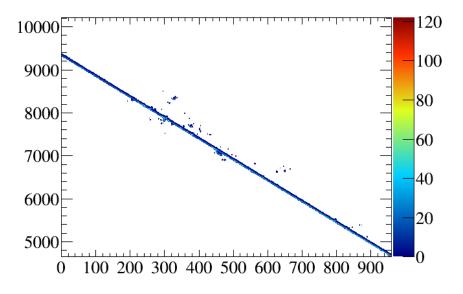

fTimeChanXX – standard time tick vs channel histo fADCMaxXX – distribution of max ADC values from each channel


Time tick = 6000 / 1.6056 mm/us / 0.4 us 9342 From "Vplane" 9342 → OK

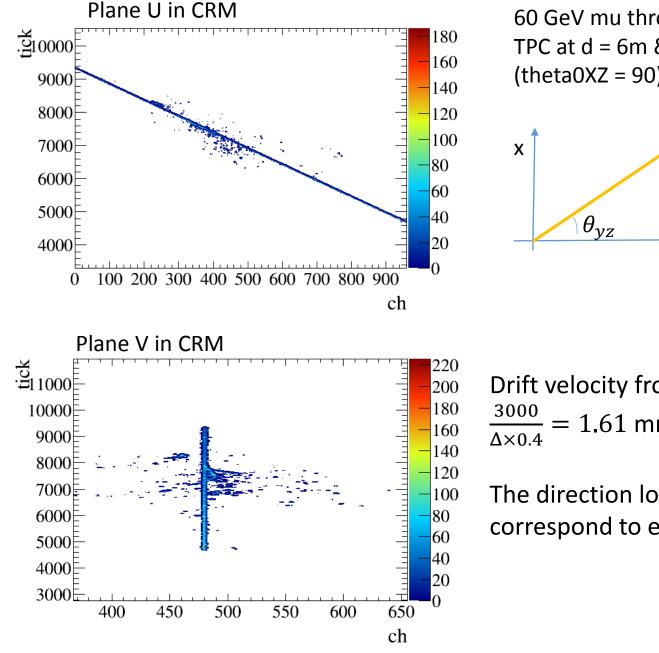

CRM1

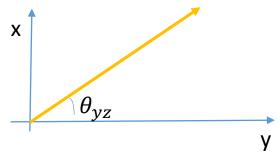
Pulse height distribution in ADC (infinite lifetime / no diffusion)




60 GeV mu at d = 6 m

60 GeV mu through the center of 1 TPC at d = 6m & theta0XZ = 45deg

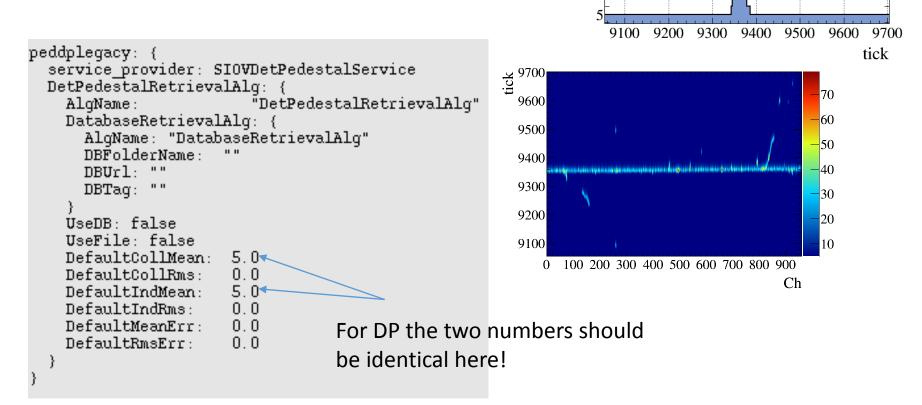

Plane V in CRM


Drift velocity from slope: $\frac{3000}{\Delta \times 0.4} = 1.61 \text{ mm/us}$

Theoretical (from larsoft function) at 0.5 kV/cm and 87K = 1.6056 mm/us → Looks OK

Also the direction is consistent as in this case particle travels towards readout so the drift d gets shorter

60 GeV mu through the center of 1 TPC at d = 6m & theta0YZ = 45deg(theta0XZ = 90)



Drift velocity from slope: = 1.61 mm/us

The direction looks ok: larger channel # correspond to earlier time bins

Adding pedestal

Use existing framework structure for DUNE SP

ADC

Noise implementation

Noise service fcl

The noise services add noise to signals

New Detsim module

D. Adams, BNL

• What was previously noise option 1 is now

```
chnoiseold: {
  service_provider: ExponentialChannelNoiseService
 NoiseFactU: 0.05
 NoiseFactV: 0.05
 NoiseFact7: 0.05
                                                          Could be probably be
 NoiseWidthU: 2000
                                                          used as is with
 NoiseWidthV: 2000
 NoiseWidthZ: 2000
                                                          appropriate parameters
 lowCutoffU: 7.5
 LowCutoffV: 7.5
 LowCutoffZ: 7.5
 NoiseArrayPoints: 1000
 OldNoiseIndex: true
}
  And noise option 2 is
                                                 This is more specific to SP (i.e., relies
chnoisewhite: {
                                                 explicitly on SingalShapingServiceDUNE35t)
  service_provider: WhiteChannelNoiseService
}
```

DUNE collaboration: FD sim/reco

January 14, 2016

13

Summary

- Simulation of charge readout appears to be working (largeant → daq → rawdigit)
- The code has been committed in dunetpc: should appear in v04_35 release
- Major part remaining is simulation of light readout