$MINER \lor A in 10 Minutes$

 $\bullet \bullet \bullet$

Ben Messerly - University of Pittsburgh On behalf of the MINERvA Collaboration

New Perspectives 2016 - Fermilab

Motivating MINER_VA: Challenges of Precision Era Neutrino Experiments

LBNE Estimate Assuming 100 kT.MW.years M Bass NuInt 2014

PRL 116, 181801 (2016)	PHYSICAL REVIEW LETT	TERS	week ending 6 MAY 2016
Measurement of N	luon Antineutrino Oscillations wit Off-Axis Beam	h an Accelerator-Produce	ed
TABLE F events be variations and that t identical.	V. Percentage change in the nu fore the oscillation fit from 1 <i>a</i> , assuming the oscillation paran he antineutrino and neutrino oscillation	mber of one-ring μ -like σ systematic parameter neters listed in Table III cillation parameters are	
Source of	uncertainty (number of parameters)	eters) $\delta n_{\rm SK}^{\rm exp}/n_{\rm SK}^{\rm exp}(\%)$	
ND280-u	nconstrained cross section (6)	10.0	
Flux and	ND280-constrained cross section	on (31) 3.4	
Super-Ka	miokande detector systematics	(6) 3.8	
Pion FSI	and reinteractions (6)	2.1	
Total (49)		11.6	

T2K publication

Motivating MINER_VA: Challenges of Precision Era Neutrino Experiments

Exposure (kt.MW.years)

LBNE Estimate Assuming 100 kT.MW.years M Bass NuInt 2014

Super-Kamiokande detector systematics (6)	3.8
Pion FSI and reinteractions (6)	2.1
Total (49)	11.6

T2K publication

Motivating MINER_VA: Challenges of Precision Era Neutrino Experiments

Why don't we *already* understand neutrino interactions relevant to oscillation experiments?

Exposure (kt.MW.years)

OUU

1000

4111

LBNE Estimate Assuming 100 kT.MW.years M Bass NuInt 2014

Super-Kamiokande detector systematics (6)	3.8
Pion FSI and reinteractions (6)	2.1
Total (49)	11.6

T2K publication

week ending 6 MAY 2016

oduced

-like

neter le III s are

(%)

Neutrino-Nuclei Interactions Can Be Tricky

Oscillation experiments use heavy nuclei. NOvA uses a carbon-based mineral oil.

Re-interactions within the nucleus can fool reconstruction – making it hard to determine both E_v and the interaction channel.

Another Complication: Energy Region

See: J.A. Formaggio, G.P. Zeller, Rev. Mod. Phys. 84, 1307 (2012)

- Oscillation experiments operate in the few GeV region, where many interactions channels are active.
- Event generators have difficulty describing scattering at these energies.
- Oscillation experiments need improved models/generators to achieve their physics goals!

Enter: MINER_VA

- Dedicated neutrinonucleus scattering experiment
- Goals
 - Aiding oscillation experiments
 - Probing the nucleus purely through the weak force
- Only experiment measuring A-dependence of v interactions

The NuMI Beam

- MINERvA is located just upstream of the MINOS near detector, in the NuMI beamline
- NuMI **low-energy** data collected from 2010-2012:
 - anti-neutrino: 1.09×10²⁰ POT
 - neutrino: 3.18×10^{20} POT
- Now running in neutrino mode, medium-energy configuration:
 Already have 9x10²⁰ POT!
- Anti-neutrino mode is next!

The MINER_VA Detector

120 "modules" stacked along the beam direction Central region is finely segmented scintillator tracker ~32k plastic scintillator strip channels total

MINER_VA Detector Technology

Hexagonal planes in three orientations (0° , $\pm 60^{\circ}$) provide 3D track reconstruction.

Planes of scintillator strips with wavelength shifting fibers.

Passive Target Region

A MINER_VA Event

Two Track Event from Lead Target

12

energy deposited

Recent Results from MINERvA 11 Published results and counting!

Neutrino Flux Predictions for the Low Energy NuMI Beam

Coming Soon!

Recent Results from MINERvA 11 Published results and counting!

Measurement of K^+ production in charged-current ν_{μ} interactions

The MINER \vee A Collaboration

Don't Turn That Dial! Next Up:

- Maya on "Deep Inelastic Scattering" in nuclear targets
- Noah on world's first neutrino scattering measurement on liquid helium.

Tracking resolution

Forward-going track position resolution: ~3mm

``3″

