ANNIE Phase I - Status and Perspectives

New Perspectives 2016 - June 13th, 2016

Vincent Fischer

University of California, Davis

June 13th, 2016
The ANNIE experiment

- **ANNIE** is the Accelerator Neutrino-Neutron Interaction Experiment

- Water Cherenkov detector placed downstream of the Booster Neutrino Beam

- Aims at measuring the production rate of neutrons from neutrino interactions in water

- Significant impact in proton decay searches and neutrino-nucleon interactions understanding
ANNIE Phase 1 - Goals

- "Proof of concept" → Measurement of the neutron background rate

- Source of neutron background:
 - Skyshine neutrons → Neutrons from the beam dump entering the detector
 - Dirt neutrons → Neutrons originating from neutrino interactions downstream of the dump

- March-May 2016: Installation in the SciBooNE hall

- Taking data since June 2016 until the 2016 Summer shutdown (end of July)

- Different detector configuration than for the Physics run
ANNIE Phase 1 - Goals

• "Proof of concept" → Measurement of the neutron background rate

• Source of neutron background:
 • **Skyshine neutrons** → Neutrons from the beam dump entering the detector
 • **Dirt neutrons** → Neutrons originating from neutrino interactions downstream of the dump

• March-May 2016: Installation in the SciBooNE hall

• Taking data since June 2016 until the 2016 Summer shutdown (end of July)

• Different detector configuration than for the Physics run
ANNIE Phase 1 - The detector

The tank

- 10x13’ tank covered with a white liner for light collection
- Filled with 26-ton of ultrapure water
- Equipped with 60 8-inch photomultipliers (from SuperK, lent by UC Irvine) at the bottom
ANNIE Phase 1 - The detector

The tank

- 10x13’ tank covered with a white liner for light collection
- Filled with 26-ton of ultrapure water
- Equipped with 60 8-inch photomultipliers (from SuperK, lent by UC Irvine) at the bottom

The Muon Range Detector (MRD)

- First 2 layers in use (55 channels) instead of the 10 layers (362 channels) used in SciBooNE
ANNIE Phase 1 - The detector

The tank
- 10x13’ tank covered with a white liner for light collection
- Filled with 26-ton of ultrapure water
- Equipped with 60 8-inch photomultipliers (from SuperK, lent by UC Irvine) at the bottom

The Muon Range Detector (MRD)
- First 2 layers in use (55 channels) instead of the 10 layers (362 channels) used in SciBooNE
- Combined with the veto, it tags muons going through the detector
ANNIE Phase 1 - The detector

The tank

- 10x13' tank covered with a white liner for light collection
- Filled with 26-ton of ultrapure water
- Equipped with 60 8-inch photomultipliers (from SuperK, lent by UC Irvine) at the bottom

The Muon Range Detector (MRD)

- First 2 layers in use (55 channels) instead of the 10 layers (362 channels) used in SciBooNE
- Combined with the veto, it tags muons going through the detector

The Neutron Capture Volume (NCV)

- Neutron-sensitive subvolume within the tank
- 50x50 cm acrylic vessel (from UC Davis) filled with 100 liters of Gd-doped liquid scintillator
- Can be moved in the tank using a winch system
• Tank preparation and PMT installation done at the D0 Assembly Building

• Tank filled with **7000 gallons** of ultrapure water

• Water continuously flushed with nitrogen and filtered through a de-ionizing purification system

• Water quality requirement → Resistivity > 10 MΩ‧m⁻¹ (**0.05 ppm**)

• Water commissioning →
 - Observation of muon events
 - PMT characterization using LEDs
ANNIE Phase 1 - Tank installation

- Tank preparation and PMT installation done at the D0 Assembly Building

- Tank filled with **7000 gallons** of ultrapure water

- Water continuously flushed with nitrogen and filtered through a de-ionizing purification system

- Water quality requirement → Resistivity $> 10 \text{ M}\Omega\cdot\text{m}^{-1}$ (0.05 ppm)

- Water commissioning →
 - Observation of muon events
 - PMT characterization using LEDs
ANNIE Phase 1 - Tank installation

- Tank preparation and PMT installation done at the D0 Assembly Building

- Tank filled with **7000 gallons** of ultrapure water

- Water continuously flushed with nitrogen and filtered through a de-ionizing purification system

- Water quality requirement → Resistivity $> 10 \text{ M}\Omega\cdot\text{m}^{-1}$ (**0.05 ppm**)

- Water commissioning →
 - Observation of muon events
 - PMT characterization using LEDs
• **100 liters** of EJ-335 liquid scintillator ordered from the Eljen company

\[\rightarrow \text{Pseudocumene-based (high light yield), 0.25\% Gd-doping (high neutron capture cross-section)} \]

• Filling safely performed in collaboration with ES&H and the Fire Dept.

• Using the winch, the NCV can be moved in the vertical direction and along the beam direction

\[\rightarrow \text{Allows a measurement of the neutron rate at different locations within the tank} \]
High voltage system

- Experts: University of Sheffield, UK
- 81 negative channels (veto, MRD) and 60 positive channels (tank PMTs)
- LabVIEW-based web interface for remote monitoring and control
High voltage system

- Experts: University of Sheffield, UK
- 81 negative channels (veto, MRD) and 60 positive channels (tank PMTs)
- LabVIEW-based web interface for remote monitoring and control

Data acquisition system

- Experts: Iowa State University and Queen Mary University, UK
- 16 VME-based FADC cards developed at the University of Chicago for the KOTO collaboration
- Veto and each MRD layer combined using a CAMAC DAQ and sent to the trigger board
High voltage system

- Experts: University of Sheffield, UK
- 81 negative channels (veto, MRD) and 60 positive channels (tank PMTs)
- LabVIEW-based web interface for remote monitoring and control

Data acquisition system

- Experts: Iowa State University and Queen Mary University, UK
- 16 VME-based FADC cards developed at the University of Chicago for the KOTO collaboration
- Veto and each MRD layer combined using a CAMAC DAQ and sent to the trigger board

Trigger system

- Experts: Iowa State University
- Primary mode: Beam trigger
- Possibility to use an external trigger for cosmics searches or LED calibration
ANNIE Phase 1 - Light calibration

• **Goals:**
 - Monitor the PMT response to Cerenkov and scintillation light
 - Control the light attenuation in water
 - Monitor the PMT gain in-situ and continuously

• **4 LEDs** attached to the top of the tank
 - One blue and one green LED on each side, one equipped with a teflon diffuser
 - Can be plugged in directly to a pulse generator → Very easy to use
ANNIE Phase 1 - Light calibration

- **Goals:**
 - Monitor the PMT response to Cerenkov and scintillation light
 - Control the light attenuation in water
 - Monitor the PMT gain in-situ and continuously

- **4 LEDs** attached to the top of the tank
 - One blue and one green LED on each side, one equipped with a teflon diffuser

- Can be plugged in directly to a pulse generator → Very easy to use
ANNIE Phase 1 - Data analysis

- Neutron capture search: All waveforms after a beam trigger recorded for 80 μs

- **Event definition** → Coincidence of 5 or more PMT pulses above a certain threshold and within a given time window

- Background reduction: Comparison between cosmic muon, beam muon and neutron capture events

- Possibility to separate Cerenkov and scintillation light using pulse shape analysis
ANNIE Phase 1 - Data analysis

- Neutron capture search: All waveforms after a beam trigger recorded for 80 \(\mu s \)

- **Event definition** → Coincidence of 5 or more PMT pulses above a certain threshold and within a given time window

- Background reduction: Comparison between cosmic muon, beam muon and neutron capture events

- Possibility to separate Cerenkov and scintillation light using pulse shape analysis
ANNIE Phase 1 - Data analysis

- Neutron capture search: All waveforms after a beam trigger recorded for 80 µs

- Event definition → Coincidence of 5 or more PMT pulses above a certain threshold and within a given time window

- Background reduction: Comparison between cosmic muon, beam muon and neutron capture events

- Possibility to separate Cerenkov and scintillation light using pulse shape analysis
ANNIE Phase 1 - First data

- **First muon** observed during the water commissioning phase
 - Excess of events observed in coincidence with the RWM signal from the BNB
 - Neutron captures \rightarrow Excess of events (exponential shape) after beam signal
 - Pattern observed in the very first data taken with the NCV \rightarrow Neutron captures, Michel electrons
• **First muon** observed during the water commissioning phase

• Excess of events observed in coincidence with the RWM signal from the BNB

• Neutron captures \rightarrow Excess of events (exponential shape) after beam signal

• Pattern observed in the very first data taken with the NCV \rightarrow Neutron captures, Michel electrons
• **First muon** observed during the water commissioning phase

• Excess of events observed in coincidence with the RWM signal from the BNB

• Neutron captures \rightarrow Excess of events (exponential shape) after beam signal

• Pattern observed in the very first data taken with the NCV \rightarrow Neutron captures, Michel electrons
ANNIE Phase 1 - First data

- **First muon** observed during the water commissioning phase

- Excess of events observed in coincidence with the RWM signal from the BNB

- Neutron captures → Excess of events (exponential shape) after beam signal

- Pattern observed in the very first data taken with the NCV → Neutron captures, Michel electrons
ANNIE Phase 1 - The future

- Data taking can continue even without beam → Cosmic data

- Design studies in progress to install small LAPPDs in the tank in a near future

- Possibility of adding Gadolinium to the water under investigation

- This ANNIE 'Phase 1b' will take place right after the Summer shutdown
• Data taking can continue even without beam → Cosmic data

• Design studies in progress to install small LAPPDs in the tank in a near future

• Possibility of adding Gadolinium to the water under investigation

• This ANNIE 'Phase 1b' will take place right after the Summer shutdown
• **ANNIE Phase 1 is now complete and taking data!**

• First data looks very promising

• Huge effort undergoing on analysis

• Precise simulations of the beam (muons and neutrons generation) and the detector (response to neutron capture) are required

• A ‘Phase 1b’ will happen in the next fiscal year
• **ANNIE Phase 1 is now complete and taking data!**

• First data looks very promising

• Huge effort undergoing on analysis

• Precise simulations of the beam (muons and neutrons generation) and the detector (response to neutron capture) are required

• A ’Phase 1b’ will happen in the next fiscal year
Conclusion

• ANNIE Phase 1 is now complete and taking data!

• First data looks very promising

• Huge effort undergoing on analysis

• Precise simulations of the beam (muons and neutrons generation) and the detector (response to neutron capture) are required

• A 'Phase 1b' will happen in the next fiscal year
Conclusion

• ANNIE Phase 1 is now complete and taking data!

• First data looks very promising

• Huge effort undergoing on analysis

• Precise simulations of the beam (muons and neutrons generation) and the detector (response to neutron capture) are required

• A 'Phase 1b' will happen in the next fiscal year
Conclusion

- **ANNIE Phase 1 is now complete and taking data!**

- First data looks very promising

- Huge effort undergoing on analysis

- Precise simulations of the beam (muons and neutrons generation) and the detector (response to neutron capture) are required

- A ‘Phase 1b’ will happen in the next fiscal year

Thank you for your attention!
Back-up
SciBooNE

- SciBar: Scintillator tracking detector (14’000 bars, 14 tons)
- Electron Catcher: 2 planes of calorimeter (lead and scintillating fibers)
- Muon Range Detector
- Measurement of CC-QE, CC-π^\pm, CC-π^0, NC-ES cross-sections
Booster Neutrino Beam

- 8 GeV protons from Booster beam
- Beryllium target, reversible horn polarity
- Mean neutrino energy of 700 MeV
- Composition: 93 % of ν_μ, 6.4 % of $\bar{\nu}_\mu$ and 0.6 % of $\bar{\nu}_e$ and ν_e
n-H capture

- Capture time: $\sim 200 \mu s$
- 2.2 MeV emitted in one gamma
- Higher accidental background (natural radioactivity)

n-Gd capture

- Capture time: $\sim 20 \mu s$ (0.25% Gd-loading)
- ~ 8 MeV emitted in several gammas
- High background reduction
- Smaller diffusion path length
Liquid scintillators

- Scintillation: Process by which ionization produced by charged particles excites a material and light is emitted by fluorescence
- Liquid scintillators: Organic molecules diluted in an optically-inert liquid (mineral oil,..)
- Basically: Charged particle ionizes liquid \rightarrow Excites molecules that de-excites emitting light
- This light is detected using photomultiplier tubes (PMT’s) that amplify it into a detectable current