Status of g-2 (SM) theory

Taku Izubuchi (RBC\&UKQCD)

RIKEN BNL
Research Center

2016-06-07 Flavor Physics and CP Violation (FPCP) 2016, Caltech, Pasadena, CA

Contents

To prepare for the new muon g-2 experiment at FNAL E989, and JPARC E34, where x 4 more accurate results are coming [Themis Bowcock's talk]

- SM theory prediction for Hadronic Vacuum Polarization contributions (HVP) in addition to the determination using R -ratio from experiments [Liang Yan's talk]
- SM theory predictions for Hadronic Light-by-Light contributions (HLbL)
(other related applications [e.g. K. Maltman's talk])

SM Theory

$$
\gamma^{\mu} \rightarrow \Gamma^{\mu}(q)=\left(\gamma^{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 m} F_{2}\left(q^{2}\right)\right)
$$

- QED, hadronic, EW contributions

QED (5-loop !) Aoyama et al.
PRL109,111808 (2012)

Hadronic vacuum polarization (HVP)

Hadronic light-by-light (HIbl)

Electroweak (EW) Knecht et al 02
Czarnecki et al. 02

$(\mathrm{g}-2)_{\mu} \quad$ SM Theory prediction

- QED, EW, Hadronic contributions
K. Hagiwara et al. , J. Phys. G: Nucl. Part. Phys. 38 (2011) 085003

$$
a_{\mu}^{\mathrm{SM}}=\left(\begin{array}{llll}
11 & 659 & 182.8 & \pm 4.9
\end{array}\right) \times 10^{-10}
$$

- Discrepancy between EXP and SM is larger than EW!
- Currently the dominant uncertainty comes from HVP, followed by HLbL
- x4 or more accurate experiment FNAL, J-PARC

■ Goal : sub 1\% accuracy for HVP (intermediate goal) \rightarrow 10\% accuracy for HLbL

Hadronic Vacuum Polarization (HVP) contributions

Leading order of hadronic contribution (HVP)

- Hadronic vacuum polarization (HVP)

$$
v_{\mu} \cdot v_{v}=\left(q^{2} g_{\mu \nu}-q_{\mu} q_{\nu}\right) \Pi_{V}\left(q^{2}\right)
$$

quark's EM current : $V_{\mu}=\sum_{f} Q_{f} \bar{f} \gamma_{\mu} f$

- Optical Theorem (Unitarity) $\operatorname{Im} \Pi_{V}(s)=\frac{s}{4 \pi \alpha} \sigma_{\text {tot }}\left(e^{+} e^{-} \rightarrow X\right)$
- Analyticity $\Pi\left(q^{2}\right)-\Pi(0)=\frac{1}{\pi} \int d s \frac{\operatorname{Im} \Pi(s)}{s\left(s-q^{2}\right)}$
- expedrimental determination [L. Yan's talk] a_{μ} ~ 693(4) [0.6% err, largest err in SM theory]

$$
a_{\mu}^{\mathrm{HVP}, \mathrm{LO}}=\frac{1}{4 \pi^{2}} \int d s K(s) \sigma_{\mathrm{had}}(s)
$$

HVP from Lattice

- Analytically continue to Euclidean/space-like momentum $\mathrm{K}^{2}=-q^{2}>0$
- Vector current 2pt function
$a_{\mu}=\frac{g-2}{2}=\left(\frac{\alpha}{\pi}\right)^{2} \int_{0}^{\infty} d K^{2} f\left(K^{2}\right) \hat{\Pi}\left(K^{2}\right) \quad \Pi^{\mu \nu}(q)=\int d^{4} x e^{i q x}\left\langle J^{\mu}(x) J^{\nu}(0)\right\rangle$
- Low Q2, or long distance, part of Π (Q2) is relevant for g -2

Pi(i,i)

disconnected contribution
$\mathrm{Pi}(\mathrm{i}, \mathrm{i})$ in Fourier space vs K2

Current conservation, subtraction, and coordinate space representation

- Current conservation => transverse tensor

$$
\sum e^{i Q x}\left\langle J_{\mu}(x) J_{\nu}(0)\right\rangle=\left(\delta_{\mu \nu} Q^{2}-Q_{\mu} Q_{\nu}\right) \Pi\left(Q^{2}\right)
$$

- Coordinate space vector 2 pt Green function $\mathrm{C}(\mathrm{t})$ is directly related to subtracted Π (Q2) [Bernecker-Meyer 2011, ...]

$$
\Pi\left(Q^{2}\right)-\Pi(0)=\sum_{t_{6}}\left(\frac{\cos (q t)-1}{Q^{2}}+\frac{t^{2}}{2}\right) C(t)
$$

- g-2 value is also related to $\mathrm{C}(\mathrm{t})$ with know kernel $\mathrm{w}(\mathrm{t})$ from QED.

$$
a_{\mu}^{\mathrm{HVP}}=\sum_{t} w(t) C(t), \quad w(t) \propto t^{4} \cdots
$$

RBC/UKQCD
Chiral Lattice quark DWF physical point
Quark Propagator Low Mode (A2A) using All-Mode Averaging (AMA)

RBC/UKQCD Light contribution

- Use three stages of approximations with bias-correction
- Low mode approximation with sloppy calculation
- Low mode dominance for long distance
- compared with two pions model sQED.
[C. Lehner preliminary]

Strange quark contribution

[RBC/UKQCD, JHEP 1604 (2016) 063]

- Mobius DWF, $\mathrm{Nf}=2+1$, Physical mass, $\mathrm{L}=5.5 \mathrm{fm}, \mathrm{a}=0.114,0.09 \mathrm{fm}$
- Many fits, moment, and cuts are used to examine systematics
- parts of systematic errors are being estimated
- consistent with HPQCD's value (next page)

HPQCD light quark HVP

Chakraborty et al. arXiv:1601.03071, PRD93.074509, ...

- $a=0.09,0.12,0.15 \mathrm{fm}$
- switch to multi-exp at $\mathrm{t}^{*}=1.5 \mathrm{fm}$
■ sub 2% total error!
- Modeling ρ correction + ChPT pipi sub/add
\rightarrow a few percent correction at physical point
- Large finite volume effects, even for L~ $5.8 \mathrm{fm}, 5.1 \mathrm{fm}$ at physical poit
- also from taste pion effects to pipi amplitude

$$
\hat{\Pi}_{j}^{\text {latt }} \rightarrow\left(\hat{\Pi}_{j}^{\text {latt }}-\hat{\Pi}_{j}^{\text {ast }}(\pi \pi)\right)\left[\frac{m_{\rho}^{2+2 j}}{f_{\rho}^{2}}\right]_{\text {latt }}\left[\frac{f_{\rho}^{2}}{m_{\rho}^{2+2 j}}\right]_{\text {expt }}+\hat{\Pi}_{j}^{\text {cont }}(\pi \pi)
$$

HPQCD g-2 HVP results

- Carried out up/down, strange, charm, bottom connected contributions

$$
\left.a_{\mu}^{\mathrm{HVP}, \mathrm{LO}}\right|_{\text {conn. }} \times 10^{10}= \begin{cases}598(11) & \text { from } u / d \text { quarks } \\ 53.4(6) & \text { from } s \text { quarks } \\ 14.4(4) & \text { from } c \text { quarks } \\ 0.27(4) & \text { from } b \text { quarks }\end{cases}
$$

- together with disconnected

$$
a_{\mu}^{\mathrm{HVP}, \mathrm{LO}}=666(6)(12) \times 10^{-10} \quad 2 \% \text { err, important to check }
$$

vs $\quad a_{\mu}^{H V P, L O}($ R-ratio $)=694.91(3.72)_{\exp }(2.10)_{\mathrm{rad}} \times 10^{-10} \quad 0.6 \% \operatorname{err}[$ Hagiwara et al, 2011]

- QED/isospin breaking effects are folded into systematic error

	$a_{\mu}^{\mathrm{HVP}, \mathrm{LO}}(u / d)$
QED corrections:	1.0%
Isospin breaking corrections:	1.0%
Staggered pions, finite volume:	0.7%
Valence me extrapolation:	0.4%
Monte Carlo statistics:	0.4%
Padé approximants:	0.4%
$a^{2} \rightarrow 0$ extrapolation:	0.3%
Z_{V} uncertainty:	0.4%
Correlator fits:	0.2%
Tuning sea-quark masses:	0.2%
Lattice spacing uncertainty:	$<0.05 \%$
Total:	1.8%

disconnected quark loop contribution

- [C. Lehner et al. (RBC/UKQCD 2015, arXiv:1512.09054, PRL) 1
- Very challenging calculation due to statistical noise
- Small contribution, vanishes in SU(3) limit, Qu+Qd+Qs = 0
- Use low mode of quark propagator, treat it exactly
 (all-to-all propagator with sparse random source)
- First non-zero signal

$$
a_{\mu}^{\mathrm{HVP}}(\mathrm{LO}) \text { DISC }=-9.6(3.3)_{\mathrm{stat}}(2.3)_{\mathrm{sys}} \times 10^{-10}
$$

HVP on lattice summary

- First principle HVP
from lattice making substantial ${ }^{\circ}$ progress by many groups
- Challenges
- Statistics (\rightarrow low mode)
- Disconnected

$$
(\rightarrow \text { SU(3), low mode + space src.) }
$$

[Plot from C. Lehner]

- Finite volume (\rightarrow пп models ?)
- QED and isospin breaking
- Other applications: CKM Vus from τ inclusive decay [K. Maltmann's talk] , $\alpha_{\text {QED }}(\mathrm{s}), \sin \theta_{\mathrm{w}}(\mathrm{s})$ running

Hadronic Light-by-Light (HLbL) contributions

Hadronic Light-by-Light

- 4pt function of EM currents

- No experimental data directly help
- Dispersive approach

$$
\begin{gathered}
\Gamma_{\mu}^{(\mathrm{HH})}\left(p_{2}, p_{1}\right)= \\
i e^{6} \int \frac{d^{4} k_{1}}{(2 \pi)^{4}} \frac{d^{4} k_{2}}{(2 \pi)^{4}} \frac{\Pi_{\mu \nu \rho \sigma}^{(4)}\left(q, k_{1}, k_{3}, k_{2}\right)}{k_{1}^{2} k_{2}^{2} k_{3}^{2}} \\
\times \gamma_{\nu} S^{(\mu)}\left(\not p_{2}+\not k_{2}\right) \gamma_{\rho} S^{(\mu)}\left(\not p_{1}+\not k_{1}\right) \gamma_{\sigma} \\
\Pi_{\mu \nu \rho \sigma}^{(4)}\left(q, k_{1}, k_{3}, k_{2}\right)=\int d^{4} x_{1} d^{4} x_{2} d^{4} x_{3} \exp \left[-i\left(k_{1} \cdot x_{1}+k_{2} \cdot x_{2}+k_{3} \cdot x_{3}\right)\right] \\
\\
\\
\times\langle 0| T\left[j_{\mu}(0) j_{\nu}\left(x_{1}\right) j_{\rho}\left(x_{2}\right) j_{\sigma}\left(x_{3}\right)\right]|0\rangle
\end{gathered}
$$

Form factor : $\Gamma_{\mu}(q)=\gamma_{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 m_{l}} F_{2}\left(q^{2}\right)$

HLbL from Models

■ Model estimate with non-perturbative constraints at the chiral / low energy limits using anomaly : (9-12) x 10^{-10} with $25-40 \%$ uncertainty

Jegerlehner \& Nyffeler 09

Contribution	BPP	HKS	KN	MV	PdRV	N/JN
$\pi^{0}, \eta, \eta^{\prime}$	85 ± 13	82.7 ± 6.4	83 ± 12	114 ± 10	114 ± 13	99 ± 16
π, K loops	-19 ± 13	-4.5 ± 8.1	-	0 ± 10	-19 ± 19	-19 ± 13
axial vectors	2.5 ± 1.0	1.7 ± 1.7	-	22 ± 5	15 ± 10	22 ± 5
scalars	-6.8 ± 2.0	-	-	-	-7 ± 7	-7 ± 2
quark loops	21 ± 3	9.7 ± 11.1	-	-	2.3	21 ± 3
total	83 ± 32	89.6 ± 15.4	80 ± 40	136 ± 25	105 ± 26	116 ± 39

Dispersive analysis for HLbL

[Colangelo et al. 2014, 2015, Pauk\&Vanderhaeghen 2014]

- Using crossing-symmetry, gauge invariance, 138 form factors are reduced to 12 scalars relevant for g-2 LbL

$$
a_{\mu}^{\mathrm{HLL}}=e^{6} \int \frac{d^{4} q_{1}}{(2 \pi)^{4}} \frac{d^{4} q_{2}}{(2 \pi)^{4}} \frac{\sum_{i=1}^{12} \hat{T}_{i}\left(q_{1}, q_{2}, q_{2}^{2} ; \hat{\Pi}_{2}\left(\hat{\Pi}_{1}+q_{2} q_{1}\right)^{2}, q_{2},-q_{1}-q_{2}\right)}{\left.\left(p+q_{1}\right)^{2}-m_{\mu}^{2}\right)\left[\left(p-q_{2}\right)^{2}-m_{\mu}^{2}\right]}
$$

- Formalism for Pion exchange, and Pion box diagram. Latter is related sQED with pion's vector form factor

- Other contributions neglected

Direct 4pt calculation for selected kinematical range

[J. Green et al. Mainz group, Phys. Rev. Lett 115, 222003(2015)]

- Compute connected contribution of 4 pt function in momentum space
- forward amplitudes related to $\gamma^{*}(\mathrm{Q} 1) \gamma^{*}(\mathrm{Q} 2)$-> hadron cross sections via dispersion relation, allowed comparison among lattice and experiments/ phenomenological models
$\mathcal{M}_{\text {had }}\left(\gamma^{*}\left(Q_{1}\right) \gamma^{*}\left(Q_{2}\right) \rightarrow \gamma^{*}\left(Q_{1}\right) \gamma^{*}\left(Q_{2}\right)\right)$

$$
\nu=-Q_{1} \cdot Q_{2}
$$

$\leftrightarrow \quad \sigma_{0,2}\left(\gamma^{*}\left(Q_{1}\right) \gamma^{*}\left(Q_{2}\right) \rightarrow\right.$ had. $)$

- Solid curve : model prediction
- π^{0} exchange is seen to be not dominant, possibly due to heavy quark mass in the simulation ($\mathrm{M} \pi=324 \mathrm{MeV}$)
- disconnected quark loop in progress (2016)

Our Basic strategy : Lattice QCD+QED system

- 4pt function has too much information to parameterize (?)
- Do Monte Carlo integration for QED two-loop with 4 pt function $\pi^{(4)}$ which is sampled in lattice QCD
- Photon \& lepton part of diagram is derived either in lattice QED+QCD [Blum et al 2014] (stat noise from QED), or exactly derive for given loop momenta [L. Jin et al 2015] (no noise from QED+lepton).

$$
\begin{aligned}
& \Gamma_{\mu}^{(\mathrm{Hlbl})}\left(p_{2}, p_{1}\right)=i e^{6} \int \frac{d^{4} k_{1}}{(2 \pi)^{4}} \frac{d^{4} k_{2}}{(2 \pi)^{4}} \Pi_{\mu \nu \rho \sigma}^{(4)}\left(q, k_{1}, k_{2}, k_{3}\right) \\
\times & {\left[S\left(p_{2}\right) \gamma_{\nu} S\left(p_{2}+k_{2}\right) \gamma_{\rho} S\left(p_{1}+k_{1}\right) \gamma_{\sigma} S\left(p_{1}\right)+(\text { perm. })\right] }
\end{aligned}
$$

- set spacial momentum for - external EM vertex q
- in- and out- muon p, p^{\prime}

$$
q=p-p^{\prime}
$$

- set time slice of muon source $(t=0)$, $\operatorname{sink}\left(\mathrm{t}^{\prime}\right)$ and operator (t_{op})
- take large time separation for ground state matrix element

QCD+QED method

[Blum et al PRL 114, 012001 (2015)]

- One photon is treated analytically
- other two sampled stochastically
- needs subtraction
- use AMA for error reduction
- use Furry's theoretm to reduce α^{2} noise
unsubtracted term

Subtraction term
$\mathrm{QCD}+\mathrm{q}-\mathrm{QED}$ q-QED

Coordinate space Point photon method

[Luchang Jin et all. , PRD93, 014503 (2016)]

- Treat all 3 photon propagators exactly (3 analytical photons) , which makes the quark loop and the lepton line connected :
disconnected problem in Lattice QED+QCD -> connected problem with analytic photon
- QED 2-loop in coordinate space. Stochastically sample, two of quark-photon vertex location $\mathrm{x}, \mathrm{y}, \mathrm{z}$ and x_{op} is summed over space-time exactly

- Short separations, Min[$|x-z|,|y-z|,|x-y|]<R \sim O(0.5) f m$, which has a large contribution due to confinement, are summed for all pairs
- longer separations, Min[$|x-z|,|y-z|,|x-y|]>=R$, are done stochastically with a probability shown above (Adaptive Monte Carlo sampling)

Conserved current \& moment method

- [conserved current method at finite q2] To tame UV divergence, one of quark-photon vertex (external current) is set to be conserved current (other three are local currents). All possible insertion are made to realize conservation of external currents config-by-config.

- [moment method, q2 $\rightarrow 0$] By exploiting the translational covariance for fixed external momentum of lepton and external EM field, $\mathrm{q}->0$ limit value is directly computed via the first moment of the relative coordinate, x op $-(x+y) / 2$, one could show

$$
\left.\frac{\partial}{\partial q_{i}} \mathcal{M}_{\nu}(\vec{q})\right|_{\vec{q}=0}=i \sum_{x, y, z, x_{\mathrm{op}}}\left(x_{\mathrm{op}}-(x+y) / 2\right)_{i} \times
$$

to directly get $\mathrm{F}_{2}(0)$ without extrapolation.

$$
\text { Form factor: } \Gamma_{\mu}(q)=\gamma_{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 m_{l}} F_{2}\left(q^{2}\right)
$$

Dramatic Improvement ! Luchang Jin

$$
\begin{aligned}
& a=0.11 \mathrm{fm}, 24^{3} \times 64(2.7 \mathrm{fm})^{3}, \\
& \mathrm{~m}_{\pi}=329 \mathrm{MeV}, \quad \mathrm{~m}_{\mu}=\sim 190 \mathrm{MeV}, \mathrm{e}=1
\end{aligned}
$$

$$
\begin{aligned}
q=2 \pi / L & N_{\text {prop }}=81000 \longmapsto \longmapsto \\
q=0 & N_{\text {prop }}=26568 \longmapsto \bigcirc
\end{aligned}
$$

$\mathrm{M}_{\pi}=170 \mathrm{MeV}$ cHLbL result [Luchang Jin et al. , PRD93, 014503 (2016)]

- $V=(4.6 \mathrm{fm})^{3}, a=0.14 \mathrm{fm}, \mathrm{m}_{\mu}=130 \mathrm{MeV}, 23$ conf
- pair-point sampling with AMA (1000 eigV, 100CG) , > 6000 meas/conf - $|x-y|<=5$, all pairs, x2-5 samples for shorter distances, 217 pairs (10 AMA-exact)
- $|x-y|>5,512$ pairs (48 AMA-exact)
- 13.2 BG/Q Rack-days

Integrand of F2

$$
r=\min \{|x-y|,|y-z|,|z-x|\}
$$

$$
\frac{\left(g_{\mu}-2\right)_{\mathrm{cHLbL}}}{2}=(0.1054 \pm 0.0054)(\alpha / \pi)^{3}=(132.1 \pm 6.8) \times 10^{-11}
$$

Strange contribution : $(0.0011 \pm 0.005)(\alpha / \pi)^{3}$

physical $M_{\pi}=140 \mathrm{MeV}$ cHLbL result [Luchang Jin et al. , preliminary]

- $\mathrm{V}=(5.5 \mathrm{fm})^{3}, \mathrm{a}=0.11 \mathrm{fm}, \mathrm{m}_{\mu}=106 \mathrm{MeV}$, 69 conf [RBC/UKQCD]
- Two stage AMA (2000 eigV, 200CG and 400 CG) using zMobius, ~4500 meas/conf
- 160 BG/Q Rack-days
integrand safely suppressed before reaching r ~ L/2

$\frac{\left(g_{\mu}-2\right)_{\mathrm{cHLbL}}}{2}=(0.933 \pm 0.0073)(\alpha / \pi)^{3}=(116.9 \pm 9.1) \times 10^{-11} \quad$ (preliminary, stat err only)

Disconnected diagrams in HLbL

- Disconnected diagrams

Disconnected HLbL would be non-negligible

- The major contribution, single Π^{0} (and η, η^{\prime}) exchange diagrams through $\gamma^{*} \gamma^{*} \rightarrow \pi^{0}$, would have both connected and disconnected contributions.

- Simple quark model consideration for LbL pi0 exchange turns out to be Con : DisCon roughly same size with opposite sign (34:-25)
- Good news : it's not η^{\prime} (only), so S / N would not grow exponentially with the propagation length.
- Bad news : it's disconnected quark loops, and many of them.

SU(3) hierarchies for d-HLbL

- At $\mathrm{m}_{\mathrm{s}}=\mathrm{m}_{\mathrm{ud}}$ limit, following type of dHLbL survives due to

$$
Q u+Q d+Q s=0
$$

- Physical point run is in progress using similar techniques to c-HLbL. preliminary result a negative value with $\sim 30 \%$ stat err
- $\mathrm{O}\left(\mathrm{m}_{\mathrm{s}}-\mathrm{m}_{\mathrm{ud}}\right) / 3$ and $\mathrm{O}\left(\left(\mathrm{m}_{\mathrm{s}}-\mathrm{m}_{u d}\right)^{2}\right)$

$$
\left(m_{s}-m_{u d}\right)^{1}
$$

$$
\left(m_{s}-m_{u d}\right)^{2}
$$

HLbL Systematic errors

- Missing disconnected diagrams
\rightarrow compute them
- Finite volume
- Discretization error
\rightarrow a scaling study for $1 / \mathrm{a}=2.7 \mathrm{GeV}$, 64 cube lattice at physical quark mass will be done on ALCC at Argonne

Systematic effects in QED only study

- muon loop, muon line
- $a=a m_{\mu} /(106 \mathrm{MeV})$

- L= 11.9, 8.9, 5.9 fm
- known result : F2 = 0.371 (diamond) correctly reproduced (good check)

FV and discretization error could be as large as 20-30 \% ? , similar discretization error seen from QCD+QED study

QCD box in QED box

- FV from quark is exponentially suppressed $\sim \exp \left(-M_{\pi} L_{Q C D}\right)$
- Dominant FV effects would be from photon
- Let photon and muon propagate in larger (or infinite) box than that of quark

- We could examine different lepton/photon in the off-line manner e.g. QED_L (Hayakwa-Uno 2008) with larger box, Twisting Averaging [Lehner TI LATTICE14] or Infinite Vol. Photon propagators [C. Lehner, L.Jin, TI LATTICE15], or continuum formula [Mainz LAT15]

HLbL on Lattice Summary

- Connected HLbL calculation is improved very rapidly
- Many orders of magnitudes improvements
- coordinate-space integral using analytic photon propagator with adaptive probability (point photon method)
- config-by-config conserved external current
- take moment of relative coordinate to directly take $\mathrm{q} \rightarrow 0$
- AMA
$\rightarrow 8 \%$ stat. error at physical point (preliminary, connected, stat err only)

$$
\frac{\left(g_{\mu}-2\right)_{\mathrm{cHLbL}}}{2}=(0.933 \pm 0.0073)(\alpha / \pi)^{3}=(116.9 \pm 9.1) \times 10^{-11}
$$

- SU(3) unsuppressed disconnected diagram has signal also at physical point
- Still large systematic errors (missing disconnected, FV, discretization error, ...)
- Direct calculation of HLbL is in progress [Mainz group]
- Goal : 10\% total error

g-2 (SM) theory status summary

- Uncertainty from Hadronic contributions dominate error
- Hadronic Vacuum Polarization (HVP)
- Determination from R-ratio experiment ~ 0.6 \% error
- Lattice determinations, rapidly reducing errors ~2\% error
- One full (continuum, infinite volume) calculation by HPQCD, important to check assumptions
- Disconnected diagram has definite error
- Finite Volume, QED/isospin breaking effects
- Hadronic Light-by-light (HLbL)
- Dispersive approaches are proposed
- Rapidly making progress for connected diagram on Lattice
- Lattice spacing error, Finite Volume error will be removed
- Direct calculation of HLbL on lattice
- Very exciting moment for g-2 Physics

Collaborators

- HVP \& DWF simulations RBC/UKQCD (next page), M. Spraggs, A. Porttelli, K. Maltman
- HLbL

Tom Blum, Norman Christ, Masashi Hayakawa, Luchang Jin, Chulwoo Jung, Christoph Lehner, ...

- DWF simulations including HVP RBC/UKQCD Collaboration

Part of related calculation are done by resources from
USQCD (DOE), XSEDE, ANL BG/Q Mira (DOE, ALCC), Edinburgh BG/Q, BNL BG/Q, RIKEN BG/Q and Cluster (RICC, HOKUSAI)

Support from US DOE, RIKEN, BNL, and JSPS

Backup slides / for discussion

interplays between dispersive approach and Lattice

- g-2 HVP
- Vus from strangeness τ inclusive decay

Use of Time-Moments

[HPQCD, PRD89(2014)114501]

- Compute Time-moments of 2pt

$$
\begin{array}{rlr}
G_{2 n} & \equiv a^{4} \sum_{t} \sum_{\vec{x}} t^{2 n} Z_{V}^{2}\left\langle j^{i}(\vec{x}, t) j^{i}(0)\right\rangle & \hat{\Pi}\left(q^{2}\right)=\sum_{j=1}^{\infty} q^{2 j} \Pi_{j} \\
& =\left.(-1)^{n} \frac{\partial^{2 n}}{\partial q^{2 n}} q^{2} \hat{\Pi}\left(q^{2}\right)\right|_{q^{2}=0} . & \Pi_{j}=(-1)^{j+1} \frac{G_{2 j+2}}{(2 j+2)!} .
\end{array}
$$

- Pade approximation, determined from Πj, for high q2 integration

$$
\begin{array}{ll}
\text { Strange } & a_{\mu}^{s}=53.41(59) \times 10^{-10} . \\
& {[1.1 \% \sim \text { lattice spacing error }]} \\
.1 \% & a_{\mu}^{c}=14.42(39) \times 10^{-10} . \\
\text { charm } & {[2.7 \% \sim \text { Z_V error }]}
\end{array}
$$

Finite Volume effects

- Malak et al. (15, BMWc)
- $\mathrm{w} / \mathrm{o} \Pi_{\mu \nu}(0)$ subtraction, $+40 \%$ FVE at Mpi L=5
- FVE for $\Pi_{\mu \nu}(0)$ subtracted ones get small
- t^{2} moment undershoots -30% or so at Mpi L $=5$
- Maarten Golterman [Tue, 17:30]

Compares different H4 Irrepps, find 10+\% difference.
Also ChPT analysis for different FV treatment (Irreps, subtractions)
A_{1} :
$\begin{array}{ll}\text { [0,1] Padé: } & a_{\mu}^{\mathrm{HVP}}\left(1 \mathrm{GeV}^{2}\right)=8.4(4) \times 10^{-8} \\ \text { quadr. conf. pol.: } & a_{\mu}^{\mathrm{HVP}}\left(1 \mathrm{GeV}^{2}\right)=8.4(5) \times 10^{-8} \\ & \\ \mathbf{A}_{\mathbf{1}}^{\mathbf{4 4}:} & \\ \text { [0,1] Padé: } & a_{\mu}^{\mathrm{HVP}}\left(1 \mathrm{GeV}^{2}\right)=9.2(3) \times 10^{-8} \\ \text { quadr. conf. pol.: } & a_{\mu}^{\mathrm{HVP}}\left(1 \mathrm{GeV}^{2}\right)=9.6(4) \times 10^{-8}\end{array}$

Mainz HVP
 Hanno Horch et al.

- $\mathrm{Nf}=2 \mathrm{O}(\mathrm{a})$-imp Wilson, CLS, $\mathrm{Mpi}=185-495 \mathrm{MeV}, a=0.05,0.07,0.08 \mathrm{fm}$
- TBC
- ETMC rho rescaling
- extended frequentist's method
- Large chiral extrapolation error

HVP on BMWc ensemble

 Eric Gregory- Extract smooth function $\pi(\mathrm{s})$ from Taylor expansion, with derivatives measured from vector correlator.
- 1065 config @ physical Mpi, 1/a=2.131 GeV, ~6fm, 2HEXsmeared Wilson-type
- strange contribution $\sim 15 \%$ smaller than HPQCD, RBC/UKQCD

HVP \& magnetic susceptibilities

- Gunnar Bali, Gergely Endrodi,arXiv:1506.08638 Relates magnetic susceptibilities with oscillatory magnetic background and constant one, extract HVP. Also include disconnected loop

$$
\begin{aligned}
& 2 \chi_{p}=\Pi\left(p^{2}\right), \quad \chi_{0}=\Pi(0) . \quad \chi_{p}=-\frac{\partial^{2} f\left[\mathbf{B}^{p}\right]}{\partial(e B)^{2}} . \\
& \mathbf{B}^{p}(x)=B \sin (p x) \mathbf{e}_{3}, \quad \mathbf{B}^{0}=B \mathbf{e}_{3},
\end{aligned}
$$

QED effects

- From experimental $\mathrm{e}+\mathrm{e}$ - total cross section $\sigma_{\text {total }}(\mathrm{e}+\mathrm{e}-)$ and dispersion relation

$$
a_{\mu}^{\mathrm{HVP}}=\frac{1}{4 \pi^{2}} \int_{4 m \frac{2}{\pi}}^{\infty} d s K(s) \sigma_{\text {total }}(s)
$$

time like $\quad q^{2}=s>=4 m_{\pi}{ }^{2}$

$$
\begin{aligned}
a_{\mu}^{\mathrm{HVP}, \mathrm{LO}} & =(694.91 \pm 4.27) \times 10^{-10} \\
a_{\mu}^{\mathrm{HVP}, \mathrm{HO}} & =(-9.84 \pm 0.07) \times 10^{-10}
\end{aligned}
$$

$\mathrm{M}_{\pi}=170 \mathrm{MeV}$ cHLbL result (contd.)

"Exact" ... q = 2pi / L, "Conserved (current)" ... q=2pi/L, 3 diagrams "Mom" ... moment method $q->0$, with AMA

Method	$F_{2} /(\alpha / \pi)^{3}$	$N_{\text {conf }}$	$N_{\text {prop }}$	$\sqrt{\mathrm{Var}}$	$r_{\text {max }}$	SD	LD	ind-pair
Exact	0.0693(218)	47	$58+8 \times 16$	2.04	3	-0.0152(17)	$0.0845(218)$	0.0186
Conserved	0.1022(137)	13	$(58+8 \times 16) \times 7$	1.78	3	0.0637(34)	$0.0385(114)$	0.0093
Mom. (approx)	0.0994(29)	23	$(217+512) \times 2 \times 4$	1.08	5	0.0791(18)	0.0203(26)	0.0028
Mom. (corr)	0.0060(43)	23	$(10+48) \times 2 \times 4$	0.44	2	0.0024(6)	0.0036(44)	0.0045
Mom. (tot)	0.1054(54)	23						

QED box in QCD box (contd.)

- $\mathrm{Mm}_{\boldsymbol{\prime}}=420 \mathrm{MeV}, \mathrm{m} \mu=330 \mathrm{MeV}, 1 / \mathrm{a}=1.7 \mathrm{GeV}$
- $(16)^{3}=(1.8 \mathrm{fm})^{3}$ QCD box in $(24)^{3}=(2.7 \mathrm{fm})^{3}$ QED box

Ensemble $m_{\pi} L$ QCD Size QED Size $\frac{F_{2}\left(q^{2}=0\right)}{(\alpha / \pi)^{3}}$

16I	3.87	$16^{3} \times 32$	$16^{3} \times 32$	$0.1158(8)$
24I	5.81	$24^{3} \times 64$	$24^{3} \times 64$	$0.2144(27)$
16I-24		$16^{3} \times 32$	$24^{3} \times 64$	$0.1674(22)$

$r=\min \{|x-y|,|y-z|,|z-x|\}$

$r=\max \{|x-y|,|y-z|,|z-x|\}$

(plan B) Interplays between lattice and dispersive approach g-2

- Dispersive approach from R-ratio R(s)

$$
\hat{\Pi}\left(Q^{2}\right)=\frac{Q^{2}}{3} \int_{s_{0}} d s \frac{R(s)}{s\left(s+Q^{2}\right)}
$$

Relative Err of $\operatorname{Pihat}\left(Q^{2}\right)$

- Can we combine dispersive \& lattice and get more precise (g-2)HVP than both ? [2011 Bernecker Meyer]
- Inverse Fourier trans to Euclidean vector correlator
- Relevant for g-2 $\mathrm{Q}^{2}=\left(\mathrm{m}_{\mu} / 2\right)^{2}=0.0025 \mathrm{GeV}^{2}$
- It may be interesting to think $\frac{\hat{\Pi}\left(Q^{2}\right)}{Q^{2}}=\left[\frac{\hat{\Pi}\left(Q^{2}\right)}{Q^{2}}-\frac{\hat{\Pi}\left(P^{2}\right)}{P^{2}}\right]^{\text {Exp }}+\left[\frac{\hat{\Pi}\left(P^{2}\right)}{P^{2}}\right]^{\text {Lat }}$

Pihat(Q2) integrand in coordinate space

Lattice : u,d,s connected, no continuum limit

\mathbf{V}_{us} extraction strangeness tau inclusive decay


```
K
0.2253 \pm0.0014
K
0.2253 \pm0.0010
CKM unitarity, PDG }201
0.2255 \pm0.0010
\tau s s inclusive, HFAG 2014
0 . 2 1 7 6 \pm 0 . 0 0 2 1
\tau Kv / \tau > лv, HFAG 2014
0.2232\pm0.0019
\tau}->\textrm{K}v,\mathrm{ HFAG 2014
0.2212 }\pm0.002
\tau average, HFAG }201
0.2204 \pm0.0014
```


HFAG-Tau

```
Summer 2014
```


Tau decay

- $\tau \rightarrow \nu+$ had through V-A vertex
- Apply the optical theorem to related to VV and AA hadronic vacuum polarization (HVP)
- For hadrons with strangeness -1, CKM matrix elements $V_{u s}$ is multiplied
- ν takes energy away, makes differential cross section is related to the HVPs (c.f. in $e^{+} e^{-}$case, the total cross section is directly related to HVP)

$$
\begin{aligned}
R_{i j} & =\frac{\Gamma\left(\tau^{-} \rightarrow \text { hadrons }_{i j} \nu_{\tau}\right)}{\Gamma\left(\tau^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\tau}\right)} \\
& =\frac{12 \pi\left|V_{i j}^{2}\right| S_{E W}}{m_{\tau}^{2}} \int_{0}^{m_{\tau}^{2}}\left(1-\frac{s}{m_{\tau}^{2}}\right) \underbrace{\left[\left(1+2 \frac{s}{m_{\tau}^{2}}\right) \operatorname{Im} \Pi^{(1)}(s)+\operatorname{Im} \Pi^{(0)}(s)\right]}_{\equiv \operatorname{Im} \Pi(s)}
\end{aligned}
$$

- The Spin=0 and 1, vacuum polarization, $\operatorname{Vector}(\mathrm{V})$ or Axial (A) current-current two point

$$
\begin{aligned}
\Pi_{i j ; V / A}^{\mu \nu}\left(q^{2}\right) & =i \int d^{4} x e^{i q x}\langle 0| T J_{i j ; V / A}^{\mu}(x) J_{i j ; V / A}^{\dagger \mu}(0)|0\rangle \\
& =\left(q^{\mu} q^{\nu}-q^{2} g^{\mu \nu}\right) \Pi_{i j ; V / A}^{(1)}\left(q^{2}\right)+q^{\mu} q^{\nu} \Pi_{i j ; V / A}^{(0)}
\end{aligned}
$$

Finite Energy Sum Rule (FESR)

- Do the finite radius contour integral
- Real axis integral from experimental R_{τ}
- Use pQCD and OPE for the large circle integral
- Any analytic weight function $w(s)$

$$
\int_{s_{t h}}^{s_{0}} \operatorname{Im} \Pi(s) w(s)=\frac{i}{2} \oint_{|s|=s_{0}} d s \Pi(s) w(s)
$$

Combining FESR and Lattice

- If we have a reliable estimate for $\Pi(s)$ in Euclidean (space-like) points, $s=-Q_{k}^{2}<0$, we could extend the FESR with weight function $w(s)$ to have poles there,

$$
\begin{array}{r}
\int_{s_{t h}}^{\infty} w(s) \operatorname{Im} \Pi(s)=\pi \sum_{k}^{N_{p}} \operatorname{Res}_{k}[w(s) \Pi(s)]_{s=-Q_{k}^{2}} \\
\Pi(s)=\left(1+2 \frac{s}{m_{\tau}^{2}}\right) \operatorname{Im} \Pi^{(1)}(s)+\operatorname{Im} \Pi^{(0)}(s) \propto s \quad(|s| \rightarrow \infty)
\end{array}
$$

- For $N_{p} \geq 3$, the $|s| \rightarrow \infty$ circle integral vanishes.

weight function $w(s)$

- Example of weight function

$$
\begin{array}{r}
w(s)=\prod_{k}^{N_{p}} \frac{1}{\left(s+Q_{k}^{2}\right)}=\sum_{k} a_{k} \frac{1}{s+Q_{k}^{2}}, \quad a_{k}=\sum_{j \neq k} \frac{1}{Q_{k}^{2}-Q_{j}^{2}} \\
\Longrightarrow \sum_{k}\left(Q_{k}\right)^{M} a_{k}=0 \quad\left(M=0,1, \cdots, N_{p}-2\right)
\end{array}
$$

- The residue constraints automatically subtracts $\Pi^{(0,1)}(0)$ and $s \Pi^{(1)}(0)$ terms.
- For experimental data, $w(s) \sim 1 / s^{n}, n \geq 3$ suppresses
\triangleright larger error from higher multiplicity final states at larger $s<m_{\tau}^{2}$
\triangleright uncertanties due to pQCD+OPE at $m_{\tau}^{2}<s$
- For lattice, Q_{k}^{2} should be not too small to avoid large stat. error, $Q^{2} \rightarrow 0$ extrapolation, Finite Volume error(?). Also not too larger than m_{τ}^{2} to make the suppression in time-like $0<s<m_{\tau}^{2}$ working.
- Other $w(s)$ could be useful to enhance some region $s>0$ which may be usable for $(g-2)_{\mu}$ HVP (?)
- c.f. HPQCD's HVP moments works

Preliminary results

[H. Ohki, A. Juttner, C. Lehner, K. Maltman et al.]

Our result for all channels

All our results ($C<1, N=3,4$) are consistent with each other.
Note : Other systematic errors of sea quark mass chiral extrapolation, lattice O(a^4) discretization, and higher order OPE have not been included. These must be assessed in a future study.

AMA+MADWF(fastPV)+zMobius accelerations

- We utilize complexified 5d hopping term of Mobius action [Brower, Neff, Orginos], zMobius, for a better approximation of the sign function.

$$
\epsilon_{L}\left(h_{M}\right)=\frac{\prod_{s}^{L}\left(1+\omega_{s}^{-1} h_{M}\right)-\prod_{s}^{L}\left(1-\omega_{s}^{-1} h_{M}\right)}{\prod_{s}^{L}\left(1+\omega_{s}^{-1} h_{M}\right)+\prod_{s}^{L}\left(1-\omega_{s}^{-1} h_{M}\right)}, \quad \omega_{s}^{-1}=b+c \in \mathbb{C}
$$

- $1 / \mathrm{a} \sim 2 \mathrm{GeV}$, Ls=48 Shamir ~ Ls=24 Mobius (b=1.5, c=0.5) ~Ls=10 zMobius (b_s, c_s complex varying) ~ 5 times saving for cost AND memory

- The even/odd preconditioning is optimized (sym2 precondition) to suppress the growth of condition number due to order of magnitudes hierarchy of b_s, c_s [also Neff found this]

$$
\text { sym2: } 1-\kappa_{b} M_{4} M_{5}^{-1} \kappa_{b} M_{4} M_{5}^{-1}
$$

- Fast Pauli Villars ($\mathrm{mf}=1$) solve, needed for the exact solve of AMA via MADWF (Yin, Mawhinney) is speed up by a factor of 4 or more by Fourier acceleration in 5D
[Edward, Heller]
- All in all, sloppy solve compared to the traditional CG is 160 times faster on the physical point 48 cube case. And ~ 100 and 200 times for the 32 cube, $\mathrm{Mpi}=170 \mathrm{MeV}, 140$, in this proposal (1,200 eigenV for 32cube).

$$
\underbrace{\frac{20,000}{600}}_{\text {MADWF }+ \text { zMobius }+ \text { deflation }} \times \underbrace{\frac{600 * 32 / 10}{300}}_{\text {AMA }+ \text { zMobius }}=33.3 \times 6.4=\underline{210 \text { times faster }}
$$

Covariant Approximation Averaging (CAA)
 a new class of Error reduction techniques

Examples of Covariant Approximations (contd.)

- All Mode Averaging AMA
Sloppy CG or Polynomial approximations

$$
\begin{aligned}
& \mathcal{O}^{\text {(appx) }}=\mathcal{O}\left[S_{l}\right], \\
& S_{l}=\sum_{\lambda} v_{\lambda} f(\lambda) v_{\lambda}^{\dagger}, \\
& f(\lambda)= \begin{cases}\frac{1}{\lambda}, & |\lambda|<\lambda_{\mathrm{cut}} \\
P_{n}(\lambda) & |\lambda|>\lambda_{\mathrm{cut}}\end{cases} \\
& P_{n}(\lambda) \approx \frac{1}{\lambda}
\end{aligned}
$$

If quark mass is heavy, e.g. ~ strange, low mode isolation may be unneccesary

accuracy control :

- low mode part : \# of eig-mode
- mid-high mode : degree of poly.

