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Hadronic light-by-light (HLbL) scattering

+ + · · ·

Model calculations: (105 ± 26) ⇥ 10�11

[Prades et al., 2009, Benayoun et al., 2014]

Model systematic errors di�cult to quantify

Dispersive approach di�cult, but progress is being made
[Colangelo et al., 2014b, Colangelo et al., 2014a, Pauk and Vanderhaeghen, 2014b,

Pauk and Vanderhaeghen, 2014a, Colangelo et al., 2015]

First non-PT QED+QCD calculation [Blum et al., 2015]

Very rapid progress with Pert. QED+QCD [Jin et al., 2015]

Tom Blum (UCONN / RBRC) Progress on the muon anomalous magnetic moment from lattice QCD
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Contents	

To prepare for the new muon g-2 experiment at FNAL E989, and J-
PARC E34, where  x4 more accurate results are coming 
     [ Themis Bowcock’s talk ]   
 
n  SM theory prediction for  

Hadronic Vacuum Polarization contributions (HVP) 
in addition to  the determination using R-ratio from experiments  
[Liang Yan’s talk] 

n  SM theory predictions for Hadronic Light-by-Light contributions 
(HLbL) 

 
 
 ( other related applications [e.g.  K. Maltman’s talk] )  

2	



SM Theory 	

n  QED, hadronic, EW contributions 
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✕ ✕ ✕
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QED			(5-loop	!)	
Aoyama	et	al.	
PRL109,111808	(2012)		
	
	
Hadronic	vacuum	
polariza8on	(HVP)	
	
	
	
Hadronic	light-by-light	
(Hlbl)	
	
	
Electroweak	(EW)	
Knecht	et	al	02	
Czarnecki	et	al.	02	

+	 +	…	

+	 +	 +	…	

muon’s anomalous magnetic moment

• One of the most precisely determined numbers, starting from the construction of QED.
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Hadronic light-by-light scattering contribution to the muon g� 2 from lattice QCD Masashi Hayakawa

could be estimated by purely theoretical calculation. So far, it has been calculated only based on
the hadronic picture [7, 8]. Thus the first principle calculation based on lattice QCD is particularly
desirable.

!

l1l2

Figure 1: hadronic light-by-light scattering contribution to the muon g� 2

The diagram in Fig. 1 evokes the following naive approach; we calculate repeatedly the cor-
relation function of four hadronic electromagnetic currents by lattice QCD with respect to two
independent four-momenta l1, l2 of off-shell photons, and integrate it over l1, l2. Such a task is too
difficult to accomplish with use of supercomputers available in the foreseeable future.

Here we propose a practical method to calculate the h-lbl contribution by using the lattice
(QCD + QED) simulation; we compute

⇤ quark ⌅

QCD+quenched QEDA

�
⇤

quark

⌅

QCD+quenched QEDB⇤ ⌅

quenched QEDA

, (2)

amputate the external muon lines, and project the magnetic form factor, and divide by the factor
3. In Eq. (2) the red line denotes the free photon propagator D!�(x, y) in the non-compact lat-
tice QED solved in an appropriate gauge fixing condition. The black line denotes the full quark
propagator Sf (x, y;U, u) for a given set of SU(3)C gauge configuration

�
Ux,!

⇥
and U(1)em gauge

configuration
�
ux,!

⇥
, where the sum over relevant flavors f is implicitly assumed. The blue line

represents the full muon propagator s(x, y; u). The average ⇥, ⇤ above means the one over the
unquenched SU(3)C gauge configurations and/or the quenched U(1)em gauge configurations 1 as
specified by the subscript attached to it. Since two statistically independent averages overU(1)em
gauge configurations appear in the second term, they are distinguished by the labels A, B.

1For the unquenched QCD plus quenched QED to respect the gauge invariance of QED, the electromagnetic charges
of sea quarks are assumed to be zero.
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aµ =
g � 2

2
= (116 592 089 ± 54 ± 33) ⇥ 10�11 BNL-E821

[Andreas Hoecker, Tau 2010, arXiv:1012.0055 [hep-ph]]

Contribution Result (⇥10�11).
QED (leptons) 116 584 718.09 ± 0.15
HVP (lo) 6 923.± 42
HVP (ho) -97.9 ± 0.9
HLBL 105.± 26
EW 154.± 2

Total SM 116 591 802 ± 42HVP(lo) ± 26HLBL ± 02 (49tot).

• 287 ± 80 or 3.6⇥ difference between experiment and SM prediction.

E989 at FNAL is to reduce the total experimental error by,
at least, a factor of four over E821, or 0.14 ppm !

Taku Izubuchi, USQCD All Hands Meeting, JLab, May 6, 2011 20

Introduction
The hadronic vacuum polarization (HVP) contribution (O(↵2))

The hadronic light-by-light (HLbL) contribution (O(↵3))
Summary/Outlook

The magnetic moment of the muon

In interacting quantum (field) theory g gets corrections

qp1 p2

+
qp1 p2

k

+ . . .

�µ ! �µ(q) =

✓

�µ
F1(q

2) +
i �µ⌫

q⌫

2m
F2(q

2)

◆

which results from Lorentz and gauge invariance when the muon is
on-mass-shell.

F2(0) =
g � 2

2
⌘ aµ (F1(0) = 1)

(the anomalous magnetic moment, or anomaly)

Tom Blum (UConn / RIKEN BNL Research Center) Hadronic contributions to the muon g-2 from lattice QCD

Introduction
The hadronic vacuum polarization (HVP) contribution (O(↵2))

The hadronic light-by-light (HLbL) contribution (O(↵3))
Summary/Outlook

The magnetic moment of the muon

Compute these corrections order-by-order in perturbation theory by
expanding �µ(q2) in QED coupling constant

↵ =
e

2

4⇡
=

1

137
+ . . .

Corrections begin at O(↵); Schwinger term = ↵
2⇡ = 0.0011614 . . .

hadronic contributions ⇠ 6 ⇥ 10�5 times smaller (leading error).

Tom Blum (UConn / RIKEN BNL Research Center) Hadronic contributions to the muon g-2 from lattice QCD
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(g-2)μ　　SM Theory prediction	

n  QED, EW, Hadronic contributions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

n  Discrepancy between EXP and SM is larger than EW! 
n  Currently the dominant uncertainty comes from HVP, followed by HLbL 

n  x4 or more accurate experiment  FNAL , J-PARC 
n  Goal :  sub 1% accuracy for HVP (intermediate goal)  

           →  10% accuracy for HLbL 

EQUATIONS

N. YAMADA

aSM
µ = (11 659 182.8 ± 4.9) × 10−10 (using [1])(1)

aEXP
µ = (11 659 208.9 ± 6.3) × 10−10 [PDG](2)

aEXP
µ − aSM

µ = (26.1 ± 8.0) × 10−10(3)

Breakdown
aSM

µ = (11 659 182.8 ±4.9 ) × 10−10

aQED
µ = (11 658 471.808 ±0.015 ) × 10−10

aEW
µ = ( 15.4 ±0.2 ) × 10−10

ahad,LOVP
µ = ( 694.91 ±4.27 ) × 10−10

ahad,HOVP
µ = ( −9.84 ±0.07 ) × 10−10

ahad,lbl
µ = ( 10.5 ±2.6 ) × 10−10

V (x) = −µ⃗l · B⃗(4)

µ⃗l = gl
e

2ml
S⃗l(5)

al =
gl − 2

2
(6)

Γµ(q) = γµ F1(q
2) +

iσµνqν

2 ml
F2(q

2)(7)

F1(q
2) = 1, F2(q

2) = 0(8)

F1(0) = 1, F2(0) = al(9)

al = F2(0)(10)

Date: July 5, 2012.
1

K.	Hagiwara	et	al.	,	J.	Phys.	G:	Nucl.	Part.	Phys.	38	(2011)	085003	
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Hadronic Vacuum Polarization 
(HVP) contributions	
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Leading order of hadronic 
contribution (HVP)	

n  Hadronic vacuum polarization (HVP) 
                
 
  quark’s EM current :  

n  Optical Theorem (Unitarity)  
 
n  Analyticity 

n  expedrimental determination  [L. Yan’s talk] 
  aµ  ~  693(4)  [ 0.6 % err , largest err in SM theory ]  
 
     	

6	

Vμ	 Vν　	

Vµ =
X

f

Qf f̄�µf

= (q2gµ� � qµq�)�V (q
2)

Im�V (s) =
s

4⇥�
⇤
tot

(e+e� ! X)



Lattice QCD method [Blum, 2003]

+
Using lattice QCD and continuum, 1-volume pQED

aµ(HVP) =
⇣
↵

⇡

⌘2
Z 1

0
dq2 f (q2) ⇧̂(q2)

f (q2) is known, ⇧̂(q2) is subtracted HVP, ⇧̂(q2) = ⇧(q2) � ⇧(0),
computed directly on the lattice

⇧µ⌫(q) =

Z
e iqxhjµ(x)j⌫(0)i jµ(x) =

X

i

Q
i

 ̄(x)�µ
 (x)

= ⇧(q2)(qµq⌫ � q2�µ⌫)

14

HVP from Lattice	

n  Analytically continue to Euclidean/space-like momentum K2 = - q2 >0 
n  Vector current  2pt function 

 
 

n  Low Q2, or long distance, part of Π(Q2)  is   relevant for g-2 
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[	T.	Blum	PRL91	(2003)	052001	]	
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Current conservation, subtraction, 
and coordinate space representation	

n  Current conservation =>  transverse tensor 
 
 
n  Coordinate space  vector 2 pt Green function C(t) is directly 

related to subtracted Π(Q2)   [  Bernecker-Meyer 2011, ... ]　 

 
n  g-2 value is also related to C(t) with know kernel w(t) from QED. 

 

 
 
 

Approaches to the long-distance noise problem:

I HPQCD 2016: only uses lattice data up to 0.5fm–1.5fm,
beyond that multi-exponentials from fit

I RBC in progress: improved stochastic estimator
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RBC/UKQCD	
Chiral	Ladce	quark	DWF	
physical	point	
Quark	Propagator	Low	Mode	(A2A)	
using	All-Mode	Averaging	(AMA)	
	



Low-mode saturation for physical pion mass (here 2000 modes):

-40

-20

 0

 20

 40

 60

 80

 100

 0  5  10  15  20  25  30  35  40  45

a µ
 1

010

T

Nconf = 82

Full temporal integrand
Sloppy temporal integrand

No new physics
0

Low-mode only integrand
NLO FV ChPT temporal integrand

20 / 35

n  Use three stages of  
approximations with 
bias-correction 
 

n  Low mode 
approximation with 
sloppy calculation 
 

n  Low mode dominance 
for long distance 
 

n  compared with two　
pions model sQED.	

9	

RBC/UKQCD Light contribution	

[	C.	Lehner		preliminary	]	



Strange quark contribution	

[ RBC/UKQCD, JHEP 1604 (2016) 063 ]  
n  Mobius DWF, Nf=2+1,Physical mass,  L=5.5fm, a=0.114, 0.09 fm 
n  Many fits, moment, and cuts are used to examine systematics 
n  parts of systematic errors are being estimated 
n  consistent with HPQCD’s value (next page) 

R0,1 GeV2

GeV2
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Corrections to Taylor Coefficients of 

Remove lattice ππ 
contribution using 
one-loop, 
staggered-quark, 
finite-volume chiral 
perturbation theory.

Replace lattice fρ and mρ by 
physical fρ and mρ. Reduces 
or eliminates errors due to 
scale setting, Z factors, ɑ2, 
finite-vol., and ml/ms tuning.

(Elaboration of ETMC idea in 
1308.4327.)

Restore ππ 
contribution using 
one-loop continuum 
chiral perturbation 
theory, with physical 
π mass.

�̂l�tt
j !
Ä
�̂l�tt
j � �̂

l�tt
j (��)
ä
2
4m

2+2j
�

ƒ2�

3
5
l�tt

2
4

ƒ2�

m2+2j
�

3
5
expt

+ �̂cont
j (��)

⇧̂

HPQCD light quark HVP 
Chakraborty et al.  arXiv:1601.03071, PRD93.074509, ...	

n  a=0.09, 0.12, 0.15 fm 
n  switch to multi-exp 

at t*=1.5fm 
n  sub 2%  total error ! 
n  Modeling ρ correction 

+ ChPT pipi sub/add  
→ a few percent correction at 
physical point 
 
n  Large finite volume effects,  

even for L~ 5.8fm, 5.1 fm  at 
physical poit 

n  also from taste pion effects  
to pipi amplitude 

n  estimate disc. loop 
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FIG. 2: Our results for the connected u/d contribution to
aHVP,LO
µ as a function of the u/d quark mass (expressed as

its deviation from the physical value in units of the s quark
mass). The lower curve shows our uncorrected data; the up-
per curve includes correction factors discussed in the text
and is used to obtain the final result. Data come from sim-
ulations with lattice spacings of 0.15 fm (purple triangles),
0.12 fm (blue circles), and 0.09 fm (red squares). The gray
bands show the ±1� predictions of our model (Eq. (7)) after
fitting it to the data. The �2 per degree of freedom was 0.9
and 0.6 for the upper and lower fits, respectively.

our 10 ensembles to a function of the form

a

HVP,LO
µ

✓
1 + c`

�m`

⇤
+ cs

�ms

⇤
+ c̃`

�m`

m`
+ ca2

(a⇤)2

⇡

2

◆

(6)

where �mf ⌘ mf � m

phys
f , and ⇤ ⌘ 5ms is of order the

QCD scale (0.5GeV). The fit parameters have the fol-
lowing priors:

c` = 0(1) cs = 0.0(3) c̃` = 0.00(3) ca2 = 0(1) (7)

together with prior 600(200) ⇥ 10�10 for a

HVP,LO
µ . This

fit corrects for mis-tuned quark masses, higher-order cor-
rections to the ⇡

+
⇡

� contribution, and the finite lattice
spacing. More details are given in the supplementary
materials.

Our final result from the fit for the connected contri-
bution from u/d quarks is a

HVP,LO
µ = 598(6)(8) ⇥ 10�10,

where the first error comes from the lattice calculation
and fit and the second is due to missing contributions
from QED and isospin breaking (mu 6= md), each of
which we estimate to enter at the level of 1% of the u/d

piece of a

HVP,LO
µ . These estimates are supported by more

detailed studies: The key isospin breaking e↵ect of ⇢� !

mixing is estimated in [36] to make a 3.5 ⇥ 10�10 contri-
bution (0.6%) and the QED e↵ect of producing a hadron
polarization bubble consisting of ⇡

0 and � is estimated
in [37] to make a 4.6 ⇥ 10�10 contribution (0.8%). The
leading contributions to our final uncertainty are listed
in Table III.

TABLE III: Error budget for the connected contributions
to the muon anomaly aµ from vacuum polarization of u/d
quarks.

aHVP,LO
µ (u/d)

QED corrections: 1.0%
Isospin breaking corrections: 1.0%

Staggered pions, finite volume: 0.7%
Valence m` extrapolation: 0.4%

Monte Carlo statistics: 0.4%
Padé approximants: 0.4%

a2 ! 0 extrapolation: 0.3%
ZV uncertainty: 0.4%
Correlator fits: 0.2%

Tuning sea-quark masses: 0.2%
Lattice spacing uncertainty: < 0.05%

Total: 1.8%

DISCUSSION/CONCLUSIONS

Adding results from our earlier analyses [14, 26], the
connected contributions to a

HVP,LO
µ are:

a

HVP,LO
µ

��
conn.

⇥1010 =

8
>>><

>>>:

598(11) from u/d quarks

53.4(6) from s quarks

14.4(4) from c quarks

0.27(4) from b quarks

(8)

We combine these results with our recent estimate [27]
of the contribution from disconnected diagrams involving
u, d and s quarks. We take this as 0(9) ⇥ 10�10 to ob-
tain an estimate for the entire contribution from hadronic
vacuum polarization:

a

HVP,LO
µ = 666(6)(12) ⇥ 10�10 (9)

This agrees well with the only earlier u/d/s/c lat-
tice QCD result, 674(28) ⇥ 10�10 [13], but has errors
from the lattice calculation reduced by a factor of four.
It also agrees with earlier non-lattice results (⇥1010):
694.9(4.3) [5], 690.8(4.7) [6], and 681.9(3.2) [7] and
687.2(3.5) [8]. These are separately more accurate than
our result but the spread between them is comparable to
our uncertainty.

It is also useful to compare our result to the ex-
pectation from experiment. Assuming there is no new
physics beyond the Standard Model, experiment requires
a

HVP,LO
µ to be 720(7) ⇥ 10�10. This value is obtained

by subtracting from experiment the accepted values of
QED [38], electroweak [39], higher order HVP [5, 40] and
hadronic light-by-light contributions [41]. It is roughly
3.5� away from our result (Eq. (9)), but we need signif-
icantly smaller theoretical errors before we can make a
case for new physics.

From Table III we see that uncertainties can be re-
duced by improving the calculation of the quark-line dis-
connected contribution [28, 42] and from new simulations
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HPQCD g-2 HVP results	

n  Carried out up/down, strange, charm, bottom connected 
contributions 

 
n  together with disconnected  

 
n  QED/isospin breaking effects are folded into systematic error 

4

FIG. 2: Our results for the connected u/d contribution to
aHVP,LO
µ as a function of the u/d quark mass (expressed as

its deviation from the physical value in units of the s quark
mass). The lower curve shows our uncorrected data; the up-
per curve includes correction factors discussed in the text
and is used to obtain the final result. Data come from sim-
ulations with lattice spacings of 0.15 fm (purple triangles),
0.12 fm (blue circles), and 0.09 fm (red squares). The gray
bands show the ±1� predictions of our model (Eq. (7)) after
fitting it to the data. The �2 per degree of freedom was 0.9
and 0.6 for the upper and lower fits, respectively.

our 10 ensembles to a function of the form
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HVP,LO
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⇤
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where �mf ⌘ mf � m

phys
f , and ⇤ ⌘ 5ms is of order the

QCD scale (0.5GeV). The fit parameters have the fol-
lowing priors:

c` = 0(1) cs = 0.0(3) c̃` = 0.00(3) ca2 = 0(1) (7)

together with prior 600(200) ⇥ 10�10 for a

HVP,LO
µ . This

fit corrects for mis-tuned quark masses, higher-order cor-
rections to the ⇡

+
⇡

� contribution, and the finite lattice
spacing. More details are given in the supplementary
materials.

Our final result from the fit for the connected contri-
bution from u/d quarks is a

HVP,LO
µ = 598(6)(8) ⇥ 10�10,

where the first error comes from the lattice calculation
and fit and the second is due to missing contributions
from QED and isospin breaking (mu 6= md), each of
which we estimate to enter at the level of 1% of the u/d

piece of a

HVP,LO
µ . These estimates are supported by more

detailed studies: The key isospin breaking e↵ect of ⇢� !

mixing is estimated in [36] to make a 3.5 ⇥ 10�10 contri-
bution (0.6%) and the QED e↵ect of producing a hadron
polarization bubble consisting of ⇡

0 and � is estimated
in [37] to make a 4.6 ⇥ 10�10 contribution (0.8%). The
leading contributions to our final uncertainty are listed
in Table III.

TABLE III: Error budget for the connected contributions
to the muon anomaly aµ from vacuum polarization of u/d
quarks.

aHVP,LO
µ (u/d)

QED corrections: 1.0%
Isospin breaking corrections: 1.0%

Staggered pions, finite volume: 0.7%
Valence m` extrapolation: 0.4%

Monte Carlo statistics: 0.4%
Padé approximants: 0.4%

a2 ! 0 extrapolation: 0.3%
ZV uncertainty: 0.4%
Correlator fits: 0.2%

Tuning sea-quark masses: 0.2%
Lattice spacing uncertainty: < 0.05%

Total: 1.8%

DISCUSSION/CONCLUSIONS

Adding results from our earlier analyses [14, 26], the
connected contributions to a

HVP,LO
µ are:

a

HVP,LO
µ

��
conn.

⇥1010 =

8
>>><

>>>:

598(11) from u/d quarks

53.4(6) from s quarks

14.4(4) from c quarks

0.27(4) from b quarks

(8)

We combine these results with our recent estimate [27]
of the contribution from disconnected diagrams involving
u, d and s quarks. We take this as 0(9) ⇥ 10�10 to ob-
tain an estimate for the entire contribution from hadronic
vacuum polarization:

a

HVP,LO
µ = 666(6)(12) ⇥ 10�10 (9)

This agrees well with the only earlier u/d/s/c lat-
tice QCD result, 674(28) ⇥ 10�10 [13], but has errors
from the lattice calculation reduced by a factor of four.
It also agrees with earlier non-lattice results (⇥1010):
694.9(4.3) [5], 690.8(4.7) [6], and 681.9(3.2) [7] and
687.2(3.5) [8]. These are separately more accurate than
our result but the spread between them is comparable to
our uncertainty.

It is also useful to compare our result to the ex-
pectation from experiment. Assuming there is no new
physics beyond the Standard Model, experiment requires
a

HVP,LO
µ to be 720(7) ⇥ 10�10. This value is obtained

by subtracting from experiment the accepted values of
QED [38], electroweak [39], higher order HVP [5, 40] and
hadronic light-by-light contributions [41]. It is roughly
3.5� away from our result (Eq. (9)), but we need signif-
icantly smaller theoretical errors before we can make a
case for new physics.

From Table III we see that uncertainties can be re-
duced by improving the calculation of the quark-line dis-
connected contribution [28, 42] and from new simulations
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FIG. 2: Our results for the connected u/d contribution to
aHVP,LO
µ as a function of the u/d quark mass (expressed as

its deviation from the physical value in units of the s quark
mass). The lower curve shows our uncorrected data; the up-
per curve includes correction factors discussed in the text
and is used to obtain the final result. Data come from sim-
ulations with lattice spacings of 0.15 fm (purple triangles),
0.12 fm (blue circles), and 0.09 fm (red squares). The gray
bands show the ±1� predictions of our model (Eq. (7)) after
fitting it to the data. The �2 per degree of freedom was 0.9
and 0.6 for the upper and lower fits, respectively.

our 10 ensembles to a function of the form

a

HVP,LO
µ

✓
1 + c`

�m`

⇤
+ cs

�ms

⇤
+ c̃`

�m`

m`
+ ca2

(a⇤)2

⇡

2

◆

(6)

where �mf ⌘ mf � m

phys
f , and ⇤ ⌘ 5ms is of order the

QCD scale (0.5GeV). The fit parameters have the fol-
lowing priors:

c` = 0(1) cs = 0.0(3) c̃` = 0.00(3) ca2 = 0(1) (7)

together with prior 600(200) ⇥ 10�10 for a

HVP,LO
µ . This

fit corrects for mis-tuned quark masses, higher-order cor-
rections to the ⇡

+
⇡

� contribution, and the finite lattice
spacing. More details are given in the supplementary
materials.

Our final result from the fit for the connected contri-
bution from u/d quarks is a

HVP,LO
µ = 598(6)(8) ⇥ 10�10,

where the first error comes from the lattice calculation
and fit and the second is due to missing contributions
from QED and isospin breaking (mu 6= md), each of
which we estimate to enter at the level of 1% of the u/d

piece of a

HVP,LO
µ . These estimates are supported by more

detailed studies: The key isospin breaking e↵ect of ⇢� !

mixing is estimated in [36] to make a 3.5 ⇥ 10�10 contri-
bution (0.6%) and the QED e↵ect of producing a hadron
polarization bubble consisting of ⇡

0 and � is estimated
in [37] to make a 4.6 ⇥ 10�10 contribution (0.8%). The
leading contributions to our final uncertainty are listed
in Table III.

TABLE III: Error budget for the connected contributions
to the muon anomaly aµ from vacuum polarization of u/d
quarks.

aHVP,LO
µ (u/d)

QED corrections: 1.0%
Isospin breaking corrections: 1.0%

Staggered pions, finite volume: 0.7%
Valence m` extrapolation: 0.4%

Monte Carlo statistics: 0.4%
Padé approximants: 0.4%

a2 ! 0 extrapolation: 0.3%
ZV uncertainty: 0.4%
Correlator fits: 0.2%

Tuning sea-quark masses: 0.2%
Lattice spacing uncertainty: < 0.05%

Total: 1.8%

DISCUSSION/CONCLUSIONS

Adding results from our earlier analyses [14, 26], the
connected contributions to a

HVP,LO
µ are:
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HVP,LO
µ
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conn.

⇥1010 =

8
>>><

>>>:

598(11) from u/d quarks

53.4(6) from s quarks

14.4(4) from c quarks

0.27(4) from b quarks

(8)

We combine these results with our recent estimate [27]
of the contribution from disconnected diagrams involving
u, d and s quarks. We take this as 0(9) ⇥ 10�10 to ob-
tain an estimate for the entire contribution from hadronic
vacuum polarization:

a

HVP,LO
µ = 666(6)(12) ⇥ 10�10 (9)

This agrees well with the only earlier u/d/s/c lat-
tice QCD result, 674(28) ⇥ 10�10 [13], but has errors
from the lattice calculation reduced by a factor of four.
It also agrees with earlier non-lattice results (⇥1010):
694.9(4.3) [5], 690.8(4.7) [6], and 681.9(3.2) [7] and
687.2(3.5) [8]. These are separately more accurate than
our result but the spread between them is comparable to
our uncertainty.

It is also useful to compare our result to the ex-
pectation from experiment. Assuming there is no new
physics beyond the Standard Model, experiment requires
a

HVP,LO
µ to be 720(7) ⇥ 10�10. This value is obtained

by subtracting from experiment the accepted values of
QED [38], electroweak [39], higher order HVP [5, 40] and
hadronic light-by-light contributions [41]. It is roughly
3.5� away from our result (Eq. (9)), but we need signif-
icantly smaller theoretical errors before we can make a
case for new physics.

From Table III we see that uncertainties can be re-
duced by improving the calculation of the quark-line dis-
connected contribution [28, 42] and from new simulations
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aHVP,LO
µ as a function of the u/d quark mass (expressed as

its deviation from the physical value in units of the s quark
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0.12 fm (blue circles), and 0.09 fm (red squares). The gray
bands show the ±1� predictions of our model (Eq. (7)) after
fitting it to the data. The �2 per degree of freedom was 0.9
and 0.6 for the upper and lower fits, respectively.
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materials.
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bution (0.6%) and the QED e↵ect of producing a hadron
polarization bubble consisting of ⇡

0 and � is estimated
in [37] to make a 4.6 ⇥ 10�10 contribution (0.8%). The
leading contributions to our final uncertainty are listed
in Table III.
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Padé approximants: 0.4%
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We combine these results with our recent estimate [27]
of the contribution from disconnected diagrams involving
u, d and s quarks. We take this as 0(9) ⇥ 10�10 to ob-
tain an estimate for the entire contribution from hadronic
vacuum polarization:

a

HVP,LO
µ = 666(6)(12) ⇥ 10�10 (9)

This agrees well with the only earlier u/d/s/c lat-
tice QCD result, 674(28) ⇥ 10�10 [13], but has errors
from the lattice calculation reduced by a factor of four.
It also agrees with earlier non-lattice results (⇥1010):
694.9(4.3) [5], 690.8(4.7) [6], and 681.9(3.2) [7] and
687.2(3.5) [8]. These are separately more accurate than
our result but the spread between them is comparable to
our uncertainty.

It is also useful to compare our result to the ex-
pectation from experiment. Assuming there is no new
physics beyond the Standard Model, experiment requires
a

HVP,LO
µ to be 720(7) ⇥ 10�10. This value is obtained

by subtracting from experiment the accepted values of
QED [38], electroweak [39], higher order HVP [5, 40] and
hadronic light-by-light contributions [41]. It is roughly
3.5� away from our result (Eq. (9)), but we need signif-
icantly smaller theoretical errors before we can make a
case for new physics.

From Table III we see that uncertainties can be re-
duced by improving the calculation of the quark-line dis-
connected contribution [28, 42] and from new simulations
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disconnected quark loop contribution 	

n  [ C. Lehner et al. (RBC/UKQCD 2015,  arXiv:1512.09054,  PRL) ] 
n  Very challenging calculation due to statistical noise  
n  Small contribution,  vanishes in SU(3) limit,  
    Qu+Qd+Qs = 0 
n  Use low mode of quark propagator, treat it exactly  
     ( all-to-all propagator with sparse random source ) 
n  First non-zero signal  Leading isospin breaking correction to the HVP

•    Main obstacle in implementing this method (in general): , 
➡many diagrams have to be computed 
➡including the 3-pt, 4-pt functions and the disconnected ones (beyond el-quenched) 

• Computation with Nf=2 O(a) improved Wilson configurations, …
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X

(f)

X

(g)

X

(h)

X

(i)

Figure 1: Contributions to the leading isospin breaking e↵ects to the connected part of the HVP.

(a) (b)

Figure 2: Some examples of the disconnected contributions which are part of the leading isospin breaking
e↵ects to the connected part of the HVP, beyond electro-quenched approximation.
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= + (9)

For a start, it would be nice to compute at least electro-quenched contribution, namely setting (see ref. [1]):

rf = 1, and (10)

gs = g

0
s . (11)

In this case, only diagrams in Figure 1 contribute.
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O(mu �md)

•    In the phenomenological determination of              , correctly applied IB correction 
resolved the discrepancy between           and     data   [Jegerlehner,Szafron ‘11] 

•    R123 method [arXiv:1303.4896] for computing leading isospin breaking corrections(LIBE) 
➡Applied to the connected pat of the HVP   

•    Main advantage w. respect to simulating QED+QCD: 
➡Diagrams obtained individually (before multiplying with               ,                         coeff.) 
➡No extrapolation in 

• Leading isospin breaking correction (electro-quenched approximation):

O(↵em)

ahad,LO
µ

↵em

e+e� ⌧

The Leading Order Hadronic Vacuum Polarization

Quark-connected piece with > 90% of the con-
tribution with by far dominant part from up and
down quark loops (Below focus on light contri-
bution only)

Quark-disconnected piece with ⇡ 1.5% of the
contribution (1/5 suppression already through
charge factors); arXiv:1512.09054, accepted for
PRL

QED and isospin-breaking corrections, esti-
mated at the few-per-cent level
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Disconnected Contribution to HVP (C. Lehner) [Blum et al., 2015a]

Low mode separation crucial since light- strange don’t cancel

contributions above m
s

suppressed

(sparse) random sources e↵ective for high modes

⇧(q2) � ⇧(0) =
X

t

✓
cos(qt) � 1

q2
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1

2
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◆
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FIG. 5. The sum of LT and FT defined in Eqs. (13) and (14)

has a plateau from which we read o� aHVP (LO) DISC
µ . The

lower panel compares the partial sums LT for all values of
T with our final result for aHVP (LO) DISC

µ with its statistical
error band.

we report our final result

a

HVP (LO) DISC
µ = �9.6(3.3)(2.3) ⇥ 10�10

, (15)

where the first error is statistical and the second system-
atic.

Before concluding, we note that our result appears to
be dominated by very low energy scales. This is not sur-
prising since the signal is expressed explicitly as di↵er-
ence of light-quark and strange-quark Dirac propagators.
We therefore expect energy scales significantly above the
strange mass to be suppressed. We already observed this
above in the dominance of low modes of the Dirac opera-
tor for our signal. Furthermore, our result is statistically
consistent with the one-loop ChPT two-pion contribution
of Fig. 6.

CONCLUSION

We have presented the first ab-initio calculation of the
hadronic vacuum polarization disconnected contribution
to the muon anomalous magnetic moment at physical
pion mass. We were able to obtain our result with modest
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LT for 963 x 192 lattice

FIG. 6. The leading-order pion-loop contribution in finite-
volume ChPT as function of volume.

computational e↵ort utilizing a refined noise-reduction
technique explained above. This computation addresses
one of the major challenges for a first-principles lattice
QCD computation of a

HVP
µ at percent or sub-percent pre-

cision, necessary to match the anticipated reduction in
experimental uncertainty. The uncertainty of the result
presented here is already slightly below the current ex-
perimental precision and can be reduced further by a
straightforward numerical e↵ort.
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�(9.6 ± 3.3) ⇥ 10�10 or about 1.5% of total at 3 � level
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HVP quark-disconnected contribution

First results at physical pion mass with a statistical signal
RBC/UKQCD arXiv:1512.09054, accepted by PRL

Statistics is clearly the bottleneck

New stochastic estimator allowed us to get result

aHVP (LO) DISC
µ = �9.6(3.3)stat(2.3)sys ⇥ 10�10 (13)

from 20 configurations at physical pion mass and 45
propagators/configuration.

26 / 35
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Overview of first-principles lattice QCD results
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HPQCD2016(CON) neglects the systematic error estimates for the HVP disconnected and QED/isospin-breaking

corrections.
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HVP on lattice summary	

n  First principle HVP 
from lattice making substantial  
progress by many groups 
 
n  Challenges  
•  Statistics    (→ low mode ) 
•  Disconnected   

      (→ SU(3), low mode + space src.) 
•  Finite volume (→ ππ　models ?) 
•  QED and isospin breaking 

n  Other applications : CKM Vus from τ inclusive decay  [ K. Maltmann’s 
talk ] , αQED(s), sin θW(s) running 

 [	Plot	from	C.	Lehner	]	
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Hadronic Light-by-Light (HLbL) 
contributions	

Introduction HVP HLbL Summary/Outlook References Perturbative QED in configuration space disconnected diagrams

Hadronic light-by-light (HLbL) scattering

+ + · · ·

Model calculations: (105 ± 26) ⇥ 10�11

[Prades et al., 2009, Benayoun et al., 2014]

Model systematic errors di�cult to quantify

Dispersive approach di�cult, but progress is being made
[Colangelo et al., 2014b, Colangelo et al., 2014a, Pauk and Vanderhaeghen, 2014b,

Pauk and Vanderhaeghen, 2014a, Colangelo et al., 2015]

First non-PT QED+QCD calculation [Blum et al., 2015]

Very rapid progress with Pert. QED+QCD [Jin et al., 2015]

Tom Blum (UCONN / RBRC) Progress on the muon anomalous magnetic moment from lattice QCD
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Hadronic Light-by-Light	

n  4pt function of EM currents 
n  No experimental data directly help 
n  Dispersive approach 

EQUATIONS

N. YAMADA

Γ(Hlbl)
µ (p2, p1) = ie6

∫
d4k1

(2π)4

d4k2

(2π)4

Π(4)
µνρσ(q, k1, k3, k2)

k2
1 k2

2 k2
3

×γνS
(µ)(p/2 + k/2)γρS

(µ)(p/1 + k/1)γσ

Π(4)
µνρσ(q, k1, k3, k2) =

∫
d4x1 d4x2 d4x3 exp[−i(k1 · x1 + k2 · x2 + k3 · x3)]

×⟨0|T [jµ(0)jν(x1)jρ(x2)jσ(x3)]|0⟩

aSM
µ = (11 659 182.8 ± 4.9) × 10−10 (using [1])(1)

aEXP
µ = (11 659 208.9 ± 6.3) × 10−10 [PDG](2)

aEXP
µ − aSM

µ = (26.1 ± 8.0) × 10−10(3)

Breakdown
aSM

µ = (11 659 182.8 ±4.9 ) × 10−10

aQED
µ = (11 658 471.808 ±0.015 ) × 10−10

aEW
µ = ( 15.4 ±0.2 ) × 10−10

ahad,LOVP
µ = ( 694.91 ±4.27 ) × 10−10

ahad,HOVP
µ = ( −9.84 ±0.07 ) × 10−10

ahad,lbl
µ = ( 10.5 ±2.6 ) × 10−10

V (x) = −µ⃗l · B⃗(4)

µ⃗l = gl
e

2ml
S⃗l(5)

al =
gl − 2

2
(6)

Γµ(q) = γµ F1(q
2) +

iσµνqν

2 ml
F2(q

2)(7)

F1(q
2) = 1, F2(q

2) = 0(8)

F1(0) = 1, F2(0) = al(9)

al = F2(0)(10)

Date: July 5, 2012.
1

EQUATIONS

N. YAMADA

V (x) = −µ⃗l · B⃗(1)

µ⃗l = gl
e

2ml
S⃗l(2)

al =
gl − 2

2
(3)

Γµ(q) = γµ F1(q
2) +

iσµνqν

2 ml
F2(q

2)(4)

aµ = (11 659 182.8 ± 4.9) × 10−10(5)

(6)

Date: July 4, 2012.
1

Form factor :

✕
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HLbL from Models	
n  Model estimate with non-perturbative 

constraints at the chiral / low energy limits 
using anomaly :  (9—12) x 10-10  with 25-40% 
uncertainty	

⇥0, �, �⇥

83(12)⇥ 10�11

L.D.

�19(13)⇥ 10�11

L.D.

⇥±, K±

+62(3)⇥ 10�11

q = (u, d, s, ...)

S.D.

LD contribution requires low energy effective hadronic models : simplest case

⇥0�� vertex

Basic problem: (s, s1, s2)–domain of F⇥0�����(s, s1, s2); here (0, s1, s2)–plane

Two scale problem: “open regions”

RLA

???

???

pQCD

One scale problem: “no problem”

RLA pQCD

– Data, OPE,
??? – QCD factorization,

– Brodsky-Lepage approach

F. Jegerlehner SFB/TR 09 Meeting, Aachen, November 14, 2011 85

My own calculation: h3 ⌅ [�10, 10] GeV�2

X aµ(LbL; X) ⇥ 1011

⇥0, �, �⇤ 93.91 ± 12.40 a1, f ⇤1, f1 28.13 ± 5.63 a0, f ⇤0, f0 �5.98 ± 1.20

JN09 based on Nyffeler 09:

aLbL;had
µ = (116 ± 39) ⇥ 10�11

Summary of results
Contribution BPP HKS KN MV PdRV N/JN

⇥0, �, �⇤ 85±13 82.7±6.4 83±12 114±10 114±13 99±16
⇥,K loops �19±13 �4.5±8.1 � 0±10 �19±19 �19±13

axial vectors 2.5±1.0 1.7±1.7 � 22± 5 15±10 22± 5
scalars �6.8±2.0 � � � �7± 7 �7± 2

quark loops 21± 3 9.7±11.1 � � 2.3 21± 3

total 83±32 89.6±15.4 80±40 136±25 105±26 116±39

F. Jegerlehner SFB/TR 09 Meeting, Aachen, November 14, 2011 92

Jegerlehner	&	Nyffeler	09	
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Dispersive analysis for HLbL 
 	

n  Using crossing-symmetry, gauge invariance, 138 form 
factors are reduced to 12 scalars relevant for g-2 LbL 

n  Formalism for Pion exchange, and Pion box diagram. 
Latter is related sQED with pion’s vector form factor  

n  Other contributions neglected 

 

3 Master Formula for (g � 2)
µ

Master formula: contribution to (g � 2)
µ

a

HLbL
µ

= e

6

Z
d

4
q1

(2⇡)4
d

4
q2

(2⇡)4

12P
i=1

T̂

i

(q1, q2; p)⇧̂i

(q1, q2,�q1 � q2)

q

2
1q

2
2(q1 + q2)2[(p+ q1)2 � m

2
µ

][(p � q2)2 � m

2
µ

]

•
T̂

i

: known integration kernel functions

• five loop integrals can be performed with
Gegenbauer polynomial techniques

• Wick rotation possible even in the presence of
anomalous thresholds

21

4 Mandelstam Representation

Pion pole

• input: doubly-virtual and
singly-virtual pion transition form
factors F

�

⇤
�

⇤
⇡

0 and F
�

⇤
�⇡

0

• dispersive analysis of transition
form factor:
! Hoferichter et al., EPJC 74 (2014) 3180

26

4 Mandelstam Representation

Pion box

• simultaneous two-pion cuts in
two channels

• Mandelstam representation
explicitly constructed

⇧
i

=
1

⇡

2

Z
ds

0
dt

0 ⇢

st

i

(s0
, t

0)

(s0 � s)(t0 � t)
+ (t $ u) + (s $ u)

•
q

2-dependence: pion vector form factors F

V

⇡

(q2
i

) for
each off-shell photon factor out

27

4 Mandelstam Representation

Pion box

• sQED loop projected on BTT basis fulfils the same
Mandelstam representation

• only difference are factors of F V

⇡

• ) box topologies are identical to FsQED:

⌘ F

V

⇡

(q2
1)F

V

⇡

(q2
2)F

V

⇡

(q2
3)

⇥

2

4 + +

3

5

• model-independent definition of pion loop
28

[	Colangelo	et	al.	2014,	2015,	Pauk&Vanderhaeghen	2014	]	
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Direct 4pt calculation for selected 
kinematical range	

 
n  Compute connected contribution of 4 pt function in momentum space 
n  forward amplitudes related to γ*(Q1)γ*(Q2) -> hadron cross sections via 

dispersion relation, allowed comparison among lattice and experiments/
phenomenological  models 

n  Solid curve : model prediction 
 

n  π0 exchange is seen to be not dominant, 
possibly due to heavy quark mass in the  
simulation (Mπ = 324 MeV) 
 

n  disconnected quark loop in progress ( 2016 ) 

3
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FIG. 3. The forward scattering amplitude M
TT

at a fixed
virtuality Q2

1

= 0.377GeV2, as a function of the other photon
virtuality Q2

2

, for di↵erent values of ⌫. The curves represent
the predictions based on Eq. (10), see the text for details.

for some fixed functions f

1,2

and all values of {µ
a

}
and X

4

. The contact terms are present when two or
three lattice conserved currents coincide, and serve to
ensure that the conserved-current relations hold, e.g.,

�(X4)
µ4 ⇧lat

µ1µ2µ3µ4
= 0, where �(X)

µ

is the backward lat-
tice derivative.

The fully-connected contribution to Eq. (12) is evalu-
ated using the method of sequential propagators. First,
a point-source propagator is computed from X

3

. Then,
it is combined with the function f

1

or f

2

to form the
source for a new (sequential) propagator. These sequen-
tial propagators are then used to form sources for double-
sequential propagators that depend on both f

1

and f

2

.
Finally, the fully-connected contraction is formed using
all three kinds of propagators; this is illustrated in Fig. 2.
For generic complex f

1

and f

2

, this requires one point-
source, 16 sequential and 32 double-sequential propaga-
tors, although these counts can be reduced in various spe-
cial cases. We have verified that in our implementation
the four-point function matches the lattice perturbation
theory calculation if the gauge link variables are set to
unity, and that the conserved-current conditions hold on
each gauge configuration.

For evaluating the momentum-space correlator, we set
the functions to be plane waves, f

a

(X) = e

�iPa·X and
compute the Fourier modes with respect to X

4

. Thus,
⇧E

µ1µ2µ3µ4
(P

4

;P
1

, P

2

) can be evaluated e�ciently at fixed
P

1,2

for all P
4

available on the lattice.

FIG. 4. The dependence of the amplitude M
TT

on ⌫, both
photon virtualities being fixed at 0.377 GeV2, at three dif-
ferent pion masses. The dashed and dotted curves show the
⇡0 and ⇡0 + ⌘0 contributions (there is no ⌘ meson in two-
flavor QCD), the solid curve includes all single-meson and
⇡+⇡� contributions, and the dash-dotted curves additionally
include the high-energy contribution for the case of real pho-
tons at the physical pion mass.

IV. RESULTS

We have used three lattice QCD ensembles with two
degenerate flavors of non-perturbatively O(a) improved
Wilson quarks and a plaquette gauge action. The en-
sembles are at a single lattice spacing a = 0.063fm [16],
correspond to pion masses m

⇡

= 451, 324 and 277MeV,
and are respectively of spatial linear size 32, 48 and 48,
the time direction being twice as long; see [17] for more
details. Only the up and down quark contributions to
the electromagnetic current are included. The local vec-
tor current J

l

µ

is renormalized non-perturbatively [18].
The results shown here were obtained using fairly low
statistics, with a maximum of 300 samples.
Due to the finite volume of the lattice, the momenta

take discrete values. The subtracted forward scatter-
ing amplitude, M

TT

(�Q

2

1

,�Q

2

2

, ⌫)�M
TT

(�Q

2

1

,�Q

2

2

, 0)
(which is even in ⌫), is obtained by linearly interpolating
the second term between the available Q

2

2

to match the
first term. It is shown in Fig. 3 at fixed pion mass and
fixed Q

2

1

, and also in Fig. 4 with both photon virtualities
fixed. For the latter, linear interpolation in Q

2

2

was also
used in the first term, except for the points at maximal
⌫. At fixed ⌫, the amplitude tends to decrease as the
virtualities are increased, at fixed virtualities it tends to
increase with |⌫|, and at fixed kinematics we do not find
a significant dependence on the pion mass.

We compare the lattice data with results from the sum
rule, Eq. (10), using a phenomenological model for the
transverse �

⇤
�

⇤ ! hadrons cross section, �
0

+ �

2

, based
on Ref. [8]. We include pseudoscalar, scalar, axial-vector,
and tensor mesons, as well as ⇡

+

⇡

� states [19] (using
scalar QED dressed with form factors). The �

⇤
�

⇤ !
meson form factors have not been measured experi-

[	J.	Green	et	al.		Mainz	group,	Phys.	Rev.	Lek	115,	222003(		2015)]	
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Our Basic strategy :  
Lattice QCD+QED system  

	n  4pt function has too much information to parameterize (?)  
n  Do Monte Carlo integration for QED two-loop with 4 pt function π(4) which  

is sampled in lattice QCD 
n  Photon & lepton part of diagram is derived either in lattice QED+QCD 

[Blum et al 2014] (stat noise from QED), or exactly derive for given loop 
momenta [L. Jin et al 2015] (no noise from QED+lepton).	

l  set	spacial	momentum	for		
			-	external	EM	vertex	q	

			-	in-	and	out-		muon	p,	p’	
								q	=	p-p’	
	
•  set	8me	slice	of	muon		

source(t=0),		sink(t’)	and	operator	(top)	
	
•  take	large	8me	separa8on	for	
ground	state	matrix	element	

✕

(0,	p)	 (t’,	p’)	

(top,	q)	

muon	

3	photons	
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Introduction HVP HLbL Summary/Outlook References Perturbative QED in configuration space disconnected diagrams

Non-perturbative QED method [Blum et al., 2015]

Subtraction Method 12/32

• Evalutate the quark and muon propagators in the background quenched QED fields. Thus
generate all kinds of diagrams.

* quark +

QCD+quenched QEDA

�
*

quark

+

QCD+quenched QEDB

* +

quenched QEDA

= 3⇥

xsrc xsnk
y

0
, �

0
z

0
, ⌫

0
x

0
, ⇢

0

xop, µ

z, ⌫

y, � x, ⇢

Figure 7. PoS LAT2005 (2006) 353. hep-lat/0509016. One typical diagram remains after subtraction
is shown on the left, 5 others are not shown.

• After subtraction, the lowest order signal remains is O(e6) which is exact LbL diagram.

• Solved the 3-loop problem. Now we only need to compute point source propagators in
the backgrounds of QED fields.

• Lower order noise problem. The signal after subtraction is O(e6). But even after charge
conjugation average on the muon line, the noise is still O(e4).

• Unwanted higher order effects. In practice, one normally choose e = 1.

• “Disconnect diagram” problem. Noise will likely increase in larger volume.

5 10 15 20 25 30
tsep

-0.1

0

0.1

0.2

0.3

0.4

F 2((
2π

/L
)2 )

QED (mloop=m
µ
=0.1, 243)

QED, (mloop=m
µ
=0.1, 163)

QED pert. theory, F2(0)
QCD+QED (m

π
=330 MeV)

hadronic models, F2(0)

quark-connected part of HLbL

a�1 = 1.7848 GeV, (2.7 fm)3

m
⇡

= 330 MeV, m
µ

= 190 MeV

Consistent with model
expectations (J. Bijnens)

Agreement with models accidental

O(↵2) noise, O(↵4) corrections

Tom Blum (UCONN / RBRC) Progress on the muon anomalous magnetic moment from lattice QCD

QCD+QED method  
[ Blum et al PRL 114, 012001 (2015) ]	

2

FIG. 2. Two classes of diagrams contributing to aµ(HLbL).
On the left, all QED vertices lie on a single quark loop, The
right diagram is one of six diagrams where QED vertices are
distributed over two (or three) quark loops.

the vacuum expectation value of an operator involving
quark fields requires the inversion of the quark Dirac op-
erator Dmq

[

UQCD
]

for each gluon field (QCD configu-
ration), UQCD. The cost of inversion of this operator
for every pair of source and sink points on the lattice
is prohibitive since it requires solving the linear equa-
tion Dmq

[

UQCD
]

xr = br for Nsites number of sources,
br, where Nsites is the total number of lattice points. In
most problems, such as hadron spectroscopy, all of these
inversions are not necessary. For our problem, the corre-
lation of four electromagnetic currents must be computed
for all possible values of two independent four-momenta.
This implies (3 × 4 × Nsites)2 separate inversions, per
QCD configuration, quark species, and four-momentum
of the external photon to calculate the connected diagram
in Fig. 2, which is astronomical. Therefore, a practical
method with substantially less computational cost is in-
dispensable.
A non-perturbative QCD+QED method which treats

the photons and muon on the lattice along with the
quarks and gluons has been proposed as such a candi-
date by us. To obtain the result for the diagram in Fig. 2
the following quantity is computed [9],

⟨ψ(t′,p′) jµ(top,q)ψ(0,p)⟩HLbL

= −
∑

q=u,d,s

(Qqe)
2
∑

k

{〈

γµSq(top,−q; k)γνSq(k; top,−q)

δνρ

k̂2
G(t′,p′;−k)γρG(−k; 0,−p)

〉

QCD+QED

−⟨γµSq(top,−q; k)γνSq(k; top,−q)⟩QCD+QED

δνρ

k̂2
⟨G(t′,p′;−k)γρG(−k; 0,−p)⟩QED

}

, (1)

where ψ annihilates the state with muon quantum num-
bers, and jµ is the electromagnetic current 1 for the
quarks. k is a Euclidean four-momentum, p is a three-
momentum, each quantized in units of 2π/L. δµν/k̂2

(k̂µ ≡ 2 sin(kµ/2)) is the lattice photon propagator in

1 The point-split, exactly conserved, lattice current is used for the
internal vertices while the local current is inserted at the external
vertex.

FIG. 3. Perturbative expansion of the first term in Eq. (1)
with respect to QED. The symbols ⟨, ⟩QCD+q-QED and
⟨, ⟩q-QED represent the average over QCD+QED configura-

tions (UQCD, AQED) and that over AQED, respectively. Terms
represented by the ellipsis contain four or more internal pho-
tons and so their orders are higher than α3.

Feynman gauge. Sq and G denote Fourier transforma-
tion of D−1

mq
and D−1

mµ
, respectively, and spin and color

indices have been suppressed. One takes t′ ≫ top ≫ 0 to
project onto the muon ground state

lim
t′≫top≫0

⟨ψ(t′,p′) jµ(top,q)ψ(0,p)⟩HLbL =

⟨0|ψ(0,p′)|p′, s′⟩
2E′V

⟨p′, s′|Γµ|p, s⟩
⟨p, s|ψ(0,p)|0⟩

2EV

×e−E′(t′−top)e−Etop , (2)

where the matrix element of interest is parametrized as

⟨p′, s′|Γµ|p, s⟩ ≡

ū(p′, s′)

(

F1(q
2)γµ + i

F2(q2)

2mµ
[γµ, γν ]qν

)

u(p, s). (3)

u(p, s) is a Dirac spinor, and q = p′ − p is the space-like
four-momentum transferred by the photon. To extract
the form factors F1 and F2, Eq. (1) is traced over spins
after multiplication by one of the projectors, (1 + γt)/4
or i (1 + γt)γjγk/4, where j, k = x, y, z and k ̸= j. The
contribution to the anomaly is then found from aµ ≡
(gµ − 2)/2 = F2(0).
For now quenched QED (q-QED) is used for the QED

average in (1), implying no fermion-antifermion pair cre-
ation/annihilation via the photon. Note that only the
sea quarks need to be charged under U(1); the lepton
vacuum polarization corresponds to higher order contri-
butions which we ignore. This approximation was cho-
sen to make this first calculation computationally easier,
even though it is incomplete. We can remove it to get
the complete physical result, as discussed at the end of
this letter. The first term, expanded in q-QED, can be
reorganized as in Fig. 3, according to the number of pho-
tons exchanged between the quark loop and the open
muon line. If the second term in Eq. (1) is subtracted,

Subtrac8on	term	

-	Connected	part	only	
	
-	QED	only		calcula8on	consistent	
with	QED	loop	calcula8on	for	larger	
volume	
	
	-	QED+QCD	
		-	ball	park	of	model	values	
		-significant	exited	state	effects	?	
	

unsubtracted	term	
-  One	photon	is	treated	analy8cally	
-  other	two	sampled	stochas8cally	
-  needs	subtrac8on		
-  use	AMA	for	error	reduc8on	
-  use	Furry’s	theoretm	to	reduce	α2	noise	

Introduction
The hadronic vacuum polarization (HVP) contribution (O(�2))

The hadronic light-by-light (HLbL) contribution (O(�3))
aµ(HLbL) Summary/Outlook

aµ(HLbL) in 2+1f lattice QCD+QED (PRELIMINARY)

Stable as measurements increase (20 ⇥ 40 ⇥ 80 ⇥ 160 configs)
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Q2 = 0.11 (GeV2)
Q2 = 0.18 (GeV2)

243 lattice size

Q2 = 0.11 and 0.18 GeV2

m⇥ � 329 MeV

mµ � 190 MeV

Tom Blum (UConn / RIKEN BNL Research Center) The muon anomalous magnetic moment
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n  Treat all 3 photon propagators exactly   (3 analytical photons) , which makes the 
quark loop and the lepton line connected :   
   disconnected problem in Lattice QED+QCD  -> connected problem with analytic 
photon 

n  QED 2-loop in coordinate space. Stochastically sample, two of quark-photon 
vertex location x,y, z and xop is summed over space-time exactly 

 
 
 

n  Short separations, Min[ |x-z|,|y-z|,|x-y| ] < R ~ O(0.5) fm, which has a large 
contribution due to confinement, are summed for all pairs 

n  longer separations, Min[ |x-z|,|y-z|,|x-y| ]  >= R,  are done stochastically with 
a probability shown above  ( Adaptive Monte Carlo sampling ) 
 

 
n  All lepton and photon part produce  no noise for given x,y  ( Ls = ∞ DWF muon ) 
     
 
 
 

Coordinate space Point photon method  
[ Luchang Jin et al. , PRD93, 014503 (2016) ]	

QEDA,QEDB
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Figure 3. Distribution of the r for 32ID lattice.

For simplicity, we only write local current in above formulas. In actual computation,

however, we need to compute lattice conserved current at xop to ensure the quark loop to

be finite at short distance. We can then use three local current at x, y, and z, provided that

Z3
V is multiplied to the final results. See Appendix ???.

We use domain wall action not only for quarks but for the muon as well. We compute

the muon propagators with domain wall height M5 = 1 and infinite Ls. Since all the muon

photon interactions have been explicitly included in the formula, all the muon propagators

are free field fermion propagators. To calculate these free propagators, we can use Fourier

transformations and analytical expressions. So we can enjoys the nice properties without

addition cost compare with the conventional cheaper fermions, e.g. Wilson fermion. We

also use local currents for the photon muon interactions at x′, y′, and z′.

Since we need to sum over all six different permutations of the three internal photons, all

pairs of x, y and combinations of photon polarizations should be computed separately. The

work need to be done for the muon line is proportion to M2. So for large M , the cost for

the free muon propagators can be comparable with the cost for quark propagators. In our

simulations, we usually choose M = 16, which balances the cost for muon and quarks. Also,

M = 16 is not yet too large, so the over all statistics is still roughly proportion to M2.

Above derivation take the limit that tsep → +∞. In practice, if we calculate the QED

part using lattice, we will have finite tsep, which is set to be half of the lattice time extent

11

xop	

z	
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Conserved External Current Improvement 22/32

• In previous setup, noise will remain relatively constant in large volume, but would blow
up if the external momentum transfer q becomes small.

ū(p′)Γµ(p′, p)u(p) = ū(p′)

[
F1(q2)γµ+ i

F2(q2)
4m

[γµ, γν]qν

]
u(p) (12)

F2(0) =
gµ− 2
2

≡ aµ (13)

• To make the noise also vanish when q → 0, we need the external current be exactly
conserved, configuration by configuration.

• To prove Ward identity, we need to compute all possible external photon insertion options.

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

Figure 14. All three different possible insertions for the external photon. They are equal to each other
after stochastic average. 5 other possible permutations of the three internal photons are not shown.

Conserved current & moment method	

n  [conserved current method at finite q2] To tame UV divergence, one of quark-photon vertex 
(external current)  is set to be conserved current (other three are local currents). All possible 
insertion are made to realize conservation of external currents config-by-config. 

 
 
 
 

n  [moment method , q2→0] By exploiting the translational covariance for fixed external 
momentum of lepton and external EM field, q->0 limit value is directly computed via the first 
moment of the relative coordinate, xop – (x+y)/2,  one could show 
   

 
 

     to directly get F2(0) without extrapolation. 
         	

Conserved External Current Improvement 22/32

• In previous setup, noise will remain relatively constant in large volume, but would blow
up if the external momentum transfer q becomes small.

ū(p′)Γµ(p′, p)u(p) = ū(p′)

[
F1(q2)γµ+ i

F2(q2)
4m

[γµ, γν]qν

]
u(p) (12)

F2(0) =
gµ− 2
2

≡ aµ (13)

• To make the noise also vanish when q → 0, we need the external current be exactly
conserved, configuration by configuration.

• To prove Ward identity, we need to compute all possible external photon insertion options.

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

Figure 14. All three different possible insertions for the external photon. They are equal to each other
after stochastic average. 5 other possible permutations of the three internal photons are not shown.

EQUATIONS

N. YAMADA

V (x) = −µ⃗l · B⃗(1)

µ⃗l = gl
e

2ml
S⃗l(2)

al =
gl − 2

2
(3)

Γµ(q) = γµ F1(q
2) +

iσµνqν

2 ml
F2(q

2)(4)

aµ = (11 659 182.8 ± 4.9) × 10−10(5)

(6)

Date: July 4, 2012.
1

Form factor :
23	



Dramatic Improvement ! 
 Luchang Jin	Zero External Momentum Transfer Improvement 29/32
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q = 0 Nprop = 26568

Figure 20. Phys.Rev.Lett. 114 (2015) 1, 012001. arXiv:1407.2923. Compare with latest method and
result.

• 243× 64 lattice with a−1= 1.747GeV and mπ= 333MeV. mµ= 175MeV.

• For comparison, at physical point, model estimation is 0.08 ± 0.02. The agreement is
accidental, the lattice value has a strong dependence on mµ.

a=0.11	fm,	243x64		(2.7	fm)3,		
mπ	=	329	MeV,			mμ	=~	190	MeV,	e=1	

more	than	x100		reduced	cost	!	

61

Table 4.10: Results for F2(q2) from applying the conserved and moment methods to the

the 24IL ensemble with mµa = 0.1 using a muon source-sink separation tsep = 32. As

before,
p
Var = Err

p

NconfNprop. We use the conserved current for the external photon

and local currents for the internal photons for both methods. The conserved results are for

q2 = (2⇡/L)2 while the moment methods gives a q2 = 0 result.

Method F2/(↵/⇡)3 Nconf Nprop

p
Var

Conserved 0.0825(32) 12 (118 + 128)⇥ 2⇥ 7 0.65

Mom. 0.0804(15) 18 (118 + 128)⇥ 2⇥ 3 0.24

q2 = 0. Since these calculations are less computationally costly than those for QCD, we

can evaluate a number of volumes and lattice spacings (all specified with reference to the

muon mass) and examine the continuum and infinite-volume limits. We can then compare

our results, extrapolated to vanishing lattice spacing and infinite volume, with the known

result calculated in standard QED perturbation theory [9, 10]. This QED calculation serves

both as a demonstration of the capability of lattice methods to determine such light-by-light

scattering amplitudes and as a first look at the size of the finite-volume and nonzero-lattice-

spacing errors.

In Fig. 4.6 we show results for F2(0) computed for three di↵erent lattice spacings, i.e.

three di↵erent values of the input muon mass in lattice units, but keeping the linear size of

the system fixed in units of the muon mass. The data shown in Fig. 4.6 are also presented

in Table 4.11. We use two extrapolation methods to obtain the continuum limit. The first,

shown in the figure, uses a quadratic function of a2 to extrapolate to a2 = 0. The second

makes a linear extrapolation to a2 = 0 using only the two leftmost points for each of the

three values of mµL. The coe�cients for the quadratic-in-a2 fits shown in Fig. 4.6 as well as

those for the linear-in-a2 fits are given in tabular form in Tables. 4.12 and 4.13.
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Mπ=170 MeV cHLbL result 
[ Luchang Jin et al. , PRD93, 014503 (2016)]	

n  V=(4.6 fm)3, a = 0.14 fm, mµ=130 MeV, 23 conf 
n  pair-point sampling with AMA (1000 eigV, 100CG) , > 6000 meas/conf 
•   |x-y| <= 5, all pairs, x2-5 samples for shorter distances,  
     217 pairs  (10 AMA-exact) 
•  |x-y| > 5,  512 pairs ( 48 AMA-exact) 

n  13.2 BG/Q Rack-days 

within QED, arising when the internal loop is a muon, working at three values for the

lattice spacing and three volumes. By extrapolating to vanishing lattice spacing and infinite

volume we obtain a result which agrees with the analytic result within 2%, an accuracy

expected from a combination of statistical and extrapolation uncertainties.

The most successful approach uses exact, analytic formulae for the three photon prop-

agators that appear in the HLbL amplitude and the standard methods of lattice QCD. In

contrast with normal perturbative methods, much of the calculation is performed in position

space and stochastic methods are only introduced to sample position-space sums, reducing

the computational cost so that it grows proportional to the space-time volume instead of its

cube. Because of the structure of the amplitude being computed, we can identify a specific

space-time position within the hadronic part of the amplitude and use that location as the

origin to obtain the anomalous magnetic moment from what is essentially a classical spatial

moment of the quantum distribution of current.

These new methods are used to obtain a result for the cHLbL contribution to gµ−2 from

a relatively coarse, 323 × 64 ensemble with 1/a = 1.38 GeV, spatial extent L = 4.6 fm and

pion mass mπ = 171 MeV:

(gµ − 2)cHLbL

2
= (0.1054± 0.0054)(α/π)3 = (132.1± 6.8)× 10−11. (47)

which can be compared to the conventional model-dependent result for the complete HLbL

contribution to gµ−2 of (105±26)×10−11 and the difference between the current experimental

result and the standard model prediction (excluding the HLbL component) of (354± 86)×

10−11. Equation (47) shows only the statistical error. There are significant systematic errors

associated with the unphysical pion mass, the non-zero lattice spacing and the finite volume

that have been used in this calculation. These systematic errors are at present insufficiently

well understood to be reliably estimated. A particularly important systematic errors comes

from the omission of the quark-disconnected contributions, which play an important role

in the phenomenological estimates. Thus, the comparison of the result in Eq. (47) with

experiment serves only to give a context for the size of the present statistical errors.

In Section III we have presented a series of numerical tests of many of the different

methods that were explored while developing the methods that were finally used to obtain

the result in Eq. (47). We hope that some of these may be useful in the future for the efficient

calculation of other quantities that involve a combination of QED and QCD, a relatively
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Figure 8. Histograms and scatter plots for the contribution to F2 from different separations |r| =

|x− y| are shown in the left and right plots respectively, following the conventions used in similar,

previous figures. The upper two plots are obtained using the conserved version of the exact photon

method on the 32ID ensemble. The lower two plots are obtained using the moment method, but

from approximate propagators each obtained from 100 CG iterations, again on the 32ID ensemble.

with the restriction |z − x| ≥ |x − y| and |z − y| ≥ |x − y| that was described previously,

to the 24I ensemble with mµa = 0.1 in order to compare these methods with the original

subtraction calculation [17] which was carried out on the same ensemble with the same

muon mass. We compute the short distance part up to rmax = 4. For |r| ≤ 2 we compute

each independent direction two times while for 2 < |r| ≤ 4 each independent direction is

computed only once for each configuration. We take many discrete symmetries into account

when summing over the short-distance part, including independent inversions of x, y, z, t,

and exchanges of the x and y directions. For the long-distance part, we did not use the M2

method, but instead directly chose the probability distribution for the point pairs (|r| > 4):

P24IL(r) ∝
1

|r|4
e−0.1|r|. (43)

For the conserved method the propagators are computed with approximate inversions
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r	=	min	{|x-y|,	|y-z|,|z-x|}	

Strange	contribu8on	:	(0.0011±	0.005)	(α/π)3			 25	

Integrand	of	F2		



Conserved External Current Improvement 22/32

• In previous setup, noise will remain relatively constant in large volume, but would blow
up if the external momentum transfer q becomes small.

ū(p′)Γµ(p′, p)u(p) = ū(p′)

[
F1(q2)γµ+ i

F2(q2)
4m

[γµ, γν]qν

]
u(p) (12)

F2(0) =
gµ− 2
2

≡ aµ (13)

• To make the noise also vanish when q → 0, we need the external current be exactly
conserved, configuration by configuration.

• To prove Ward identity, we need to compute all possible external photon insertion options.

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

Figure 14. All three different possible insertions for the external photon. They are equal to each other
after stochastic average. 5 other possible permutations of the three internal photons are not shown.

physical Mπ=140 MeV cHLbL result 
[ Luchang Jin et al. , preliminary]	

n  V=(5.5 fm)3, a = 0.11 fm, mµ=106 MeV, 69 conf  [RBC/UKQCD] 
n  Two stage AMA (2000 eigV, 200CG and 400 CG)  using zMobius,      

~4500 meas/conf 
n  160 BG/Q Rack-days 139MeV Pion 483

× 96 Lattice 32/36
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Figure 21. 483 × 96 lattice, with a−1 = 1.73GeV, mπ = 139MeV, mµ = 106MeV. The left plot
is evaluated with z sumed over longer distance region, so the small r region includes most of the
contribution. The right plot is evaluated with z sumed over longer distance region, so the QCD finite
volume is better controlled in the small r region.

• Contribution vanishes long before reaching the boundary of the lattice.

• Suggesting the QCD finite volume effects be small in this case.

• Simply increasing the QED box will fix most of the finite volume effects.

r	=	min	{|x-y|,	|y-z|,|z-x|}	 r	=	max{|x-y|,	|y-z|,|z-x|}	
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spatial moment of the quantum distribution of current.

These new methods are used to obtain a result for the cHLbL contribution to gµ�2 from

a relatively coarse 483 ⇥ 96 ensemble with 1/a = 1.73 GeV, spatial extent L = 5.5 fm and

pion mass m⇡ = 139 MeV:

(gµ � 2)cHLbL

2
= (0.933± 0.0073)(↵/⇡)3 = (116.9± 9.1)⇥ 10�11, (6.1)

which can be compared to the conventional model-dependent result for the complete HLbL

contribution to gµ�2 of (105±26)⇥10�11 and the di↵erence between the current experimental

result and the standard model prediction (excluding the HLbL component) of (354± 86)⇥
10�11. Equation (6.1) shows only the statistical error. There are significant systematic errors

associated with the unphysical pion mass, the nonzero lattice spacing and the finite volume

that have been used in this calculation. These systematic errors are at present insu�ciently

well understood to be reliably estimated. A particularly important systematic error comes

from the omission of the quark-disconnected contributions, which play an important role

in the phenomenological estimates. Thus, the comparison of the result in Eq. (6.1) with

experiment serves only to give a context for the size of the present statistical errors.

In Chapter 4 we have presented a series of numerical tests of many of the di↵erent

methods that were explored while developing the methods that were finally used to obtain

the result in Eq. (6.1). We hope that some of these may be useful in the future for the e�cient

calculation of other quantities that involve a combination of QED and QCD, a relatively new

area where there are many new directions to explore.

The cHLbL calculation at physical pion mass presented here are performed on current

leadership-class computers. A follow-on calculation with a smaller lattice spacing and a

corresponding 643 ⇥ 128 volume are planed, allowing a continuum limit to be evaluated.

Controlling the e↵ects of finite volume and including the contributions of disconnected dia-

grams are more di�cult, but they are being actively pursued. For now, we may guess the

size of discretization and finite volume e↵ects based on our QED light-by-light calcuation

(preliminary,	stat	err	only)	

integrand	safely	suppressed	before	
reaching			r	~		L/2	
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Figure 2: The pion-pole contributions to light-by-light scattering. The shaded blobs represent
the form factor Fπ0γ∗γ∗ . The first and second graphs give rise to identical contributions, in-
volving the function T1(q1, q2; p) in Eq. (3.4), whereas the third graph gives the contribution
involving T2(q1, q2; p).

in general not known. It has, however, been shown in several instances (see, e.g., the review
[26] and references therein) that keeping, in each channel, only a finite number of resonances,
supplemented with information on the QCD short-distance properties coming from the operator
product expansion [27, 28], already gives a good description of quantities like form factors or
correlation functions in the Euclidean region, especially when they occur in weighted integrals
over the whole range of momenta. In particular, the form factor Fπ0γ∗γ∗ has recently been
studied [29] from the point of view of this lowest meson dominance (LMD) or minimal hadronic
Ansatz (MHA) approximation to large-NC QCD. Since the analyses carried out in Refs. [21, 22]
rely on models of Fπ0γ∗γ∗ , vector meson dominance (VMD) or extended Nambu–Jona-Lasinio
(ENJL) (see [22] and references therein), that do not reproduce the correct QCD short-distance
properties, a second motivation for the present study was to compare the results (1.4) and (1.5)
with those derived from a representation of Fπ0γ∗γ∗ that complies with these QCD constraints.
Finally, let us mention for completeness that the pion-pole contribution we are interested in
corresponds to the lowest-mass part of Πµνλρ(q1, q2, q3) that is leading in the large-NC limit [30],
which might provide an explanation as to why it happens to constitute the dominant fraction
of the light-by-light scattering correction to aµ.

The remaining material of this paper is organized as follows. Section 2 recalls a few defini-
tions that are relevant for the light-by-light contribution to aµ, and also serves the purpose of
introducing our notation. The expression for the two-loop integral which gives the pion-pole
contribution aLbyL;π0

µ to the anomalous magnetic moment of the muon in terms of Fπ0γ∗γ∗ is de-
rived in Sec. 3. In Sec. 4 we discuss a generic class of form factors to which those inspired from
large-NC QCD and considered here belong, but that also covers other cases, like the constant
form factor, given by the Wess-Zumino-Witten term [31], or the vector meson dominance form
factor. The method of Gegenbauer polynomials is presented in Sec. 5 and used in order to
perform the angular integrations. This then leads to a two-dimensional integral representation
for aLbyL;π0

µ in terms of Fπ0γ∗γ∗ and of several weight functions (Sec. 6). Numerical results for
aLbyL;π0

µ are presented in Sec. 7, where the contributions from the η and η′ poles are also briefly

3



Disconnected diagrams in HLbL 
	

n  Disconnected diagrams 
 
 
 
 
 
 

⇥0, �, �⇥

83(12)⇥ 10�11

L.D.

�19(13)⇥ 10�11

L.D.

⇥±, K±

+62(3)⇥ 10�11

q = (u, d, s, ...)

S.D.

LD contribution requires low energy effective hadronic models : simplest case

⇥0�� vertex

Basic problem: (s, s1, s2)–domain of F⇥0�����(s, s1, s2); here (0, s1, s2)–plane

Two scale problem: “open regions”

RLA

???

???

pQCD

One scale problem: “no problem”

RLA pQCD

– Data, OPE,
??? – QCD factorization,

– Brodsky-Lepage approach
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Disconnected HLbL would be non-negligible	

n  The major contribution, single Π0 (and η, η’） exchange diagrams 
through γ*γ*→π0, would have both connected and disconnected 
contributions. 
 
 
 
 
 

n  Simple quark model consideration for LbL pi0 exchange turns out 
to be Con : DisCon roughly same size with opposite sign  ( 34:-25 ) 
 

n  Good news :  it’s not η’ (only), so S/N would not grow 
exponentially with the propagation length. 

n  Bad news :  it’s disconnected quark loops, and many of them.  	
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SU(3) hierarchies for d-HLbL	

n  At ms=mud  limit,  following type of dHLbL survives due to 
  Qu + Qd + Qs = 0 

n  Physical point run is in progress using similar techniques to 
c-HLbL. 
preliminary result  
a negative value with ~30% stat err  

n  O(ms-mud) /3  and   O( (ms-mud)2 ) 

Muon g − 2 Light by Light

by Luchang Jin

xsrc xsnkz
′
,κ

′
y
′
,σ

′ x
′
, ρ

′

xop, ν

z,κ
y,σ x, ρ

Figure 1. Disconnected Light by Light diagrams. There are other possible permutations.

1 Method outline

• Use one configuration to compute 32 point source propagators and perform HVP like con-
traction. Store the average of the results, Πρ,σ

avg(r), and later we would subtract it from other
HVP like contraction computed using other configurations.

Πρ,σ
avg(r) =

1
N

∑

k=1

N

{−Tr[γρSq(xk, xk + r)γσSq(xk + r, xk)]} (1)

• Start with point source x, compute point source quark propagators and photon x→ x′.

• Compute the local current for all possible y, Πρ,σ(x, y) (subtract Πρ,σ
avg(x, y) from this value)

Πρ,σ(x, y) = −Tr[γρSq(x, y)γσSq(y, x)]−Πρ,σ
avg(y −x) (2)

• Optional subtraction: Ideally, the sum of the current over space time should be zero. Since
we use local current, this is not strictly true. But we can introduce Πρ,σ

′ (x, y) where

Πρ,σ
′ (x, y) = Πρ,σ(x, y)− δx,y

∑

y ′

Πρ,σ(x, y ′) (3)

Should try to see if this trick work for connected LbL calculation.

• Use the current computed above as a source and construct photon y→ y ′

• Use the two photons constructed above and compute the muon line with sequential source
finally contract at z ′ with local current. Note that this procedure should be performed for all
possible permutations of the three photons. The muon source and sink separation is usually
taken to be half of the lattice time extent, and the source and sink positions are chosen so
that x is in the middle of them xt = ((xsrc)t +(xsnk)t)/2.

• Use the local current at all possible z ′ construct photon z ′→ z

1
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Figure 5.1: Leading order diagram, survives in SU(3) limit.
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Figure 5.2: Next to leading order diagrams. O(ms �ml), vanishes in SU(3) limit.

x

src

x

snk

y

0
,�

0
x

0
, ⇢

0
z

0
,

0

x

op

, ⌫

z,

y,� x, ⇢

x

src

x

snk

y

0
,�

0
z

0
,

0
x

0
, ⇢

0

x

op

, ⌫

z,

y,�

x, ⇢

diagrams, the signal has to come from a subtle gluon interactions between the two quark

loops, which can only be discovered by gauge averaging. As a result, although the signal

should be exponentially suppresed when |r| = |x � z| become large just as the connected

diagram, the noise remains constant for arbitrary |r|. Since the formula involve summation

over r, one can expect a lot of noises come from the large |r| region, and will become larger

if we increase the volume. However, the independence of these two loops also provide some

benefit. The contraction at y position will not depend on the position of z, thus the M2 trick

can be applied without recomputing the muon part. So, we obtained order M2 combinations

of samples with no additional cost, where M is the number of point source quark propagators
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Figure 5.3: Even higher order diagrams.
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computed for each configuration.

5.2 Infinite volume limit

Normally, the finite volume e↵ects in lattice QCD calculations are exponentially suppressed

by L, the linear size of the lattice volume times m⇡, the energy of lowest energy eigen-state

of QCD. For example, the points x, y, z, which appears in Eq. (3.6), are directly connected

to on the quark loop. The finite volume e↵ects introduced when limiting these points in a

finite size lattice are exponentially suppressed. However, in the light-by-light calculation,

there are also QED finite volume e↵ects. The QED finite volume e↵ects enter only through

Eq. (3.7), which include everything except the quark loop. We repeat the equation below:

G⇢�(x, y, z, xsnk, xsrc) =
X

x0,y0,z0

G⇢⇢0(x, x
0)G��0(y, y0)G0(z, z0)

·
h

Sµ (xsnk, x
0) �⇢0Sµ(x

0, z0)�0Sµ(z
0, y0)��0Sµ (y

0, xsrc)

+Sµ (xsnk, z
0) �0Sµ(z

0, x0)�⇢0Sµ(x
0, y0)��0Sµ (y

0, xsrc)

+four other permutations
i

. (5.1)

The summation variables x0, y0, z0 in above equation can move freely along the muon line,

only connected to the quark loop by massless photons. Thus, Eq. (5.1), when evaluated
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HLbL  Systematic errors	

n  Missing disconnected diagrams  
   → compute them 
 

n  Finite volume  
   

n  Discretization error 
      → a scaling study for 1/a = 2.7 GeV, 64 cube lattice 
at physical quark mass will be done on ALCC at Argonne 

 
n  ... 
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Systematic effects in QED only study	

n  muon loop, muon line 
n  a = a mµ / (106 MeV) 
n  L= 11.9, 8.9, 5.9 fm 
n  known result :  F2 = 0.371 (diamond) correctly reproduced (good 

check)  
 
 

 

 

e

a(6)
µ (lbl, e) =

⇧
2
3
⌅2 ln

mµ

me
+

59
270

⌅4 � 3 ⇤(3)

�10
3

⌅2 +
2
3

+ O

⇤
me

mµ
ln

mµ

me

⌅⌃ ��

⌅

⇥3
.⇥’s

µ

⇥

Again a light loop which yields a unexpectedly large contribution

a(6)
µ (lbl, e) ⇤ 20.947 924 89(16)

��
⇥

⇥3
= 2.625 351 02(2) ⇥ 10�7 .

� EQUAL internal masses case which yields a pure number which is usually
included in the a(6)

⇤ universal part:

µ
a(6)

µ (lbl, µ) =
⇤
5
6

⇤(5)� 5
18

⌅2 ⇤(3)� 41
540

⌅4 � 2
3
⌅2 ln2 2

+
2
3

ln4 2 + 16a4 �
4
3

⇤(3)� 24⌅2 ln 2 +
931
54

⌅2 +
5
9

⌅ ��

⌅

⇥3
,⇥’s

µ

⇥

F. Jegerlehner SFB/TR 09 Meeting, Aachen, November 14, 2011 61

62

Figure 4.6: Plots of our results for the connected light-by-light scattering contribution in

QED to F2(0), known to be 0.371⇥ (↵/⇡)3 [9, 10], as a function of a2 expressed in GeV by

assigningmµ = 106 MeV. This is done for three choices of the physical lattice size L = 11.9 fm

(diamonds), 8.9 fm (squares) and 5.9 fm (circles). The curves shown are quadratic functions

of a2 chosen to pass through the three points for each physical volume. The coe�cients for

each of these fits are listed in Table 4.13.
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Figure 4.7: Results for F2(0) from QED-connected light-by-light scattering. These results

have been extrapolated to the a2 ! 0 limit using two methods. The upper points use the

quadratic fit to all three lattice spacings shown in Fig. 4.6, while the lower point uses a linear

fit to the two leftmost points in that figure. Here we extrapolate to infinite volume using

the linear fits shown to the two, leftmost of the three points in each case.
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FV	and	discre8za8on	error	could	be	as	large	as	20-30	%	?	,	
similar	discre8za8on	error	seen	from	QCD+QED	study	 31	



QCD box in QED box	

n  FV from quark is exponentially suppressed  ~ exp( - Mπ LQCD)    
n  Dominant FV effects would be from  photon 
n  Let photon and muon propagate in larger (or infinite) box than that of 

quark 

n   
 

n   We could examine different lepton/photon in the off-line manner e.g.  
QED_L (Hayakwa-Uno 2008) with larger box, Twisting Averaging 
[Lehner TI LATTICE14]  or Infinite Vol. Photon propagators    [C. 
Lehner, L.Jin, TI LATTICE15], or continuum formula  [Mainz LAT15] 

Finite Volume Effects - QCD box inside QED box 29/36

QCD Box

QED Box

x
′

y
′

z
′

x

y
z

xop

Figure 19. QCD box inside QED box illustration.
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2
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)

us(0)

]

(36)

• The integrand decreases exponentially if one of r, z, or xop become large. The fact that
the sum is limited within the lattice only has exponentially suppressed effect. We have use
the moment method to take q→0 limit, eliminating that part of the “finite volume” effect.

• However, the integrand have implicit sum over x′, y ′, and z ′. Major finite volume effects
result from these three variables are limited within lattice.

• Solution: do not limit x′, y ′, and z ′ within the QCD box. We can sum over x′, y ′, and
z ′ in much larger QED boxes. We are also working on numerical strategies to compute
the sum in infinite volume. This way, we can capture the major part of the finite volume
effects with the QCD lattice just large enough to contain the quark loop.
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HLbL on Lattice Summary 	
 
n  Connected HLbL calculation is improved very rapidly 
n  Many orders of magnitudes improvements 

 
•  coordinate-space integral using analytic photon propagator with adaptive 

probability (point photon method) 
•  config-by-config conserved external current  
•  take moment of relative coordinate to directly take q→0 
•  AMA 

   → 8 % stat. error at physical point 
 
 
 
n  SU(3) unsuppressed disconnected diagram has signal also at physical 

point 

n  Still large systematic errors (missing disconnected, FV, discretization 
error, ... ) 
 

n  Direct calculation of HLbL  is in progress  [ Mainz group ] 
n  Goal : 10% total error  33	
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spatial moment of the quantum distribution of current.

These new methods are used to obtain a result for the cHLbL contribution to gµ�2 from

a relatively coarse 483 ⇥ 96 ensemble with 1/a = 1.73 GeV, spatial extent L = 5.5 fm and

pion mass m⇡ = 139 MeV:

(gµ � 2)cHLbL

2
= (0.933± 0.0073)(↵/⇡)3 = (116.9± 9.1)⇥ 10�11, (6.1)

which can be compared to the conventional model-dependent result for the complete HLbL

contribution to gµ�2 of (105±26)⇥10�11 and the di↵erence between the current experimental

result and the standard model prediction (excluding the HLbL component) of (354± 86)⇥
10�11. Equation (6.1) shows only the statistical error. There are significant systematic errors

associated with the unphysical pion mass, the nonzero lattice spacing and the finite volume

that have been used in this calculation. These systematic errors are at present insu�ciently

well understood to be reliably estimated. A particularly important systematic error comes

from the omission of the quark-disconnected contributions, which play an important role

in the phenomenological estimates. Thus, the comparison of the result in Eq. (6.1) with

experiment serves only to give a context for the size of the present statistical errors.

In Chapter 4 we have presented a series of numerical tests of many of the di↵erent

methods that were explored while developing the methods that were finally used to obtain

the result in Eq. (6.1). We hope that some of these may be useful in the future for the e�cient

calculation of other quantities that involve a combination of QED and QCD, a relatively new

area where there are many new directions to explore.

The cHLbL calculation at physical pion mass presented here are performed on current

leadership-class computers. A follow-on calculation with a smaller lattice spacing and a

corresponding 643 ⇥ 128 volume are planed, allowing a continuum limit to be evaluated.

Controlling the e↵ects of finite volume and including the contributions of disconnected dia-

grams are more di�cult, but they are being actively pursued. For now, we may guess the

size of discretization and finite volume e↵ects based on our QED light-by-light calcuation

(preliminary,	connected,	stat	err	only)	



g-2  (SM) theory status summary	

n  Uncertainty from Hadronic contributions dominate error 
n  Hadronic Vacuum Polarization (HVP) 
•  Determination from R-ratio experiment    ~ 0.6 % error 
•  Lattice determinations, rapidly reducing errors   ~ 2% error 
•  One full (continuum, infinite volume) calculation by HPQCD, 

important to check assumptions 
•  Disconnected diagram has definite error 
•  Finite Volume,  QED/isospin breaking effects 

n  Hadronic Light-by-light (HLbL) 
•  Dispersive approaches are proposed 
•  Rapidly making progress for connected diagram on Lattice 
•  Lattice spacing error, Finite Volume error will be removed 
•  Direct calculation of HLbL on lattice   

n  Very exciting moment for g-2 Physics 
34	



Collaborators	

n  HVP & DWF simulations  
       RBC/UKQCD (next page), M. Spraggs, A. Porttelli,  K. Maltman 
 
n  HLbL 

 
   Tom Blum, Norman Christ, Masashi Hayakawa,  Luchang Jin,     
   Chulwoo Jung, Christoph Lehner, ...   
 
n  DWF simulations including HVP 
    RBC/UKQCD Collaboration 
 
 
 
Part of related calculation are done by resources from   
  USQCD (DOE), XSEDE, ANL BG/Q Mira (DOE, ALCC), Edinburgh BG/Q, 
  BNL BG/Q, RIKEN BG/Q and Cluster (RICC, HOKUSAI)  
  
Support from US DOE, RIKEN, BNL, and JSPS 
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Backup slides / for discussion	

interplays between dispersive approach 
and Lattice 
l  g-2 HVP 
l  Vus from strangenessτinclusive decay 	

36	



 
Use of Time-Moments  

 [ HPQCD, PRD89(2014)114501 ]	
n  Compute Time-moments of 2pt   
 
 
 
 
 
n  subtractions by taking derivatives,   use local currents 
n  Pade approximation, determined from Πj ,  for high q2 integration 
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TABLE I: The lattice QCD gluon field configurations used here come from the MILC collaboration [22, 23]. � = 10/g2 is
the QCD gauge coupling, and w0/a [24] gives the lattice spacing, a, in terms of the Wilson flow parameter, w0 [25]. We take
w0=0.1715(9) fm fixed from f⇡ [24]. L and T give the length in the space and time directions for each lattice. am

sea
` , am

sea
s

and am

sea
c are the light (m` ⌘ mu = md), strange, and charm sea quark masses in lattice units and am

val
s , the valence

strange quark mass, tuned from the mass of the ⌘s, aM⌘s . ZV,ss gives the vector current renormalization factor obtained
nonperturbatively [26]. The lattice spacings are approximately 0.15 fm for sets 1–2, 0.12 fm for sets 3–8, and 0.09 fm for sets 9–
10. Light sea-quark masses range from ms/5 to the physical value and lattice volumes ranging from 2.5 fm to 5.8 fm. The
number of configurations is given in the final column. We used 16 time sources on each (12 on sets 1 and 2).

Set � w0/a am

sea
` am

sea
s am

sea
c am

val
s aM⌘s ZV,ss L/a⇥ T/a ncfg

1 5.80 1.1119(10) 0.01300 0.0650 0.838 0.0705 0.54024(15) 0.9887(20) 16⇥48 1020
2 5.80 1.13670(50) 0.00235 0.0647 0.831 0.0678 0.526799(81) 0.9887(20) 32⇥48 1000
3 6.00 1.3826(11) 0.01020 0.0509 0.635 0.0541 0.43138(12) 0.9938(17) 24⇥64 526
4 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0533 0.42664(9) 0.9938(17) 24⇥64 1019
5 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0533 0.42637(6) 0.9938(17) 32⇥64 988
6 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0507 0.41572(14) 0.9938(17) 32⇥64 300
7 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0533 0.42617(9) 0.9938(17) 40⇥64 313
8 6.00 1.4149(6) 0.00184 0.0507 0.628 0.0527 0.423099(34) 0.9938(17) 48⇥64 1000
9 6.30 1.8869(39) 0.00740 0.0370 0.440 0.0376 0.31384(9) 0.9944(10) 32⇥96 504
10 6.30 1.9525(20) 0.00120 0.0363 0.432 0.0360 0.30480(4) 0.9944(10) 64⇥96 621

in units of e. Here
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Note that in our calculation we have ignored quark-line-
disconnected contributions to the HVP. These are sup-
pressed by quark mass factors since they would vanish
for equal mass u, d and s quarks since

P
u,d,s

Qf = 0 [6].
The quark polarization tensor is the Fourier transform

of the vector current-current correlator. For spatial cur-
rents at zero spatial momentum

⇧ii(q2) = q

2⇧(q2) = a

4
X

t

e

iqt

X

~x

hji(~x, t)ji(0)i (4)

with q the Euclidean energy. We need the renormalized
vacuum polarization function, ⇧̂(q2) ⌘ ⇧(q2) � ⇧(0).
Time-moments of the correlator give the derivatives at
q

2 = 0 of ⇧̂ (see, for example, [32, 33]):

G2n ⌘ a

4
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t

X
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t
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2
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hji(~x, t)ji(0)i

= (�1)n
@
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q
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. (5)

Here we have allowed for a renormalization factor Z
V

for
the lattice vector current. Note that time-moments re-
move any contact terms between the two currents. G2n is
easily calculated from the correlators calculated in lattice
QCD, remembering that time runs from 0 at the origin
in both positive and negative directions to a maximum
value of T/2 in the centre of the lattice.

FIG. 2: Fractional error in the muon anomaly aµ caused by
replacing the quark vacuum polarization from one-loop per-
turbation theory with its [n, n] and [n, n � 1] Padé approxi-
mants. The exact result is always between the [n, n� 1] and
[n, n] approximants. The quark mass is set equal to the kaon
mass in this test case.

Defining

⇧̂(q2) =
1X

j=1

q

2j⇧
j

(6)

then

⇧
j

= (�1)j+1 G2j+2

(2j + 2)!
. (7)

To evaluate the contribution to a

µ

we will replace ⇧̂(q2)
with its [n, n] and [n, n � 1] Padé approximants derived
from the ⇧

j

[17]. We perform the q2 integral numerically.
The power of the Padé approximants is illustrated in

Fig. 2 which shows the precision of di↵erent approxi-
mants compared with the exact result for a simple test

3

TABLE I: The lattice QCD gluon field configurations used here come from the MILC collaboration [22, 23]. � = 10/g2 is
the QCD gauge coupling, and w0/a [24] gives the lattice spacing, a, in terms of the Wilson flow parameter, w0 [25]. We take
w0=0.1715(9) fm fixed from f⇡ [24]. L and T give the length in the space and time directions for each lattice. am

sea
` , am

sea
s

and am

sea
c are the light (m` ⌘ mu = md), strange, and charm sea quark masses in lattice units and am

val
s , the valence

strange quark mass, tuned from the mass of the ⌘s, aM⌘s . ZV,ss gives the vector current renormalization factor obtained
nonperturbatively [26]. The lattice spacings are approximately 0.15 fm for sets 1–2, 0.12 fm for sets 3–8, and 0.09 fm for sets 9–
10. Light sea-quark masses range from ms/5 to the physical value and lattice volumes ranging from 2.5 fm to 5.8 fm. The
number of configurations is given in the final column. We used 16 time sources on each (12 on sets 1 and 2).

Set � w0/a am

sea
` am

sea
s am

sea
c am

val
s aM⌘s ZV,ss L/a⇥ T/a ncfg

1 5.80 1.1119(10) 0.01300 0.0650 0.838 0.0705 0.54024(15) 0.9887(20) 16⇥48 1020
2 5.80 1.13670(50) 0.00235 0.0647 0.831 0.0678 0.526799(81) 0.9887(20) 32⇥48 1000
3 6.00 1.3826(11) 0.01020 0.0509 0.635 0.0541 0.43138(12) 0.9938(17) 24⇥64 526
4 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0533 0.42664(9) 0.9938(17) 24⇥64 1019
5 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0533 0.42637(6) 0.9938(17) 32⇥64 988
6 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0507 0.41572(14) 0.9938(17) 32⇥64 300
7 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0533 0.42617(9) 0.9938(17) 40⇥64 313
8 6.00 1.4149(6) 0.00184 0.0507 0.628 0.0527 0.423099(34) 0.9938(17) 48⇥64 1000
9 6.30 1.8869(39) 0.00740 0.0370 0.440 0.0376 0.31384(9) 0.9944(10) 32⇥96 504
10 6.30 1.9525(20) 0.00120 0.0363 0.432 0.0360 0.30480(4) 0.9944(10) 64⇥96 621

in units of e. Here

f(q2) ⌘ m

2
µ

q

2
A

3(1 � q

2
A)

1 +m

2
µ

q

2
A

2
(2)

where

A ⌘
q
q

4 + 4m2
µ

q

2 � q

2

2m2
µ

q

2
. (3)

Note that in our calculation we have ignored quark-line-
disconnected contributions to the HVP. These are sup-
pressed by quark mass factors since they would vanish
for equal mass u, d and s quarks since

P
u,d,s

Qf = 0 [6].
The quark polarization tensor is the Fourier transform

of the vector current-current correlator. For spatial cur-
rents at zero spatial momentum

⇧ii(q2) = q

2⇧(q2) = a

4
X

t

e

iqt

X

~x

hji(~x, t)ji(0)i (4)

with q the Euclidean energy. We need the renormalized
vacuum polarization function, ⇧̂(q2) ⌘ ⇧(q2) � ⇧(0).
Time-moments of the correlator give the derivatives at
q

2 = 0 of ⇧̂ (see, for example, [32, 33]):

G2n ⌘ a

4
X

t

X

~x

t

2n
Z

2
V

hji(~x, t)ji(0)i

= (�1)n
@

2n

@q

2n
q

2⇧̂(q2)

����
q

2=0

. (5)

Here we have allowed for a renormalization factor Z
V

for
the lattice vector current. Note that time-moments re-
move any contact terms between the two currents. G2n is
easily calculated from the correlators calculated in lattice
QCD, remembering that time runs from 0 at the origin
in both positive and negative directions to a maximum
value of T/2 in the centre of the lattice.

FIG. 2: Fractional error in the muon anomaly aµ caused by
replacing the quark vacuum polarization from one-loop per-
turbation theory with its [n, n] and [n, n � 1] Padé approxi-
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The power of the Padé approximants is illustrated in

Fig. 2 which shows the precision of di↵erent approxi-
mants compared with the exact result for a simple test

5

0.005 0.010 0.015 0.020 0.025

a2 (fm2)

52.5

53.0

53.5

54.0

54.5

55.0

as µ
⇥

10
1
0

FIG. 4: Lattice QCD results for the connected contribution to
the muon anomaly aµ from vacuum polarization of s quarks.
Results are for three lattice spacings, and two light-quark
masses: m

lat
` = ms/5 (lower, blue points), and m

lat
` = m

phys
`

(upper, red points). The dashed lines are the corresponding
values from the fit function, with the best-fit parameter val-
ues: ca2 = 0.29(13), csea = �0.020(6) and cval = �0.61(4).
The gray band shows our final result, 53.41(59)⇥10�10, with
m

lat
` = m

phys
` , after extrapolation to a = 0.

TABLE III: Error budgets for connected contributions to the
muon anomaly aµ from vacuum polarization of s and c quarks.

a

s
µ a

c
µ

Uncertainty in lattice spacing (w0, r1): 1.0% 0.6%
Uncertainty in ZV : 0.4% 2.5%

Monte Carlo statistics: 0.1% 0.1%
a

2 ! 0 extrapolation: 0.1% 0.4%
QED corrections: 0.1% 0.3%

Quark mass tuning: 0.0% 0.4%
Finite lattice volume: < 0.1% 0.0%
Padé approximants: < 0.1% 0.0%

Total: 1.1% 2.7%

mistuning of the sea and valence light-quark bare masses:

�xsea ⌘
X

q=u,d,s

m
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q

� m

phys
q

m

phys
s

(9)
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s
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val
s

� m
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s

m
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s

. (10)

For our lattices with physical u/d sea masses �xsea is very
small. a

2 errors from staggered ‘taste-changing’ e↵ects
will remain and they are handled by c

a

2 . The four fit
parameters are a2

µ

, c
a

2 , csea and cval; we use the following
(broad) Gaussian priors for each:

a

s

µ

= 0 ± 100 ⇥ 10�10

c

a

2 = 0(1) csea = 0(1) cval = 0(1). (11)

Our final result for the connected contribution for

TABLE IV: Contributions to aµ from s and c quark vacuum
polarization. Only connected parts of the vacuum polariza-
tion are included. Results, multiplied by 1010, are shown for
each of the Padé approximants.

Quark [1, 0]⇥ 1010 [1, 1]⇥ 1010 [2, 1]⇥ 1010 [2, 2]⇥ 1010

s 57.63(67) 53.28(58) 53.46(59) 53.41(59)
c 14.58(39) 14.41(39) 14.42(39) 14.42(39)

s quarks to g � 2 is:

a

s

µ

= 53.41(59) ⇥ 10�10
. (12)

The fit to [2, 2] Padé results from all 10 of our configu-
ration sets is excellent, with a �

2 per degree of freedom
of 0.22 (p-value of 0.99). In Fig. 4 we compare our fit
with the data from configurations with m

s

/m

`

equal 5
and with the physical mass ratio.
The error budget for our result is given in Table III.

The dominant error, by far, comes from the uncertainty
in the physical value of the Wilson flow parameter w0,
which we use to set the lattice spacings. We estimate the
uncertainty from QED corrections to the vacuum polar-
ization to be of order 0.1% from perturbation theory [20],
suppressed by the small charge of the s quark. Our re-
sults show negligible dependence (< 0.1%) on the spatial
size of the lattice, which we varied by a factor of two. Also
the convergence of successive orders of Padé approximant
indicates convergence to better than 0.1%; results from
fits to di↵erent approximants are tabulated in Table IV.
Note that the a2 errors are quite small in our analysis.

This is because we use the highly corrected HISQ dis-
cretization of the quark action. Our final (a = 0) result
is only 0.6% below our results from the 0.09 fm lattices
(sets 9 and 10). The variation from our coarsest lattice to
a = 0 is only 1.8%. We compared this with results from
the clover discretization for quarks, which had finite-a
errors in excess of 20% on the coarsest lattices.
Finally we also include results for c quarks in Tables III

and IV. These are calculated from the moments (and er-
ror budget) published in [20]. Our final result for the con-
nected contribution to the muon anomaly from c-quark
vacuum polarization is:

a

c

µ

= 14.42(39) ⇥ 10�10
. (13)

The dominant source of error here is in the determination
of the Z

V

renormalization factors. This error could be
substantially reduced by using the method we used for
the s-quark contribution [26].

III. DISCUSSION/CONCLUSIONS

The ultimate aim of lattice QCD calculations of
a

µ,HVP is to improve on results from using, for exam-
ple, �(e+e� ! hadrons) that are able to achieve an un-
certainty of below 1%. We are not at that stage yet.

1.1	%	
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For our lattices with physical u/d sea masses �xsea is very
small. a

2 errors from staggered ‘taste-changing’ e↵ects
will remain and they are handled by c
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2 . The four fit
parameters are a2
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2 , csea and cval; we use the following
(broad) Gaussian priors for each:
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Our final result for the connected contribution for

TABLE IV: Contributions to aµ from s and c quark vacuum
polarization. Only connected parts of the vacuum polariza-
tion are included. Results, multiplied by 1010, are shown for
each of the Padé approximants.

Quark [1, 0]⇥ 1010 [1, 1]⇥ 1010 [2, 1]⇥ 1010 [2, 2]⇥ 1010
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s quarks to g � 2 is:
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The fit to [2, 2] Padé results from all 10 of our configu-
ration sets is excellent, with a �

2 per degree of freedom
of 0.22 (p-value of 0.99). In Fig. 4 we compare our fit
with the data from configurations with m

s

/m

`

equal 5
and with the physical mass ratio.
The error budget for our result is given in Table III.

The dominant error, by far, comes from the uncertainty
in the physical value of the Wilson flow parameter w0,
which we use to set the lattice spacings. We estimate the
uncertainty from QED corrections to the vacuum polar-
ization to be of order 0.1% from perturbation theory [20],
suppressed by the small charge of the s quark. Our re-
sults show negligible dependence (< 0.1%) on the spatial
size of the lattice, which we varied by a factor of two. Also
the convergence of successive orders of Padé approximant
indicates convergence to better than 0.1%; results from
fits to di↵erent approximants are tabulated in Table IV.
Note that the a2 errors are quite small in our analysis.

This is because we use the highly corrected HISQ dis-
cretization of the quark action. Our final (a = 0) result
is only 0.6% below our results from the 0.09 fm lattices
(sets 9 and 10). The variation from our coarsest lattice to
a = 0 is only 1.8%. We compared this with results from
the clover discretization for quarks, which had finite-a
errors in excess of 20% on the coarsest lattices.
Finally we also include results for c quarks in Tables III

and IV. These are calculated from the moments (and er-
ror budget) published in [20]. Our final result for the con-
nected contribution to the muon anomaly from c-quark
vacuum polarization is:
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c
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= 14.42(39) ⇥ 10�10
. (13)

The dominant source of error here is in the determination
of the Z

V

renormalization factors. This error could be
substantially reduced by using the method we used for
the s-quark contribution [26].

III. DISCUSSION/CONCLUSIONS

The ultimate aim of lattice QCD calculations of
a

µ,HVP is to improve on results from using, for exam-
ple, �(e+e� ! hadrons) that are able to achieve an un-
certainty of below 1%. We are not at that stage yet.
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depends on G(t) at all times t. Next-to-leading order
chiral perturbation theory arguments show the discon-
nected contribution to also account for �1/9 of the to-
tal ⇧R(p2) [44]. However, this observation builds on the
fact that the correlator of the iso-singlet vector current
ū�

µ

u + d̄�

µ

d is momentum-independent to this order of
chiral perturbation theory — which we found is not at all
satisfied by the lattice data. Thus, direct computation of
the disconnected terms cannot be avoided in a systematic
study. Our numerical results will shed light onto the size
of the disconnected contribution at low p

2.

III. VACUUM POLARIZATION FROM
SUSCEPTIBILITIES

A. The method

The photon vacuum polarization tensor (1) can also be
interpreted as a momentum space current-current corre-
lation function

⇧
µ⌫

(p) =
1

V4

D
e
j

µ

(p) ej
⌫

(�p)
E
, (11)

where V4 denotes the four-dimensional volume of the sys-
tem and e

j

µ

is the Fourier transform of the electromag-
netic current defined in equation (2):

e
j

µ

(p) =

Z
d4x eipxj

µ

(x) . (12)

Depending on the lattice definition of j
µ

, the polarization
tensor (11) may or may not renormalize multiplicatively
with Z

2
V

. Here, we work with a conserved current, i.e.
Z

V

= 1.
In the following we will relate the vacuum polariza-

tion to the leading response of the free energy density f

of the system to background electromagnetic fields. To
illustrate the relation between the two objects on a qual-
itative level, it is instructive to represent the vacuum
polarization tensor by the diagram

⌫µ

where a momentum p flows in and out of the photon legs.
Here, the gray blob indicates all possible closed loops
formed by quark and gluon propagators — i.e. the per-
turbative expression for the free energy density f . The
legs may be thought of as photons corresponding to a
background electromagnetic field A

µ

with momentum p.
Pulling out these legs is achieved by taking appropri-
ate derivatives of f with respect to the background field.
While background electric fields turn the Euclidean QCD
action complex and are thus problematic in lattice simu-
lations, background magnetic fields can be realized with-
out complications. Employing the latter gives access to
the spatial components ⇧

ij

and hence to all components

⇧
µ⌫

since in Euclidean spacetime at zero temperature
the indices can be relabelled at will.

To find the background field corresponding to ⇧
µ⌫

(p),
we define the magnetic fields

Bp(x) = B sin(px) e3 , B0 = B e3 , (13)

pointing in the third spatial direction. While Bp is an os-
cillatory magnetic field with oscillation frequency p, B0

is a homogeneous background. The corresponding sus-
ceptibilities are obtained as the second derivatives of the
free energy density with respect to the amplitude of the
magnetic field:

�

p

= �@

2
f [Bp]

@(eB)2
. (14)

These susceptibilities are normalized by the square of the
elementary charge e > 0 to ensure that only the renor-
malization group-invariant combination eB appears in
the definitions.

The explicit calculation in appendix A shows that

2�
p

= ⇧(p2) , �0 = ⇧(0) . (15)

These relations form a new representation of the vacuum
polarization function in terms of susceptibilities with re-
spect to the magnetic fields defined in equation (13) and
are the main result of this article.

Unlike the conventional method, where the polariza-
tion function is extracted from the same set of posi-
tion space current-current correlators for all momenta,
equation (15) gives access to ⇧(p2) at one single lattice
momentum p. While this certainly increases the costs
of calculating ⇧ over a large range of momenta, it also
allows for a better signal-to-noise ratio within momen-
tum regions of particular interest. As argued above,
for the determination of the hadronic contribution to
the muon anomalous magnetic moment ahad,LO

µ

, low mo-

menta p

2 ⇠ 0.03GeV2 are much more important than
the high-p region. While hj

µ

(x)j
⌫

(0)i mixes informa-
tion about all allowed values of p, here such a mixing
is avoided.

Just as the vacuum polarization tensor, �
p

and �0 can
also be separated into connected and disconnected con-
tributions. We will demonstrate in section IV below that,
using this new approach, an unprecedented accuracy can
be achieved for both the connected and the disconnected
contributions to the vacuum polarization function, al-
ready at moderate computational costs. An additional
advantage of the method is that it gives direct access to
⇧(0).

To summarize, to arrive at a prediction for ahad,LO
µ

it is
desirable to improve the accuracy in the low-p region and
to calculate ⇧(0) independently. The method we propose
accomplishes both of these requirements.
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be achieved for both the connected and the disconnected
contributions to the vacuum polarization function, al-
ready at moderate computational costs. An additional
advantage of the method is that it gives direct access to
⇧(0).

To summarize, to arrive at a prediction for ahad,LO
µ

it is
desirable to improve the accuracy in the low-p region and
to calculate ⇧(0) independently. The method we propose
accomplishes both of these requirements.
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FIG. 6. Statistical error of the total (connected plus dis-
connected) ⇧(p2 = 0.03GeV2) as a function of the number
of inversions. Compared are the results obtained from oscil-
latory susceptibilities, using point sources and random wall
sources. In addition, the error of the connected oscillatory
susceptibility alone is shown. Note the logarithmic scale.

approach with random wall sources and that with point
sources. We demonstrate that the statistical error of
⇧(p2) can be pushed well below that of existing stud-
ies in the literature – even with the disconnected terms
taken into account.

We calculated ⇧(p2) using all three methods on 120
configurations from the � = 3.45 ensemble for a single
momentum p

2 = 0.03GeV2 using an increased number
of sources. Figure 6 shows the statistical error as a func-
tion of the number of inversions Ninv. The details of our
implementation can be found in appendices B and C. As
visible in the figure, the oscillatory susceptibility method
allows to save 50� 60% of the computational e↵ort with
respect to the random wall approach. This di↵erence
mainly comes from the disconnected contributions, which
can be calculated very accurately via susceptibilities. In
fact, the statistical error in this approach is dominated
by the connected contribution,4 as is also visible in the
figure. As expected, the conventional method with point
sources is not applicable for the determination of the dis-
connected terms. Obviously, it is favorable in terms of
the total computer time spent to increase the number
of configurations instead of the number of inversions per
configuration. We remark that the total number of exact
inversions necessary to achieve a given error can be con-
siderably reduced by methods like the hopping parameter

4 To see why this is the case, note that the number of estimates
increases quadratically with N

inv

for the disconnected terms but
only linearly for the connected ones, see the discussion in ap-
pendix B. Therefore, the error on the latter eventually overtakes
that of the former, before both show the expected asymptotic
�2 ' c

1

(1 + c
2

/N
inv

) fall-o↵. The inherent gauge noise c
1

can
only be reduced by increasing the number of configurations.

expansion [59, 60], truncated eigenmode substitution [61–
63], the truncated solver method [64–66] and, in the case
of Wilson-like fermions, employing spin-explicit stochas-
tic sources [67–69].
Finally, we discuss the disconnected contribution ⇧dis

in more detail. A particular feature of ⇧dis is that it re-
quires no additive renormalization. To see this, note that
⇧dis(0) vanishes in the perturbative continuum limit,
since it is of order g

6(a) in the strong coupling [21],
which dampens the logarithmic divergence and results
in ⇧dis(0) to fall o↵ as 1/ log2(a) for a ! 0. In our three-
flavor case the disconnected term even vanishes identi-
cally in perturbation theory due to

P
f=u,d,s

q

f

= 0, once

quark masses can be neglected, i.e. a�1 � m

s

. Based
on this observation, in figure 7 we plot the unsubtracted
disconnected vacuum polarization for all our lattice spac-
ings. (The number of inversions was Ninv = 800 for each
momentum, with the exception of the left-most point.)
Overall, ⇧dis is consistent with zero, where the two points
that deviate by more than two standard deviations from
this assumption are statistically expected and no system-
atic dependence on the lattice spacing or on the volume
is apparent. With the exception of three outliers with
large error bars, all central values are below 2 · 10�4 in
magnitude.

FIG. 7. Disconnected contribution to ⇧(p2) as a function of
p2 for our five lattice spacings.

Using all available estimators (Ninv = 20 000) for the
� = 3.45 ensemble at p2 = 0.03GeV2, our most accurate
determinations for the unsubtracted and the subtracted
vacuum polarizations read

p

2 = 0.03GeV2 : ⇧ = �0.058362(117) ,

⇧dis = +0.000021(026) ,

⇧R = +0.002355(198) .

(23)

Here, ⇧(p2) and ⇧dis(p2) were measured using the oscil-
latory susceptibility method. (We highlight again that
the error of ⇧dis is much smaller than that of the total

9

⇧.) The vacuum polarization at zero momentum was ob-
tained via random wall sources. Based on the discussion
above about the vanishing of ⇧dis(0) in the continuum
limit, only the connected part of ⇧(0) is necessary for
the subtraction. The relative error of the so-obtained
⇧R at this momentum is 8%, and is dominated by the
error of ⇧(0). Clearly, towards higher p2, where the mag-
nitude of ⇧(p2) increases, the relative error on ⇧R rapidly
decreases.

V. SUMMARY

We developed a new approach to determine the
hadronic vacuum polarization ⇧(p2) on the lattice. It
is based on calculating magnetic susceptibilities �

p

with
respect to oscillatory background fields for p2 > 0 and a
homogeneous background for p

2 = 0. The proof of the
equivalence between �

p

and ⇧(p2) is given in appendix A.
The oscillatory susceptibilities are obtained by evaluat-
ing the appropriate expectation values using noisy esti-
mators, as described in appendix B. Unlike the conven-
tionally used approach, based on position space current-
current correlators, which mixes information about all
possible lattice momenta, the present method enables us
to determine the vacuum polarization with increased pre-
cision for individual low momenta. The low momentum
region is of relevance for an accurate determination of
the leading hadronic contribution to the muon anoma-
lous magnetic moment. In principle, the lattice determi-
nation of ⇧(p2)�⇧(0) at a selected set of low momenta
can also be combined with experimental results for the
R-ratio to increase the accuracy of ahad,LO

µ

.
The proposed method not only reduces statistical er-

rors at low momenta but also allows for an independent
measurement of ⇧(0), instead of having to rely on ex-
trapolations of ⇧(p2) from p

2
> 0. We discussed three

di↵erent methods to determine the homogeneous suscep-
tibility �0 = ⇧(0). The most straightforward method,
which relies only on simulations at zero magnetic field
(the so-called half-half method), was found to su↵er
from large finite-volume e↵ects of up to 10% of the full
value. Instead, we combined existing results on �0 from
refs. [47, 57] that are based on simulations at non-zero
background fields. We also tested stochastic wall sources
to obtain ⇧(0) as the second moment of a momentum
projected current-current correlation function and found
that it can compete with the accuracy of the homoge-
neous susceptibility for a su�ciently large number of ran-
dom sources.

The method was tested on staggered N

f

= 2+1 flavor
ensembles with various lattice spacings. Already on a few
hundred configurations, a statistical accuracy below one
percent is achieved for ⇧(p2). The disconnected contri-
butions have been included in all cases. Figure 8 shows
an order-of-magnitude comparison of our statistical ac-
curacy to that of existing calculations in the literature,
wherever data or figures with error bars are available for

FIG. 8. The statistical error of the vacuum polarization at
low momenta around p2 = 0.03GeV2 for several lattice stud-
ies in the literature and for the present work (shaded area).
Open points denote the error of the unsubtracted ⇧(p2), while
full symbols indicate that of the renormalized ⇧

R

(p2). Stud-
ies involving only the connected contribution are indicated in
yellow, while those also taking into account the disconnected
terms in blue. The determination using the experimental R-
ratio is also included for comparison (solid green point).

⇧ at p

2 ⇡ 0.03GeV2 [17, 24, 27, 30–34, 40]. (Note that
the approach followed in ref. [35] involves parameterizing
the lattice data for the zero-momentum projected two-
point function G(t) of equation (9), making a compar-
ison for ⇧ di�cult.) We remark that this incomplete
comparison does not distinguish between di↵erent lat-
tice volumes, spacings or pion masses but just serves as
a qualitative indicator of the accuracy. It reveals that
our statistical errors, obtained on a comparably small
number of gauge configurations, are by far the smallest
within the lattice studies shown in figure 8. However, the
approach of employing the experimental R-ratio is still
by about an order of magnitude more accurate. Never-
theless, by applying the methods used in this paper to
ensembles with substantially higher statistics, the desired
accuracy may be reached in the near future.
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QED effects	

n  From experimental e+ e- total cross section   
σtotal(e+e-) and dispersion relation 

 

   time like   q2 = s >= 4 mπ
2 

EQUATIONS

N. YAMADA

aHVP
µ =

1

4π2

∫ ∞

4m2
π

dsK(s)σtotal(s)(1)

Πµν(q
2) =

∫
d4x

(2π)4
e−iq·x⟨0|T [jµ(x)jν(0)]|0⟩|0⟩(2)

Γ(Hlbl)
µ (p2, p1) = ie6

∫
d4k1

(2π)4

d4k2

(2π)4

Π(4)
µνρσ(q, k1, k3, k2)

k2
1 k2

2 k2
3

×γνS
(µ)(p2 + k2)γρS

(µ)(p1 + k1)γσ

Π(4)
µνρσ(q, k1, k3, k2) =

∫
d4x1 d4x2 d4x3 exp[−i(k1 · x1 + k2 · x2 + k3 · x3)]

×⟨0|T [jµ(0)jν(x1)jρ(x2)jσ(x3)]|0⟩

aSM
µ = (11 659 182.8 ± 4.9) × 10−10 (using [1])(3)

aEXP
µ = (11 659 208.9 ± 6.3) × 10−10 [PDG](4)

aEXP
µ − aSM

µ = (26.1 ± 8.0) × 10−10(5)

Breakdown

aSM
µ = (11 659 182.8 ±4.9 ) × 10−10

aQED
µ = (11 658 471.808 ±0.015 ) × 10−10

aEW
µ = ( 15.4 ±0.2 ) × 10−10

ahad,LOVP
µ = ( 694.91 ±4.27 ) × 10−10

ahad,HOVP
µ = ( −9.84 ±0.07 ) × 10−10

ahad,lbl
µ = ( 10.5 ±2.6 ) × 10−10

Date: July 10, 2012.
1

✕

aHVP,LO
µ = (694.91± 4.27)⇥ 10�10

aHVP,HO
µ = (�9.84± 0.07)⇥ 10�10

“Trick” applies to higher order hadronic VP contributions

h e h h h
µ

�

h

a) b) c) d)

Kinoshita, Nizic, Okamoto 1985, Krause 1996, ...
as well as to analytic calculations of higher order diagrams like

Ia Ib Ic Id
µ

�1

�2
�3 �1

�2
�1 �2

�1

3–loop: Hoang et al 95, 4–loop: Broadhurst, Kataev, Tarasov 93, Kinoshita et al

F. Jegerlehner SFB/TR 09 Meeting, Aachen, November 14, 2011 72
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Mπ=170 MeV cHLbL result (contd.) 
	

  “Exact” ... q = 2pi / L,  
  “Conserved (current)” ... q=2pi/L, 3 diagrams 
  “Mom” ... moment method q->0, with AMA 

Method F2/(α/π)3 Nconf Nprop

√
Var rmax SD LD ind-pair

Exact 0.0693(218) 47 58 + 8× 16 2.04 3 −0.0152(17) 0.0845(218) 0.0186

Conserved 0.1022(137) 13 (58 + 8× 16)× 7 1.78 3 0.0637(34) 0.0385(114) 0.0093

Mom. (approx) 0.0994(29) 23 (217 + 512) × 2× 4 1.08 5 0.0791(18) 0.0203(26) 0.0028

Mom. (corr) 0.0060(43) 23 (10 + 48) × 2× 4 0.44 2 0.0024(6) 0.0036(44) 0.0045

Mom. (tot) 0.1054(54) 23

Table VIII. Results from three variants of the exact photon method obtained from the 32ID ensem-

ble. The first row, labeled “Exact”, corresponds to the row labeled 32ID in Tab. VI. The second

row, labeled “Conserved” is similar except all three arrangements of the vertices x, y and z are

combined insuring that the external current is conserved on each configuration. The final three

rows are obtained from the moment method and are explained in the text.

while the preceding two rows “Mom. (approx)” and “Mom. (corr)” show separately the

approximate AMA results and the needed correction term. The “SD” and “LD” columns

give the results from the pairs with |r| ≤ rmax and |r| > rmax, respectively. The “ind-

pair” column gives the error that would be expected if the long-distance pairs were truly

independent. Note that the quantity F2(q2) is computed at q2 = (2π/L)2 for the first two

rows and at q2 = 0 for the final three rows. The final error shown for the moment method

on the fifth line of Tab. VIII is obtained by applying the jackknife method to the sum of

the approximate AMA result and the AMA correction term. The resulting error is similar

to what would be found were the statistical error on the approximate and correction terms

computed separately and added in quadrature.

We should emphasize that the moment-method result given in the final line of Tab. VIII

is the most important numerical result presented in this paper. It provides the cHLbL

contribution (calculated directly at q2 = 0) to g − 2 for the muon with a 5% statistical

accuracy for the case of a pion with mπ = 171 MeV using a (4.6 fm)3 spatial volume but

with a relatively coarse lattice spacing a with 1/a = 1.378 GeV. More information about the

conserved and moment method calculations presented in Tab. VIII can be found in Fig. 8

where histograms and scatter plots are presented as functions of the separation of the two

stochastically chosen points x and y.

As a final topic in this section we apply the conserved method and the moment method,

36

Conserved External Current Improvement 22/32

• In previous setup, noise will remain relatively constant in large volume, but would blow
up if the external momentum transfer q becomes small.

ū(p′)Γµ(p′, p)u(p) = ū(p′)

[
F1(q2)γµ+ i

F2(q2)
4m

[γµ, γν]qν

]
u(p) (12)

F2(0) =
gµ− 2
2

≡ aµ (13)

• To make the noise also vanish when q → 0, we need the external current be exactly
conserved, configuration by configuration.

• To prove Ward identity, we need to compute all possible external photon insertion options.

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

xsrc xsnky
′
,σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y,σ x, ρ

Figure 14. All three different possible insertions for the external photon. They are equal to each other
after stochastic average. 5 other possible permutations of the three internal photons are not shown.
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QED box in QCD box (contd.)	

n  Mπ=420 MeV, mµ=330 MeV, 1/a=1.7 GeV 
n  (16)3 = (1.8 fm)3 QCD box in (24)3= (2.7 fm)3 QED box	

423MeV Pion 163
× 32 Lattice V.S. 243

× 64 Lattice 30/36

Ensemble mπ L QCD Size QED Size
F2(q2 = 0)
(α/π)3

16I 3.87 163× 32 163× 32 0.1158(8)
24I 5.81 243× 64 243× 64 0.2144(27)

16I-24 163× 32 243× 64 0.1674(22)

Table 4. arXiv:1511.05198. Finite volume effects studies. a−1 = 1.747 GeV, mπ = 423 MeV,
mµ = 332MeV.

• Large finite volume effects with these ensembles and muon mass.

• Increasing the QED box size help reducing the finite volume effect, but haven’t completely
fixed the problem.

• Suggesting significant QCD finite volume effect.

• The histogram plot may help us further investigating this QCD finite volume effect.
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the opposite of this choice, which can provide more information about QCD finite-volume

e↵ects:

Z0(x, y, z) =

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

3 if |x� y| > |x� z| and |x� y| > |y � z|
3/2 if |x� y| = |x� z| > |y � z| or |x� y| = |y � z| > |x� z|
1 if |x� y| = |x� z| = |y � z|
0 otherwise

.(5.2)

With this choice, in the small r region, the distances between x, y, z are all short, so the

QCD finite volume e↵ects should be small. The right plot of Figure 5.5 suggest that it is

indeed the case. In the small r region, where we control the QCD finite volume e↵ects,

the result from the 16I QCD/24 QED calculation agrees very well with 24I. However, as |r|
becomes larger, the quark loop evaluated in 16I is a↵ected by the boundary and begins to

deviate from the 24I results. Note because we use periodic boundary conditions for the quark

propagators, the maximum spatial separation between source and sink in any direction is 8

for quark propagators on the 16I lattice.

Figure 5.5: The plots show histograms of the contribution to F2 from di↵erent separations

|r| = |x � y|. The sum of all these points gives the final result for F2. The vertical lines at

|r| = 5 in the plots indicate the value of rmax. The left plot is evaluated with Z, so the small

r region includes most of the contribution. The right plot is evaluated with Z0 in place of Z,

so the QCD finite volume is better controlled in the small r region.
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(plan B) Interplays between lattice 
and dispersive approach  g-2	

n  Dispersive approach from R-ratio  R(s) 
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Q
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also	[	ETMC,	Mainz,	...	]		 45	



n  Can we combine dispersive & lattice and get more precise (g-2)HVP 
than both ?      [ 2011 Bernecker Meyer ] 

n  Inverse Fourier trans to Euclidean vector correlator 
n  Relevant for g-2   Q2 = (mµ/2)2 = 0.0025 GeV2 
n  It may be interesting to think  

0 10 20 30 40 50
t/a

-0.05

0

0.05

0.1

0.15 Disparsive (Q2=0.0025 GeV
2
)

Lattice (Q2 = 0.0025 GeV
2
)

Pihat(Q2)  integrand in coordinate space
Lattice : u,d,s connected, no continuum limit
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0
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0.15

0.2

P
2
 = 0.1 GeV

2
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Vus extraction strangeness tau 
inclusive decay 	

|us|V
0.215 0.22 0.225

 decays, PDG 2013l3K
 0.0014±0.2253 

 decays, PDG 2013l2K
 0.0010±0.2253 

CKM unitarity, PDG 2013
 0.0010±0.2255 

 s inclusive, HFAG 2014→ τ
 0.0021±0.2176 

, HFAG 2014νπ → τ / ν K→ τ
 0.0019±0.2232 

, HFAG 2014ν K→ τ
 0.0020±0.2212 

 average, HFAG 2014τ
 0.0014±0.2204 

HFAG-Tau
Summer 2014

Taku Izubuchi, KITP program “Lattice Gauge Theory for the LHC and Beyond”, Santa Barbara, CA, September 23, 2015 10
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Tau decay

• ⌧ ! ⌫ + had through V-A vertex

• Apply the optical theorem to related to VV and AA hadronic vacuum polarization (HVP)

• For hadrons with strangeness -1, CKM matrix elements V
us

is multiplied

• ⌫ takes energy away, makes differential cross section is related to the HVPs (c.f. in
e

+

e

� case, the total cross section is directly related to HVP )

R

ij

=

�(⌧

� ! hadrons
ij

⌫

⌧

)

�(⌧

� ! e

�
⌫̄

e

⌫

⌧

)

=

12⇡|V 2

ij

|S
EW

m

2

⌧

Z
m

2

⌧

0

✓
1 �

s

m

2

⌧

◆✓
1 + 2

s

m

2

⌧

◆
Im⇧

(1)

(s) + Im⇧

(0)

(s)

�

| {z }
⌘ Im⇧(s)

• The Spin=0 and 1, vacuum polarization, Vector(V) or Axial (A) current-current two
point

⇧

µ⌫

ij;V/A

(q

2

) = i

Z
d

4

xe

iqx

D
0|TJ

µ

ij;V/A

(x)J

†µ
ij;V/A

(0)|0
E

= (q

µ

q

⌫ � q

2

g

µ⌫

)⇧

(1)

ij;V/A

(q

2

) + q

µ

q

⌫

⇧

(0)

ij;V/A
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Finite Energy Sum Rule (FESR)

• Do the finite radius contour integral

• Real axis integral from experimental R
⌧

• Use pQCD and OPE for the large circle integral

• Any analytic weight function w(s)

Z
s

0

s

th

Im⇧(s)w(s) =

i

2

I

|s|=s

0

ds⇧(s)w(s)

Re(s)

Im(s)
pQCD OPE spectral data

1

Taku Izubuchi, KITP program “Lattice Gauge Theory for the LHC and Beyond”, Santa Barbara, CA, September 23, 2015 6
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Combining FESR and Lattice

• If we have a reliable estimate for⇧(s) in Euclidean (space-like) points, s = �Q

2

k

< 0,

we could extend the FESR with weight function w(s) to have poles there,

Z 1

s

th

w(s)Im⇧(s) = ⇡

N

pX

k

Res
k

[w(s)⇧(s)]

s=�Q

2

k

⇧(s) =

✓
1 + 2

s

m

2

⌧

◆
Im⇧

(1)

(s) + Im⇧

(0)

(s) / s (|s| ! 1)

• For N
p

� 3, the |s| ! 1 circle integral vanishes.

Re(s)

Im(s)
pQCD OPE spectral data

1

XXX

Lattice HVPs
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weight function w(s)

• Example of weight function

w(s) =

N

pY

k

1

(s + Q

2

k

)

=

X

k

a

k

1

s + Q

2

k

, a

k

=

X

j 6=k

1

Q

2

k

� Q

2

j

=)
X

k

(Q

k

)

M

a

k

= 0 (M = 0, 1, · · · , N
p

� 2)

• The residue constraints automatically subtracts ⇧(0,1)

(0) and s⇧

(1)

(0) terms.

• For experimental data, w(s) ⇠ 1/s

n

, n � 3 suppresses

. larger error from higher multiplicity final states at larger s < m

2

⌧

. uncertanties due to pQCD+OPE at m2

⌧

< s

• For lattice, Q2

k

should be not too small to avoid large stat. error, Q2 ! 0 extrapola-
tion, Finite Volume error(?). Also not too larger than m

2

⌧

to make the suppression in
time-like 0 < s < m

2

⌧

working.

• Other w(s) could be useful to enhance some region s > 0 which may be usable for
(g � 2)

µ

HVP (?)

• c.f. HPQCD’s HVP moments works

Taku Izubuchi, KITP program “Lattice Gauge Theory for the LHC and Beyond”, Santa Barbara, CA, September 23, 2015 12
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Preliminary	results	
[	H.	Ohki,	A.	Jukner,	C.	Lehner,	K.	Maltman	et	al.	]	

Our	result		
for	all	channels	

All	our	results	(C<1,	N=3,4)	are	consistent	with	each	other.		
Note	:	Other	systema8c	errors	of	sea	quark	mass	chiral	extrapola8on,	ladce	O(a^4)	

discre8za8on,		
and	higher	order	OPE	have	not	been	included.	These	must	be	assessed	in	a	future	study.	
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AMA+MADWF(fastPV)+zMobius accelerations  	
n  We utilize  complexified  5d hopping term of Mobius action [Brower, Neff, Orginos], 

zMobius,  for a better approximation of the sign function. 
 
 
 
 

n  1/a~2 GeV, Ls=48 Shamir ~  Ls=24 Mobius (b=1.5, c=0.5) ~ Ls=10 zMobius (b_s, c_s 
complex varying) ~5 times saving for cost AND memory 

 
 
 
 
 
 
 
 
 
n  The even/odd preconditioning is optimized (sym2 precondition) to suppress the growth of 

condition number due to order of magnitudes hierarchy of b_s, c_s  [also Neff found this]  
 
 
 

n  Fast Pauli Villars (mf=1) solve, needed for the exact solve of AMA via MADWF (Yin, 
Mawhinney) is speed up by a factor of 4 or more by Fourier acceleration in 5D   
  [Edward, Heller] 

n  All in all, sloppy solve compared to the traditional CG is 160 times faster on the physical 
point 48 cube case. And ~100 and 200 times for the 32 cube, Mpi=170 MeV, 140, in this 
proposal (1,200 eigenV for 32cube) . 

 	

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012 Ls	 	|eps(48cube)	–	eps(zMobius)|	

6	 0.0124	

8	 0.00127	

10	 0.000110	

12	 8.05e-6	
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n  O(imp) has smaller error 
O(appx) need to be cheap &  not to be too 
accurate  
NG  suppresses the bulk part of noise cheaply 
        

Expensive		:		infrequently	measured		 Cheap			:		frequently	measured		

Ladce	
Symmetry	

Covariant Approximation Averaging ( CAA )  
 a new class of Error reduction techniques	

[	Blum,	TI,	Shintani	PRD	88	(2013)	094503	]	

Original	

unbiased	
imporved	

ensemble	

ensemble		

ε	

ε	

+	

New	bias-free	es8mator	even	without	covariant	
approxima8on	by	a	stochas8c	choice	of	source	
loca8on	for	the	exact/rest	computa8on	is	now	
available		:					Appendix	D		of		arXiv:1402.0244		
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Examples of Covariant Approximations 
(contd.)	

n  All Mode Averaging 
AMA 
 Sloppy CG  or 
 Polynomial  
   approximations 
 

0 0.5 1 1.5 2 2.5

1

10

100

1000

Figure 3: Polynomial approximation of 1/�, Npoly = 10, the mini-max approximation for
the relative error, for � � [0.052, 1.672].

8

accuracy	control	:	
•  	low	mode	part	:	#	of	eig-mode	
•  	mid-high	mode	:		degree	of	poly.	If	quark	mass	is	heavy,	e.g.		~	strange,		

low	mode	isola8on	may	be	unneccesary	 55	


