The $B \to D^{(*)} \tau \bar{\nu}$ & $B \to \tau \bar{\nu}$ decays, Theoretical status thereof

Marat Freytsis

University of Oregon FPCP 2016 — Caltech, June 6, 2016

Massive leptons in (semi-)leptonic B decays

unique windows into both NP and the SM via $B \to (X) \tau \bar{\nu}$ decays

- Standard Model
 - $B \to D^{(*)}$ transitions both depend on FFs whose contribution vanishes as $m_\ell \to 0$
 - $B^- \rightarrow \tau^- \bar{\nu}$ only decay sensitive to f_B measurable in the near future
- New Physics
 - NP often presumed to couple preferentially to 3rd generation
 - A reason to persue $B \to X_s \nu \bar{\nu}$ and $B_{(s)} \to (X) \tau \tau$ for years [Hewitt, hep-ph/9506289; Grossman, Ligeti, Nardi, hep-ph/9510378 & hep-ph/9607473]]
- somewhere in between (focus of most of this talk)
 - high-precision in $B \to X_{u,c} \ell \bar{\nu}$ critical to extraction of $|V_{ub}|$, $|V_{cb}|$
 - ratios are great venue for tests of lepton flavor universality (LFU)

standard diclaimers: ... general overview, but colored by my biasesapologies to any recent work I might have missed ...

- Introduction
- Precise SM predictions
 - ► complimentary, CKM-parameter-free families of ratio observables for LFU sensitivity
- Quantifying NP sensitivity
 - ▶ redundant effective operator bases for identification of UV physics
- NP descriminators
 - more differential distributions for discrimination of scenarios
- Consequences and Conclusions

 $B^- \rightarrow \tau^- \bar{\nu}$ Pure leptonic decays

In the SM:

$$\Gamma(B^- \to \tau^- \bar{\nu}) = \frac{|V_{ub}|^2 G_F^2}{8\pi} f_B^2 m_\tau^2 m_B \left(1 - \frac{m_\tau^2}{m_B^2}\right)^2$$

either measure $|V_{ub}|f_B$ in data or use f_B from lattice to extract $|V_{ub}|$ (e.g., latest lattice world average: $f_B = (190.5 \pm 4.2) \text{ MeV}$ [FLAG, 1310.8555])

- only P-odd currents contribute: $\langle 0 | \, \bar{b}(\gamma^{\mu}) \gamma_5 c \, | B \rangle \neq 0$
- new pseudoscalar couplings typically proportional to fermion mass:

$$\Gamma(B^- \to \tau^- \bar{\nu}) = |1 + r_{\rm NP}|^2 \, \Gamma(B^- \to \tau^- \bar{\nu})_{\rm SM}$$
$$= |1 + C_A V + m_B^2 C_P|^2 \, \Gamma(B^- \to \tau^- \bar{\nu})_{\rm SM}$$

$B^- \to \tau^- \bar{\nu}$ Eliminating $|V_{ub}|$ dependence

$|V_{ub}|$ drops out of ratio, but NP independent of lepton mass

overall rate can still be affected/act as a bound [Hou, PRD48, 2342 (1993)]

$$\frac{\Gamma(B^- \to \tau^- \bar{\nu})}{\Gamma(B^- \to \mu^- \bar{\nu})} = \frac{\Gamma(B^- \to \tau^- \bar{\nu})_{\rm SM}}{\Gamma(B^- \to \mu^- \bar{\nu})_{\rm SM}}$$

• $B^- \to \mu^- \bar{\nu} \gamma$ correction complicates situation – no helicity suppression

an alternative: compare to helicity unsuppressed decay

$$R^{\pi} = \frac{\tau_{B^0}}{\tau_{B^-}} \frac{\mathcal{B}(B^- \to \tau^- \bar{\nu})}{\mathcal{B}(\bar{B}^0 \to \pi^+ \ell^- \bar{\nu})} = 0.73(13) \qquad \text{from here } \ell = \text{avg. of } \mu + e$$

[Fajfer, Kamenik, Nišandžić, Zupan, 1206.1872]

 $R_{\text{SM}}^{\pi} = 0.31(6)$ requires (improvable) decay constants and FFs from the lattice

I have nothing else to add about $B^- \to \tau^- \bar{\nu}$, will now focus on $b \to c \tau \bar{\nu}$ transitions

 $\begin{array}{c} B \to D^{(*)} \tau \bar{\nu} \\ \text{An } R(X) \text{ reminder} \end{array}$

$$R(X) = \frac{\Gamma(B \to X\tau\bar{\nu})}{\Gamma(B \to X\ell\bar{\nu})}$$

• deviation first seen at BaBar, later results from Belle and LHCb BaBar/Belle full datasets $\tau \rightarrow \ell \nu \bar{\nu}$ to minimize lepton reco systematics

clean SM observables: heavy quark symmetry relates FFs

Caprini, Lellouch, Neubert, hep-ph/9712417

cancellation of hadronic uncertainties, $\left|V_{cb}\right|$ in ratios

lattice QCD for R(D) only [MILC, 1503.07237; HPQCD, 1505.03925]

largest deviation from SM right now!

• similar ratios before Belle II: LHCb: R(D)? $\Lambda_b \to \Lambda_c^{(*)} \tau \bar{\nu}$?

BaBar/Belle: hadronic τ decays?

original goal: 2HDM H^{\pm}

Evading unquantified systematics in SM calculations Complementary theory predictions

- inclusive $B \rightarrow X_c \tau \bar{\nu}$ rate bounded by known exclusive modes [MF, Ligeti, Ruderman, 1506.08896]
 - form-factor independent OPE-based analysis complementary theory systematics
 - Corrections up to $O(\Lambda_{\scriptscriptstyle \rm QCD}/m_b, \alpha_s^2)$

$$\begin{split} R(X_c) &= 0.223 \pm 0.004 & \text{theory} \\ \mathcal{B}(B^- \to X_c \ell \bar{\nu}) &= (10.92 \pm 0.16)\% & \text{inclusive } \ell \text{ data} \\ \Rightarrow \mathcal{B}(B^- \to X_c \tau \bar{\nu}) &= (2.42 \pm 0.05)\% & \text{prediction} \end{split}$$

(LEP: $\mathcal{B}(b \to X\tau^+\nu) = (2.41 \pm 0.23)\%$)

- isospin-constrained fit: $\mathcal{B}(\bar{B} \to D^* \tau \bar{\nu}) + \mathcal{B}(\bar{B} \to D \tau \bar{\nu}) = (2.78 \pm 0.25)\%$
- estimate rate to excited $\mathcal{B}(B \to D^{**}\tau\bar{\nu}) \gtrsim 0.2\%$ get conservative limit: $\mathcal{B}(B \to D^{**}\ell\bar{\nu})/\mathcal{B}(B \to D^{(*)}\ell\bar{\nu}) \sim 0.3$
- deviation $\gtrsim 3\sigma$ in inclusive calculation (minimal non-perturbative inputs)
 - complementary to SM calculation of $R(D^{(*)})$ and LEP data

Leveraging inclusive spectra Precision $d\Gamma(B \rightarrow X_c \tau \bar{\nu})/dq^2$ predictions

- no measurements since LEP,
 - \blacktriangleright papers in '90s used $m_b^{\rm pole},$ no study of spectra (new data needed, in progress @ Belle)
 - large $1/m^2$ OPE corrections
- we've been told Belle analysis in progress

[Ligeti, Tackmann, 1406.7013]

leveraging inclusive spectra All τ modes... $b \rightarrow u\tau\bar{\nu}$?

- if deviation clearly established, huge motivation to study all decay modes with τ

- if LEP could measure $B \to X_c \tau \bar{\nu}$ with a few $\times 10^6 B \bar{B}$ pairs ...
- ... "surely" Belle II can measure $B \to X_u \tau \bar{\nu}$ with $5 \times 10^{10} B \bar{B}$ pairs
- no inclusive distributions currently available
 - $m_{\tau} \neq 0, m_u = 0$ complications from different kinematic endpoints
 - ▶ 1.8 GeV $< E_{\tau} < 2.9$ GeV Subtleties with shape function; match onto u jet?

[Ligeti, Luke, Tackmann, in progress]

• phase space suppression is smaller in $b \rightarrow u$:

$$\frac{\Gamma(B \to X_u \tau \bar{\nu})}{\Gamma(B \to X_u \ell \bar{\nu})} \simeq 0.333 \qquad \frac{\Gamma(B \to X_c \tau \bar{\nu})}{\Gamma(B \to X_c \ell \bar{\nu})} \simeq 0.222$$

• can LHCb/Belle II measure $b \rightarrow u \tau \bar{\nu}$ decay modes? ratios of τ/μ and/or c/u?

• Other exclusive modes: $\Lambda_b \to \Lambda_{(c)} \tau \bar{\nu}? B \to \pi \tau \bar{\nu}? B \to \rho \tau \bar{\nu}?$

- Introduction
- Precise SM predictions
- Quantifying NP sensitivity
- NP descriminators
- Consequences and Conclusions

Redundant four-fermion operator analysis

	Operator		Fierz identity	Allowed Current	$\delta \mathcal{L}_{int}$
\mathcal{O}_{V_L}	$(\bar{c}\gamma_{\mu}P_{L}b)(\bar{\tau}\gamma^{\mu}P_{L}\nu)$			$(1, 3)_0$	$(g_q \bar{q}_L \boldsymbol{\tau} \gamma^\mu q_L + g_\ell \bar{\ell}_L \boldsymbol{\tau} \gamma^\mu \ell_L) W'_\mu$
\mathcal{O}_{V_R}	$(\bar{c}\gamma_{\mu}P_Rb)(\bar{\tau}\gamma^{\mu}P_L\nu)$				
\mathcal{O}_{S_R}	$(\bar{c}P_Rb)(\bar{\tau}P_L\nu)$			$(1, 2)_{1/2}$	$(\lambda_d \bar{a}_I d_P \phi + \lambda_u \bar{a}_I u_P i \tau_2 \phi^{\dagger} + \lambda_d \bar{\ell}_I e_P \phi)$
\mathcal{O}_{S_L}	$(\bar{c}P_Lb)(\bar{\tau}P_L\nu)$			/(-,-)1/2	(.adbant + .adbant.27 + .cebant)
\mathcal{O}_T	$(c\sigma^{\mu\nu}P_Lb)(\tau\sigma_{\mu\nu}P_L\nu)$				
$\mathcal{O}'_{V_{\tau}}$	$(\bar{\tau}\gamma_{\mu}P_{L}b)(\bar{c}\gamma^{\mu}P_{L}\nu)$	\leftrightarrow	$\mathcal{O}_{V_{T}}$	$(3,3)_{2/3}$	$\lambda ar q_L oldsymbol{ au} \gamma_\mu \ell_L oldsymbol{U}^\mu$
- VL	(-, p, l) (-, up)			$(3,1)_{2/3}$	$(\lambda \bar{q}_L \gamma_\mu \ell_L + \tilde{\lambda} \bar{d}_B \gamma_\mu e_B) U^\mu$
O_{V_R}	$(\tau \gamma_{\mu} P_R b) (c \gamma^r P_L \nu)$	\leftrightarrow	$-2O_{S_R}$	/	
O_{S_R}	$(\tau P_R b) (c P_L \nu)$	\leftrightarrow	$-\frac{1}{2}O_{V_R}$	()	
\mathcal{O}_{S_L}	$(\bar{\tau}P_Lb)(\bar{c}P_L\nu)$	\leftrightarrow	$-\frac{1}{2}O_{SL} - \frac{1}{8}O_T$	$(3, 2)_{7/6}$	$(\lambda \bar{u}_R \ell_L + \lambda \bar{q}_L i \tau_2 e_R) R$
\mathcal{O}'_T	$(\bar{\tau}\sigma^{\mu\nu}P_Lb)(\bar{c}\sigma_{\mu\nu}P_L\nu)$	\leftrightarrow	$-6\mathcal{O}_{S_L} + \frac{1}{2}\mathcal{O}_T$		
$\mathcal{O}_{V_L}^{\prime\prime}$	$(\bar{\tau}\gamma_{\mu}P_{L}c^{c})(b^{c}\gamma^{\mu}P_{L}\nu)$	\leftrightarrow	$-O_{V_R}$		
$\mathcal{O}_{V_R}^{\prime\prime}$	$(\bar{\tau}\gamma_{\mu}P_{R}c^{c})(\bar{b}^{c}\gamma^{\mu}P_{L}\nu)$	\leftrightarrow	$-2O_{S_R}$	$(\bar{3}, 2)_{5/3}$	$(\lambda \bar{d}_R^c \gamma_\mu \ell_L + \tilde{\lambda} \bar{q}_L^c \gamma_\mu e_R) V^\mu$
$\mathcal{O}_{a}^{\prime\prime}$	$(\bar{\tau} P_{\mathbf{p}} c^c) (\bar{h}^c P_{\mathbf{r}} \mu)$	\leftrightarrow	$\frac{1}{2}O_{V}$	$(\bar{3}, 3)_{1/3}$	$\lambda \bar{q}_L^c i \tau_2 \tau \ell_L S$
O_{S_R}	(11 RC) (01 LV)	. /		$\langle \bar{3} 1 \rangle_{com}$	$() \bar{a}^c_i i \tau_0 \ell_I + \tilde{\lambda} \bar{a}^c_i e_D) S$
\mathcal{O}_{S_L}''	$(\overline{\tau}P_Lc^c)(\underline{b}^cP_L\nu)$	\leftrightarrow	$-\frac{1}{2}O_{S_L} + \frac{1}{8}O_T$	/(0,1)1/3	$(\chi q_L m_2 c_L + \chi u_R c_R) S$
\mathcal{O}_T''	$(\bar{\tau}\sigma^{\mu\nu}P_Lc^c)(b^c\sigma_{\mu\nu}P_L\nu)$	\leftrightarrow	$-6\mathcal{O}_{S_L} - \frac{1}{2}\mathcal{O}_T$		

• Fits to different fermion orderings convenient to understand allowed mediator

- ▶ \mathcal{O} parametrize all possible dim-6 contributions, \mathcal{O}' , \mathcal{O}'' related by Fierzing
- ▶ $\delta \mathcal{L}_{int}$ only for dim-6 gauge-inv. \mathcal{O} 's with mediator spin ≤ 1

BaBar q^2 spectral constraints

- BaBar studied q^2 spectrum of at D and D^* to observe consistency with 2HDM
 - type-II 2HDM and SM yield equally poor fits to data
 - \blacktriangleright other distributions can give sensitivity to, e.g., D^*, τ polarization
 - non other disitrbutions publically available
- no bin correlations released, we could only eyeball fits

Single operator fits

• All rates in the exact HQET limit

[W. Goldberger, hep-ph/9902311] (up to one overall typo)

Single operator fits

• All rates in the exact HQET limit

[W. Goldberger, hep-ph/9902311] (up to one overall typo)

Two operator fits

• 3 current mediators generate two dim-6 operators at once

Two operator fits

• 3 current mediators generate two dim-6 operators at once

- Introduction
- Precise SM predictions
- Quantifying NP sensitivity
- NP descriminators
- Consequences and Conclusions

Differential observables D^* polarization

already saw q^2 spectrum constrain fits, what about other distributions?

[Duraisamy, Datta, 1302.7031] correlations of D^* decay products and τ :

- D^* polarization fraction
- $A_F B$ lepton asymmetry
- transverse asymmetries
- CP-odd asymmetries

[[]Duraisamy, Sharma, Datta, 1405.3719]

distinguish op. fits with/without ${\it CP}$

analytic distribution recently computed in

[Alonso, Kobach, Camalich, 1602.07671]

Differential observables τ polarization

additional discrimination from considering au polarization

Differential observables CP observables in $B \rightarrow D\tau \bar{\nu}$

[[]Hagiwara, Nojiri, Sakaki, 1403.5892]

multi-prong hadronic τ decays allow for $CP\text{-sensitive observables in }B\to D\tau\bar{\nu}$ as well

- Introduction
- Precise SM predictions
- Quantifying NP sensitivity
- NP descriminators
- Consequences and Conclusions

Some wilder ideas Suppress, don't enhance

[MF, Ligeti, Ruderman, in progress]

- (to my knowledge) all NP explanations enhance the au mode compared to the SM
- deviation in ratio of decay rates suppress the e and μ modes instead?
 - operator fits at smaller Wilson coefficients comperable in both cases
- e and μ modes used for CKM matrix element extraction

$$V_{cb}^{(exp)} \sim 0.9 V_{cb}^{(SM)}, \quad V_{ub}^{(exp)} \sim 0.9 V_{ub}^{(SM)}$$
 (1)

• strongest constraint is from ϵ_K

$$|\epsilon_K| = \frac{G_F^2 m_W^2 m_K f_K^2}{6\sqrt{2}\pi^2 \Delta m_K} \hat{B}_K \kappa_\epsilon |V_{cb}|^2 \lambda^2 \bar{\eta} \left[|V_{cb}|^2 (1-\bar{\rho}) \eta_{tt} S_0(x_t) + \eta_{ct} S_0(x_c, x_t) - \eta_{cc} x_c \right]$$

- current central values are in tension with such models
- ▶ reduced tension with $R(D^{(*)})$ if CKM fits moved off central values
 - shifts to both within present uncertainties can lead to a self-consistent story
- current CKM limits on V_{ub} have killed BSM scenarios before, e.g. flavored GUTs
 - should some of these be revisited?

Some wilder ideas $B \rightarrow D^{(*)} e \bar{\nu} \text{ vs. } B \rightarrow D^{(*)} \mu \bar{\nu}$

• How well is the difference of the e and μ rates constrained?

Parameters	$De \ sample$	$D\mu$ sample	combined result
ρ_D^2	$1.23 \pm 0.05 \pm 0.08$	$1.13 \pm 0.07 \pm 0.09$	$1.16 \pm 0.04 \pm 0.08$
$\rho_D^2 *$	$1.23 \pm 0.02 \pm 0.07$	$1.24 \pm 0.03 \pm 0.07$	$1.33 \pm 0.04 \pm 0.09$
$\mathcal{B}(D^0\ell\bar{\nu})(\%)$	$2.38 \pm 0.03 \pm 0.14$	$2.26 \pm 0.04 \pm 0.16$	$2.32 \pm 0.03 \pm 0.013$
$\mathcal{B}(D^{*0}\ell\bar{\nu})(\%)$	$5.45 \pm 0.03 \pm 0.22$	$5.27 \pm 0.04 \pm 0.37$	$5.48 \pm 0.04 \pm 0.02$
$\chi^2/{ m n.d.f.}$ (probability)	422/470 (0.94)	494/467 (0.19)	2.2/4 (0.71)

[BaBar, 0809.0828]

- Individual rates appear to be systematics limited
- We assumed e/μ universality, not a necessity
 - ▶ Reaching 1% level on ratio might be possible (but tough) even at Belle II
 - ▶ 10% e/μ non-universality still seems possible (despite what the PDG claims)
 - Simultaneous explaination of ${\cal B}(B\to K\mu^+\mu^-)/{\cal B}(B\to Ke^+e^-)$ challenging

Signals both high and low (energy)

- LHC: (mostly) simple modifications of existing searches
 - \blacktriangleright extensions of \tilde{t}/\tilde{b} searches to higher prod. cross sections
 - \blacktriangleright searches for $t\tau$ resonances, mixed $\bar{b}\tau\,t\bar{\nu}$ decay channels
 - $t \rightarrow b \tau \bar{\nu}, c \tau^+ \tau^-$ non-resonant decays
 - on-shell t-channel states pp collisions
 - Enhanced $h \rightarrow \tau^+ \tau^-$ rate (model dependent)
- · Low energy probes:
 - more $B \to D^{(*)} \tau \bar{\nu}$ kinematic distributions, cross checks w/ inclusive deacys
 - look at ratios themselves differentially: $dR(D^{(*)})/dq^2$
 - Improve bounds on $\mathcal{B}(B \to K^{(*)} \nu \bar{\nu})$
 - $\mathcal{B}(D \to \pi \nu \bar{\nu}) \sim 10^{-5}$ possible (BES III?), enhanced $\mathcal{B}(D \to \mu^+ \mu^-)$
 - $\mathcal{B}(B_s \to \tau^+ \tau^-) \sim 10^{-3}$ possible

Conclusions

- Precise SM predictions
 - ► complimentary, CKM-parameter-free families of ratio observables for LFU sensitivity
- Quantifying NP sensitivity
 - redundant effective operator bases for identification of UV physics
- NP descriminators
 - more differential distributions for discrimination of scenarios

• Consequences and Conclusions

- no CKM or loop suppression in SM contribution
 not how NP was "supposed to" show up maybe OK to think about some crazier ideas? (YMMV)
- if it persists, robust ways of characterizing the excess exist
- looking forward to more data

Thank you!