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Introduction



  

Motivation for studying K→ππ Decays

● Direct CPV first observed in late 90s at CERN (NA31/NA48) and 
Fermilab (KTeV) in K0→ππ:

measure of indirect CPVmeasure of direct CPV

● In terms of isospin states: ΔI=3/2 decay to I=2 final state, amplitude A2 
ΔI=1/2 decay to I=0 final state, amplitude A0 

     (δI are strong scattering phase shifts.)

(experiment)

● Likely explanation for matter/antimatter asymmetry in Universe, 
baryogenesis, requires violation of CP.

● Amount of CPV in Standard Model appears too low to describe 
measured M/AM asymmetry: tantalizing hint of new physics.

● Small size of ε' makes it particularly sensitive to new direct-CPV 
introduced by most BSM models.



  

● ε' also provides a new horizontal band constraint on CKM 
matrix:

[Lehner et al 
arXiv:1508.01801]new constraint from this work!

~2σ tension



  

The role of the lattice
● Underlying dynamics governed by Weak interactions at scales ~80 GeV

● However hadronic-scale QCD interactions at scales ~1 GeV play a 
significant role.

● Example: low-energy QCD mainly responsible for 450x enhancement of 
isospin I=0 channel K→ππ decay over the I=2 channel  (ΔI=1/2 rule).

● At these scales QCD is strongly coupled and perturbation theory fails.
● SU(3) ChPT provides a useful tool, but difficult to assess model errors.
● On the other hand, lattice QCD provides a systematically improvable 

technique that has been wildly successful.
● Recent developments in lattice techniques and computing power have 

finally opened the door to precision SM determinations of kaon decay 
amplitudes.

0



  

Introduction to lattice QCD



  

Overview of lattice technique
● Lattice QCD offers an alternative approach whereby we directly 

simulate the low-energy interactions on a supercomputer.

● Discretize Lagrangian in Euclidean space and finite volume, draw 
'snapshots' of QCD vacuum from path integral (fermions integrated out) 

● Ensemble average of observable corresponds to physical Green's 
function:

using Monte Carlo techniques.

gauge link quark propagator

● Spatial boundary conditions on propagators, which control 
momentum discretization, can be chosen as convenient.



  

Extracting physical quantities 

● Ground state of system extracted by fitting large time behavior.

● To determine excited state with energy E1 we require multi-
exponential fits to time dependence 

● Typically very noisy and should be avoided if possible!

● Operators create all intermediate states that have those 
quantum numbers. How then do we extract useful 
information?

● In Euclidean space states decay exponentially in time: 



  

Direct CP-violation on the lattice



  

Overview of calculation

perturbative Wilson coeffs.

Imaginary part solely responsible for CPV 
(everything else is pure-real)

10 effective four-quark operators

● Low-energy QCD interactions play an important role in kaon decays.

● At energy scales μ«MW, K→ππ decays use weak EFT:

● Operators must be renormalized into same scheme as Wilson coeffs: 
Use RI-(S)MOM NPR and perturbatively match to MSbar at high 
scale.

● Dynamical charm is hard (mc~a-1) – our calculation includes only u,d,s 
quarks. Use of PT to integrate out charm introduces its own 
systematic error.

renormalization 
matrix (mixing)LL finite-volume correction

(lattice)



  

ΔS=1 Operator basis

dominate 
Re(A0), Re(A2)

Q4, Q6 dominate 
Im(A0)

Q7, Q8 dominate 
Im(A2)



  

Physical Kinematics

● 2nd approach optimal but technically challenging, particularly for A0.

● Important to calculate with physical (energy-conserving) 
kinematics. 

● But
● Requires moving pions!

● Try to perform multi-state fits to very noisy data                           
    (esp. A0 where there are disconn. diagrams)  

● Modify spatial boundary conditions such that pions become 
antiperiodic in space: 

● This is excited state of the ππ-system.  

Possibilities:



  

 Determination of A2

[Phys.Rev. D91 (2015) 7, 074502]



  

Calculation Strategy

● A2 can be computed directly from charged kaon decay:

● Remove stationary (charged) pion state using antiperiodic BCs on 
d-quark propagator:

 
Moving ground state!

Stationary ground state....

● Use Wigner-Eckart theorem to remove neutral pion from problem

● APBCs on d-quark break isospin symmetry allowing mixing between 
isospin states: however π+π+ is the only charge-2 state with these Q-
numbers hence it cannot mix.

● Calculation relatively standard: Only significant conceptual difficulty 
here is obtaining physical kinematics. 



  

● Results:

● Real part in excellent agreement with experiment.
● Imaginary part not known from experiment: entirely new SM prediction.
● Systematic error completely dominated by perturbative error on NPR and 

Wilson coefficients.

10%, 12% total errors on Re, Im!

● Calculation performed on RBC & UKQCD 483x96 and 643x128 Mobius 
DWF ensembles with (5 fm)3 volumes  and  a=0.114 fm, a=0.084 fm. 
Continuum limit computed.

● Make full use of eigCG and AMA to translate over all timeslices. Obtain 
0.7-0.9% stat errors on all bare matrix elements!

Results



  

ΔI=1/2 rule

● In experiment kaons approx 450x (!) more likely to decay into I=0 pi-
pi states than I=2.   

● Perturbative running to charm scale accounts for about a factor of 2. 
Is the remaining 10x non-perturbative or New Physics?

● The answer is low-energy QCD!  RBC/UKQCD [arXiv:1212.1474, arXiv:1502.00263] 

(the ΔI=1/2 rule) 

Strong cancellation between the two dominant contractions  

heavily suppressing Re(A2).

483 643



  

 Determination of A0

[Phys.Rev.Lett. 115 (2015) 21, 212001]



  

Matrix element calculation

● 4 classes of diagram:

● Type 4 disconn. diagrams dominate noise. 
● Use Trinity-style all-to-all (A2A) propagators:

 

● Allows us to tune ππ source shape to minimize vacuum overlap.
● Also to perform all spatial and temporal translations to boost 

statistics.

● 900 exact low-eigenmodes computed using Lanczos algorithm
● Stochastic high-modes with full dilution of indices

● A0 obtained via neutral kaon decays                      and  

disconnected



  

Physical Kinematics

● Again modify boundary conditions to remove stationary pion state.
● No option to utilize Wigner-Eckart for I=0: BCs must conserve isospin 

and apply momentum to both charged and neutral pions.
● Solution: Use G-parity BCs:

                   

● As a boundary condition: (i=+, -, 0)

(moving ground state)

● GPBCs technically challenging:

● Requires new ensembles as disconnected diagrams require same BCs 
for sea and valence quarks

● Computationally expensive as Dirac operator is intrinsically two-
flavor.

● Finite-volume breaking of rotational symmetry at quark level requires 
careful treatment.



  

Ensemble and state energies

● 323x64 2+1f Mobius DWF ensemble with IDSDR gauge action at 
β=1.75. Coarse lattice spacing (a-1=1.378(7) GeV) but large,  
(4.6 fm)3 box.

● G-parity BCs in 3 directions.
● Performed 216 independent measurements (4 MDTU sep.).
● Utilized:

mK=490.6(2.4) MeV

Eππ(I=0) = 498(11) MeV

Eπ=274.6(1.4) MeV    (mπ = 143.1(2.0) MeV)

● USQCD 512-node BG/Q machine at BNL

● DOE “Mira” BG/Q machines at ANL

● STFC BG/Q “DiRAC” machines at Edinburgh, UK.

● Obtain close matching of kaon and ππ 
energies:

● Cost per measurement 2 days on 512 nodes, 
8192 cores (105 TFlops peak).

● Total cost ~200M BG/Q core hours – 2000 years 
on a laptop!

(our “detector”)



  

Issue with ensemble generation

● Recently discovered coding error with RNG seeding used in 
ensemble generation for ΔI=1/2 calculation.

● Duplicated seeds result in persistant, unphysical correlation 
between gauge links separated by 12 sites in y-direction.

● Have not found theoretical interpretation that would allow effect 
to be estimated. However, strong empirical evidence that effect 
is negligible for present calculation. 

● E.g. statistically resolvable correlation observed in plaquettes 
separated by 12 in y-dir but only at ~5x10-5, unlikely to have 
strong effect on paper results where errors are 100x – 1000x 
larger.

● This error is presently being corrected as part of our 
programme to increase statistics. 



  

[G.Colangelo, private communication]

● Our phase shift                                           
~2.7σ below conventional Roy equation 
determination of 

Results of first calculation

[Dominant contribution to Re(A0)] [Dominant contribution to Im(A0)]

Q
2 Q

6

● Matrix elements:

● Incorrect estimate of Roy equation 
errors or use of wrong high-energy 
'experimental' ππ scattering data?

● Possibly low statistics concealing 
delayed plateau start?



  

● ~85% total error on the predicted Im(A0) due to strong cancellation 
between dominant Q4 and Q6 contributions:

(This work)

(Experiment)

● Good agreement for Re(A0) serves as test for method.

(This work)

despite only 40% and 25% respective errors for the matrix elements.

● First ab initio prediction of Im(A0).

● Dominant systematic (15%) is due to PT truncation errors in the NPR 
exacerbated by low renormalization scale 1.53 GeV. 

● We have since used step-scaling procedure to raise this to 2.29 GeV, 
utilizing our 243 a-1=1.78 GeV ensemble. Analysis presently underway.



  

Results for ε' and    
concluding remarks  



  

Results for ε'

● Re(A0) and Re(A2) from expt.
● Lattice values for Im(A0), Im(A2) and the phase shifts, 

(this work)=
(experiment)

● Total error on Re(ε'/ε) is ~3x the experimental error.

● Find reasonable consistency with Standard Model (at 2.1σ level).
● Tantalizing hint of discrepancy strong motivation for continued 

study!



  

[Lehner et al 
arXiv:1508.01801]



  

Conclusions and Outlook
● A2 precisely measured, with errors dominated by perturbative 

systematics in Wilson coeffs and NPR. Step-scaling and higher-order PT 
necessary.

● First complete lattice computation of A0 with physical kinematics 
performed. Measured Re(A0) in good agreement with experiment.

● On final result, stat. error currently dominant. Presently enacting 
programme to increase statistics by at least 4x (including replacing 
existing, flawed measurements). 

● Sys. errors again dominated by PT errors on the renormalization and 
Wilson coeffs due to low, 1.53 GeV scale. Should be reduced by 
incorporating new step-scaled NPR factors with μ=2.29 GeV.

● Total error on Re(ε'/ε) is ~3x the experimental error, and we observe 
consistency with SM at 2.1σ level. 

● Hint of discrepancy? Strong motivation for continued study!

● Hope to achieve O(10%) errors on Re(ε'/ε) on a timescale of ~5 years.

● We hope these results with spur new efforts in the experimental 
community to reduce the current 15% error on the experimental 
number.

Thank you!



  



  



  

A brief introduction to lattice QCD

● Lattice QCD offers an alternative approach whereby we directly 
simulate the low-energy interactions on a supercomputer.

● How does it work? 

● Discretize QCD Lagrangian in Euclidean space and finite 
volume.

● Integrate fermions out of path integral:

● U are gauge links:
● Sample configurations of links from probability distribution Z 

using Monte Carlo methods. 
● These encapsulate the quantum vacuum fluctuations that 

form the background of physical processes.



  

Observables

● Spatial boundary conditions on propagators, which control 
momentum discretization, can be chosen as convenient.

● The observable, defined in terms of gauge links and 
propagators, is computed on each configuration. 

● The ensemble average gives the (Euclidean) physical 
expectation value:

● Quark fields are Wick contracted into propagators, defined 
as the inverse of the Dirac matrix:

● Observables are Green's functions of quark field operators 
and gauge links.



  

I=0 ππ energy

● Signal/noise deteriorates quickly 
due to vacuum contrib.

● Difficult to determine plateau 
start. Performed both 1- and 2-
state fits.

● Our phase shift                                         ~2.7σ below conventional Roy 
equation determination of 

● Possibly low statistics concealing delayed plateau start? 

● Using 38° → ~3% change in A0 : much smaller than other errs. 

● For consistency we choose to use our lattice value.

2% stat err!

[G.Colangelo, private communication]



  

Matrix element fits

[Dominant contribution to Re(A0)] [Dominant contribution to Im(A0)]

Q2 Q6

● No statistically resolvable excited state dependence with tmin(π→Q) > 3.

● Signal quickly decays: +40% stat. error between tmin(π→Q)=4 and 5!

● Use tmin(π→Q) = 4 . 

● Estimate 5% excited state systematic by comparing ππ(I=0) amplitude 
computed using one- and two-state fits.



  

Systematic errors

● 15% ren. error due to one-loop PT truncation and low, 1.53 GeV 
matching scale. (Est. by comparing two different RI/SMOM 
intermediate schemes.)

● 12% Wilson coefficient error large for same reason. (Est. from 
difference between LO and NLO.)

● Errors for each separate operator matrix element:

● 12% discretization error due to coarse lattice spacing. (Est. 
from A2 calculations.)

12%

27%



  

● ~85% total error on the predicted Im(A0) due to strong cancellation 
between dominant Q4 and Q6 contributions:

(This work)

(Experiment)

Results for A0

● Good agreement for Re(A0) serves as test for method.

● Expt far more precise. Physics dominated by tree-level current-current 
diagrams hence unlikely to receive large BSM contributions. 

● Use expt. for computing ε'. 

(This work)

despite only 40% and 25% respective errors for the matrix elements.
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