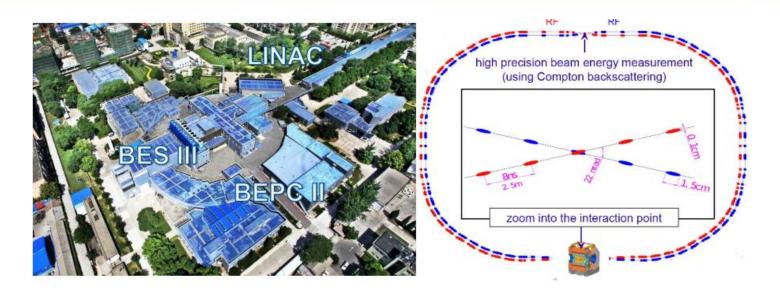
Light quark spectroscopy at BESIII

Fang Liu

(on behalf of BESIII Collaboration)

The Flavor Physics and CP Violation conference 2016 in Pasadena, California, USA

June 6-9, 2016



OUTLINE

- BESIII/BEPCII and BESIII physics
- Selected topics on light quark spectroscopy
 - X(1835) and mass enhancement
 - Model independent PWA of $J/\psi \rightarrow \gamma \pi^0 \pi^0$
 - PWA of $J/\psi \rightarrow \gamma \phi \phi$
 - Amplitude analysis of $\chi_{C1} \rightarrow \eta \pi^+ \pi^-$
- Conclusion and outlook

BESIII at BEPCII

Symmetric electron-positron collider BEPC II

- Energy range: $\sqrt{s} = 2.0-4.6$ GeV
- Design luminosity: $1x10^{33}$ cm⁻²s⁻¹ (at $\psi(3770)$)
- Energy spread: ~5x10⁻⁴
- Operating since March 2008
- Achieved luminosity: 1x10³³ cm⁻²s⁻¹

BESIII Detector

RPC Muon Detector

8 layers (end caps), 9 layers (barrel)

 $\delta R_{\phi} = 1.4 - 1.7 \,\mathrm{mm}$

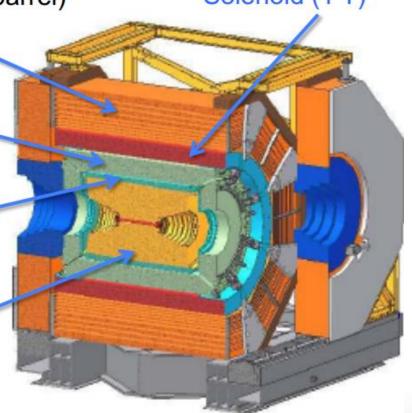
Electromagnetic CsI(TI) Calorimeter

$$\sigma_E/E < 2.5\%/\sqrt{E}$$

$$\sigma_{z,\phi} = 0.5 - 0.7 \,\text{cm}/\sqrt{E}$$

Time of Flight System

$$\sigma_t = 80 \, \mathrm{ps}$$
 (barrel)

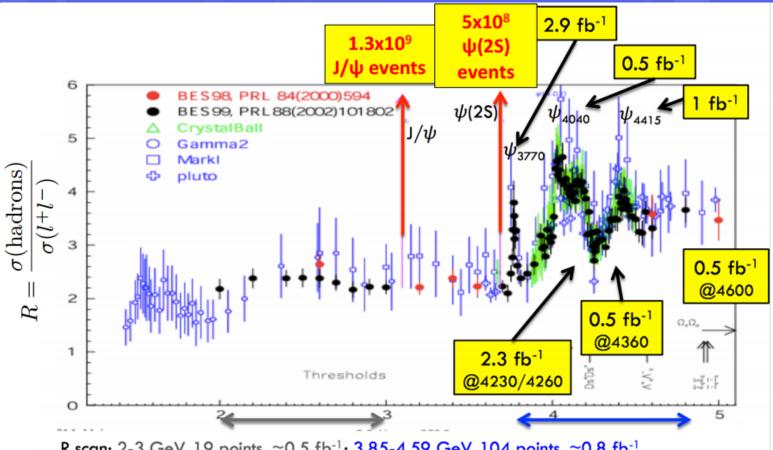

 $\sigma_t = 110 \, \mathrm{ps}$ (end caps)

Drift Chamber

$$\sigma_{(dE/dx)} = 6\%$$

$$\sigma_{p_t}/p_t = 0.5\%$$

Superconducting Solenoid (1 T)

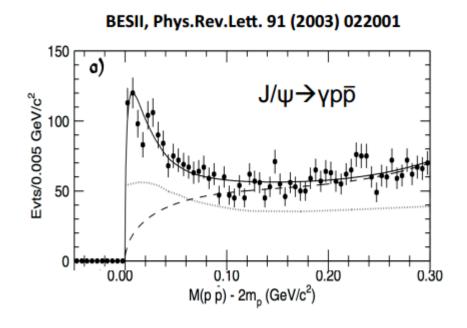


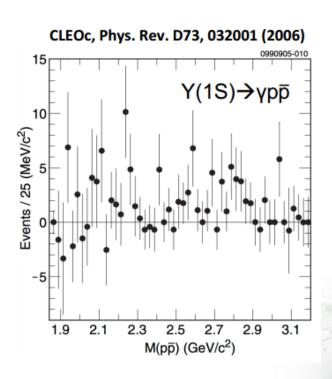
The new BESIII detector is hermetic for neutral and charged particle with excellent resolution, PID, and large coverage.

BESIII Physics

- Light Hadrons
 - Meson and baryon spectroscopy
 - Search for exotic hadrons, e.g. glueballs, hybrids, tetraquarks
 - Light meson decays (η^(*), ω)
- Charmonium Physics
 - X, Y, and Z states
 - Decays and transitions
- Open Charm Physics
 - D meson decays
 - DD mixing
 - CP violation in the charm sector
- And many further topics
 - e.g. tau and two-photon physics

Data samples

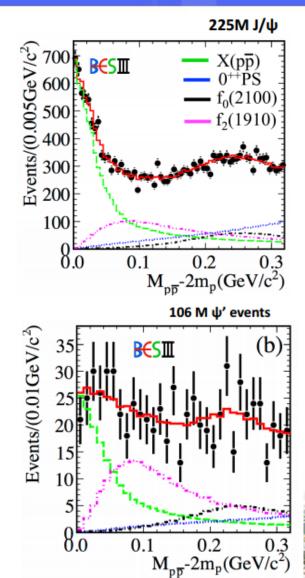



R scan: 2-3 GeV, 19 points, ~0.5 fb⁻¹; 3.85-4.59 GeV, 104 points, ~0.8 fb⁻¹

plus 24/pb at τ mass threshold and 0.5/fb in the region 4100-4400 MeV

Enhancement of p p threshold

- Enhancement at p̄p̄ threshold observed in J/ψ→γp̄p̄ by BESII (2003) and confirmed by CLEOc (2010)
- Enhancement not observed in related channel: Y(1S)→γp̄p̄
- Nature yet unclear
 - baryonium, multiquark state, FSI effect ?


Radiative J/ ψ and ψ' decays into p p

Partial Wave Analysis of J/ψ→γp̄p and
 ψ'→γp̄p in the mass region m_{p̄p}<2.2 GeV/c²

J/ψ \rightarrow γp \bar{p} : Significant contributions of X(p \bar{p}), f₂(1920), f₀(2100), and non-resonant 0⁺⁺ p \bar{p} wave

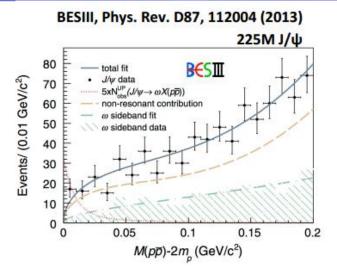
→ Structure at threshold $X(p\bar{p})$: $J^{PC} = 0^{-+}$ Breit-Wigner parameterization:

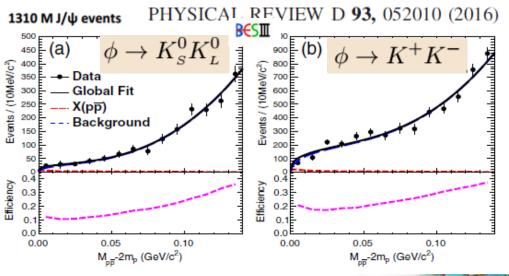
ψ'→γp̄̄̄: X(p̄̄̄̄) production is suppressed by a factor of ~20 over production in J/ψ→γp̄̄̄̄̄̄

Hadronic J/ ψ decays into ω p \bar{p} and ϕ p \bar{p}

Study of $J/\psi \rightarrow \omega p\bar{p}$ and $J/\psi \rightarrow \Phi p\bar{p}$ may shed further light on the nature of $X(p\bar{p})$

• $J/\psi \rightarrow \omega p p$

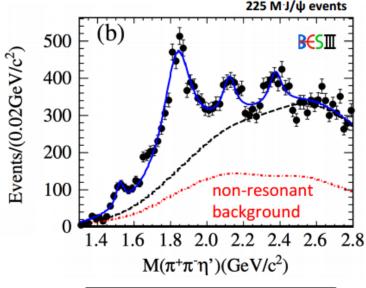

B(J/
$$\psi \rightarrow \omega X(p\bar{p}) \rightarrow \omega p\bar{p}$$
)
<3.7x10⁻⁶ (95% CL)

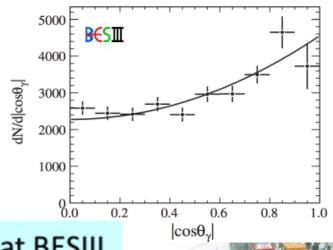

>10x suppressed compared to J/ψ →γX(p̄p)→γp̄p

• $J/\psi \rightarrow \phi p p$

B(J/
$$\psi$$
 \rightarrow Φ X(p \bar{p}) \rightarrow Φ p \bar{p}) <2x10⁻⁷ (90% CL)

>100x suppressed compared to $J/\psi \rightarrow \gamma X(p\bar{p}) \rightarrow \gamma p\bar{p}$

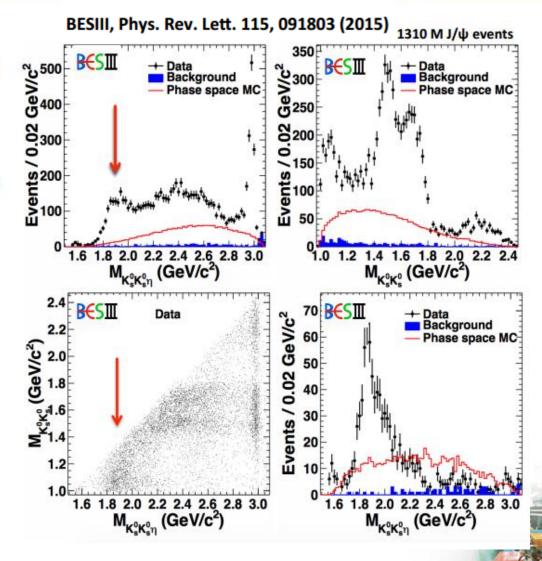

X(1835) in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$


BESIII, Phys. Rev. Lett. 106, 072002 (2011)

- X(1835) previously observed at BES and BESII
- Nature unclear, interpretations include glueball, p
 p bound state, excited η meson
- Confirmed at BESIII with two additional structures above 2 GeV/c²

Resonance	$M(\text{MeV}/c^2)$	$\Gamma({ m MeV}/c^2)$	
$f_1(1510)$	1522.7 ± 5.0	48 ± 11	>5.7σ
X(1835)	1836.5 ± 3.0	190.1 ± 9.0	>20σ
X(2120)	2122.4 ± 6.7	83 ± 16	$>7.2\sigma$
X(2370)	2376.3 ± 8.7	83 ± 17	>6.40

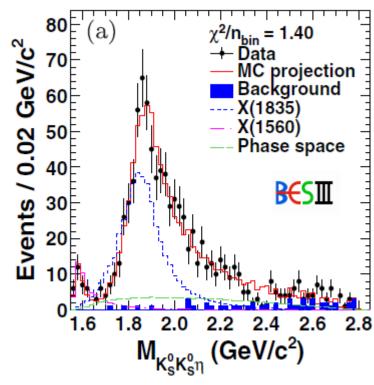
X(1835) angular distribution consistent with pseudoscalar, but other spin-parity assignments not exclude



Systematic studies of X(1835) ongoing at BESIII

X(1835) in $J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta$

- Structure in invariant K_SK_Sη mass at ~1.85 GeV/c²
- Strong correlation with enhancement at K_SK_S mass threshold (interpretated as f₀(980))
- Structure in K_SK_Sη is enhanced for m(K_SK_S)<1.1 GeV/c²

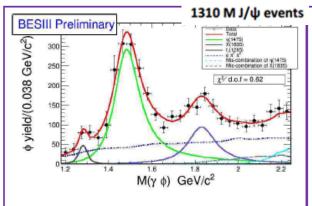

X(1835) in $J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta$

- Partial wave analysis for m(K_SK_S)<1.1 GeV/c² and m(K_SK_Sη)<2.8 GeV/c²
- Two resonant pseudoscalar components (Breit-Wigner parameterization) required in best fit hypothesis

$$X(1835) \rightarrow f_0(980)\eta$$
 (>12.9 σ)
 $m = 1844 \pm 19^{+16}_{-25} \text{ MeV}/c^2$
 $\Gamma = 192^{+20+62}_{-17-43} \text{ MeV}$

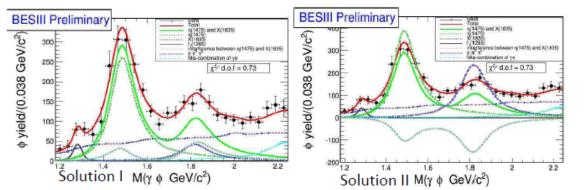
$$X(1560) \rightarrow f_0(980)\eta$$
 (>8.9 σ)
 $m = 1565 \pm 8^{+0}_{-63} \text{ MeV}/c^2$
 $\Gamma = 45^{+14+21}_{-13-28} \text{ MeV}$

BESIII, Phys. Rev. Lett. 115, 091803 (2015) 1310 M J/ ψ events



consistent with those of $\eta(1405)/\eta(1475)$ within 2σ and more further study is need

X(1835) in $J/\psi \rightarrow \gamma\gamma\phi$


preliminary

- A comparison of the decay rate for $X \rightarrow \gamma V$ ($V = \rho, \phi, \omega$) can provide information on the flavor content of X(1835)
- f1(1285) , η(1405)/η(1475) and X(1835) are evident by fitting M(γφ)

Assuming no interference

	Mass (MeV/c²)	Γ(MeV/c²)
η(1405/1475)	1475±7±16	132±15±23
X(1835)	1826±13±29	148±39±31

Interference between $\eta(1405/1475)$ and $\chi(1835)$

	Mass (MeV/c²)	Γ(MeV/c²)
η(1405/1475)	1479±11±21	133±35±20
X(1835)	1812±59±42	161±47±24

	Mass (MeV/c²)	Γ(MeV/c²)
η(1405/1475)	1479±11±16	132±36±31
X(1835)	1813±61±45	160±81±43

 $M(\eta(1405))=(1408\pm1.8)MeV/c^2;$ $\Gamma(\eta(1405))=(51.0\pm2.9)MeV/c^2$ $M(\eta(1475))=(1476\pm4)MeV/c^2;$ $\Gamma(\eta(1475))=(85\pm9)MeV/c^2$ $M(X(1835))=(1835.7^{+5.0}_{-3.2})MeV/c^2;$ $\Gamma(X(1835))=(99\pm50)MeV/c^2$ PDG Value

X(1835) and other states in $J/\psi \rightarrow \gamma\gamma\phi$

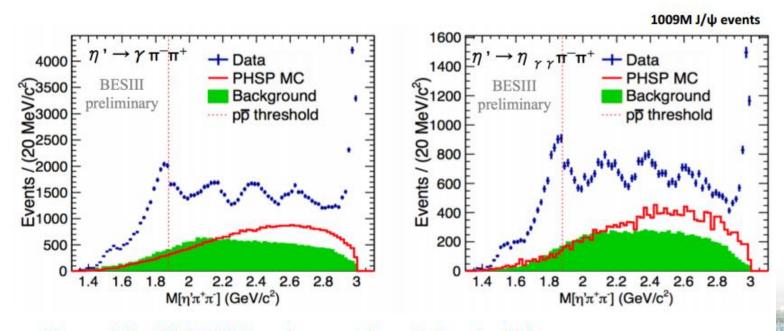
preliminary

- > X(1835) is first observed in $\gamma \phi$ final state, more studies are needed to make sure the nature of X(1835).
- The structure in $\gamma \phi$ favors $\eta(1475)$. One state assumption: the ratio between $\gamma \rho$ and $\gamma \phi$ final states is a little larger than the prediction in Ref[1].

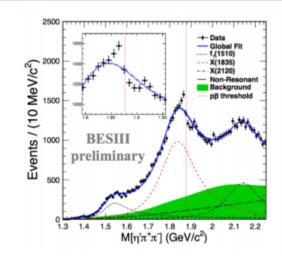
Two states assumption: $\eta(1475)$ probably contains the $s\bar{s}$ component.

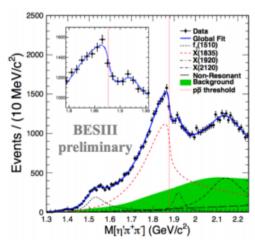
- Assuming $\eta(1405)$ and $\eta(1475)$ belong to one meson [1]: $\Gamma(\eta(1405/1475) \rightarrow \gamma \rho) : \Gamma(\eta(1405/1475) \rightarrow \gamma \phi) = 3.8 : 1$
- 1 (η(1403/1473)-7 γρ) .1 (η(1403/1473)-7 γψ) = 5.8 . .
- Assuming $\eta(1405/1475)$ is glueball[2]: $\Gamma(\eta(1405/1475) \rightarrow \gamma \rho) : \Gamma(\eta(1405/1475) \rightarrow \gamma \phi) = 1: 1$

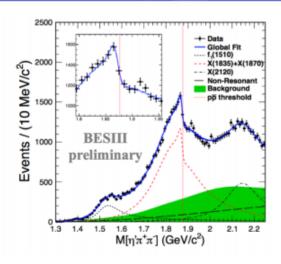
The partial width relationship of γρ and γφ final states


Do	No intenference	Interference between $\eta(1405/1475)$ and $X(1835)$	
BESIII L	No interference	Solution 1	Solution 2
$\Gamma(f_1(1285) \rightarrow \gamma \rho)[3]:\Gamma(f_1(1285) \rightarrow \gamma \phi)$	2/in(116.6 ±77.5):1	(128.8 \pm 96.7):1	(129.3 \pm 99.8):1
$\Gamma(\eta(1405/1475) \rightarrow \gamma \rho)[4]:\Gamma(\eta(1405/1475) \rightarrow \gamma \phi)$	(9.8 ± 20) : 1	(6.6 ± 2.1) : 1	(9.9 ± 2.8) : 1

- [1] X. G. Wu et, al. Phys. Rev. D 87, 014023.
- [2] L. Kopke and N. Wermes Phys. Rep. 174, 67.
- [3] BES Collaboration Phys. Lett. B 594, 47.
- [4] Particle Data Group Chin. Phys. C 38, 090001.


Connection of X(p p) and X(1835)


- If X(1835) couples to p\(\bar{p}\) the lineshape would be affected at the p\(\bar{p}\)
 threshold
- Update of J/ψ→γπ⁺π⁻η' analysis with 1.09x10⁹ J/ψ events
 - Using η'→ηπ⁺π⁻ and η→γπ⁺π⁻
 - X(1835), X(2120), X(2370) and η_c signals; structure at ~2600 MeV/c²

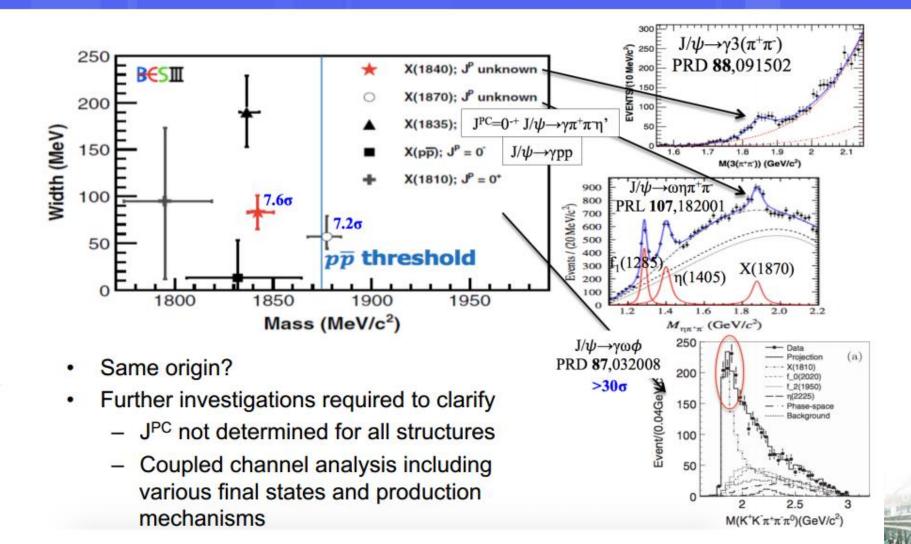


Drop of the X(1835) lineshape at the pp̄ threshold!

Connection of $X(p \bar{p})$ and X(1835)

Parameterization with single Breit-Wigner fails to describe the data

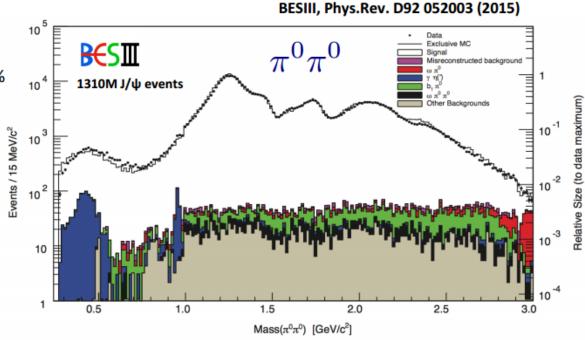
Model 1:
Flatte lineshape
with strong coupling to pp
and one additional,
narrow Breit-Wigner at
~1920 MeV/c²

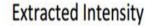

Model 1 and 2 yield almost equal fit quality
Both fits suggest two resonances:

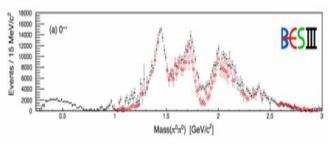
- one broad resonance below threshold
- one narrow state very close to pp threshold

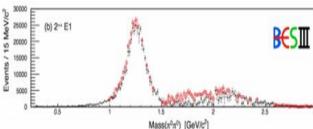
Model 2:

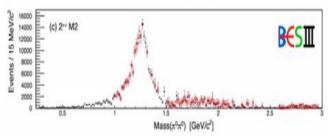
Coherent sum of X(1835) Breit-Wigner and one additional, narrow Breit-Wigner at ~1870 MeV/c²


Further study of X(p p) threshold and X(1835)

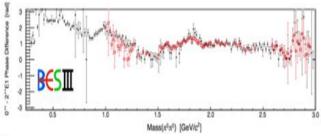

Model Independent PWA of $J/\psi \rightarrow \gamma \pi^0 \pi^0$

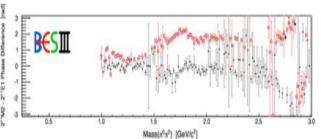

- Radiative J/ψ decays into two pseudoscalar mesons
 - Search for scalar and tensor glueballs (predicted at ~1.5 to ~2 GeV/c²)
- $\pi^0\pi^0$ system: only significant 0⁺⁺ and 2⁺⁺ contributions
 - Many broad and overlapping resonances, many open channels
 complex structure, parameterization challenging
 - Model Independent Partial Wave Analysis


>440k reconstructed events at a background level of 1.8%



Model Independent PWA of $J/\psi \rightarrow \gamma \pi^0 \pi^0$



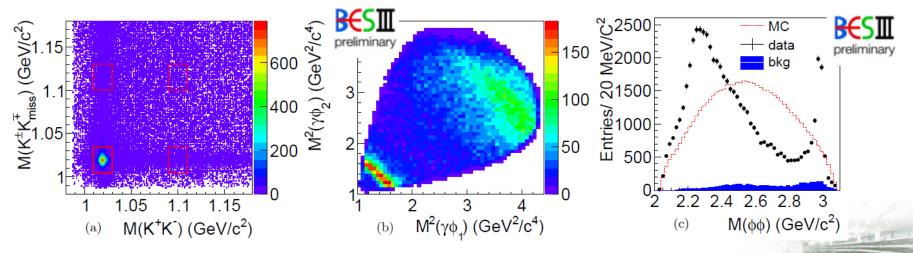


BESIII, Phys.Rev. D92 052003 (2015)

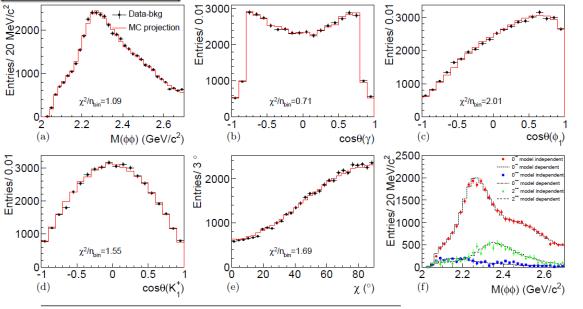
Relative Phase wrt/ 2⁺⁺ E1 amplitude

nominal solution ambigous solution

- ✓ A piecewise function that describes the dynamics of the $\pi^0\pi^0$ system is determined as a function of M($\pi^0\pi^0$)
- ✓ Significant features of the scalar spectrum includes structures below 1.5, near 1.7 and 2.0GeV/c²
- ✓ 2⁺⁺ amplitude indicates a dominant contribution from f₂(1270)
- ✓ Ambiguities present above K K threshold


PWA of $J/\psi \rightarrow \gamma \phi \phi$

- Lattice QCD predictions:
 - Ground state of 2⁺⁺ glueball in 2.3 ~2.4 GeV/c²
 - Ground state of 0⁻⁺ glueball in 2.3~2.6 GeV/c²
- Structures in φφ spectrum:
 - Pseudoscalar state η(2225) was observed in J/ψ→γφφ
 - For higher 0^{-+} mass states above 2 GeV/ c^2 , very little is known.
 - Broad 2++ structures decaying to $\varphi\varphi$ were reported around 2.3 GeV in $\pi^\text{-}N$ reactions and in $p\bar{p}$ central collisions


PWA of $J/\psi \rightarrow \gamma \phi \phi$

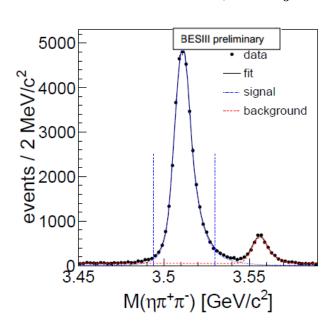
- Use 1.3×10^9 J/ ψ events collected by BESIII in 2009 and 2012
- PWA procedure
 - ✓ Covariant tensor formalism
 - ✓ Data-driven background subtraction
 - ✓ Resonances parameterized by relative Breit-Wigner with constant width
 - ✓ Resonance with significance $> 5\sigma$ are selected as components in solution

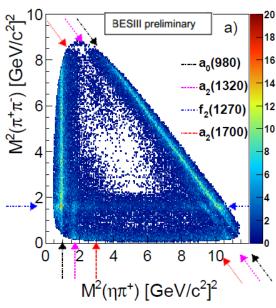
PWA of $J/\psi \rightarrow \gamma \Phi \Phi$

BESIII preliminary

- Pesudoscalar: $\eta(2225)$, dominant $\eta(2100)$ and X(2500)
- Tensor: $f_2(2010)$, $f_2(2300)$, $f_2(2340)$: stated in π -p reaction; strong $f_2(2340)$ production

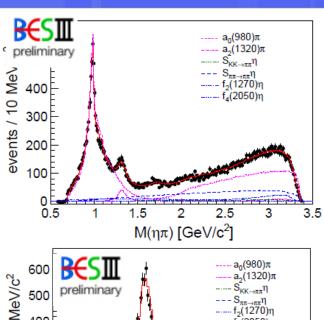
Resonance	Μ	$I(\text{MeV}/c^2)$	2) $\Gamma({ m MeV}/$	c^2)	B.F. $(\times 10^{-4})$	Sig.
$\eta(2225)$	2	$216^{+4}_{-5}{}^{+2}_{-1}$	$^{1}_{1}$ 185^{+12}_{-14}	-43 -17	$(2.40 \pm 0.10^{+2.47}_{-0.18})$	$28\;\sigma$
$\eta(2100)$	20	$050^{+30}_{-24}^{+7}_{-2}$	$^{5}_{6}$ 250^{+36}_{-30}	181 164	$(3.30 \pm 0.09^{+0.18}_{-3.04})$	$22~\sigma$
X(2500)	24	$170^{+15}_{-19}{}^{+15}_{-23}$	$^{01}_{3}$ 230^{+64}_{-35}	-56 -33	$(0.17 \pm 0.02^{+0.02}_{-0.08})$	8.8σ
$f_0(2100)$		2101	224		$(0.43 \pm 0.04^{+0.24}_{-0.03})$	$24~\sigma$
$f_2(2010)$		2011	202		$(0.35 \pm 0.05^{+0.28}_{-0.15})$	$9.5 \ \sigma$
$f_2(2300)$		2297	149		$(0.44 \pm 0.07^{+0.09}_{-0.15})$	$6.4~\sigma$
$f_2(2340)$		2339	319		$(1.91 \pm 0.14^{+0.72}_{-0.73})$	11σ
0 ⁻⁺ PHSP			\		$(2.74 \pm 0.15^{+0.16}_{-1.48})$	6.8σ

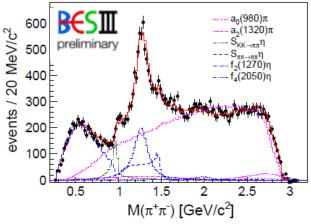

The new experimental results are helpful for mapping out the pseudoscalar excitations and searching for a 0⁻⁺ glueball



fixed to PDG

Amplitude Analysis of $\chi_{C1} \rightarrow \eta \pi^+ \pi^-$


- $\chi_{C1} \rightarrow \eta \pi^+ \pi^-$ is suitable to look for 1⁻⁺ exotics
 - \checkmark $\pi_1(1600)$ was studied in χ_{c1} decays by CLEO-c
 - \checkmark only $\pi_1(1400)$ was reported in $\eta\pi$ final state
- Further study of $a_0(980)$ and $a_2(1700)$ in $\eta\pi$ final state



- ✓ Two body structures $a_0(980)$, $a_2(1320)$ and $f_2(1270)$ are evident similar to previous analysis
- ✓ The events in the upper left corner are compatible with $a_2(1700)$ hypothesis

Amplitude Analysis of $\chi_{C1} \rightarrow \eta \pi^+ \pi^-$

Decay	$\mathcal{B}(\chi_{c1} \to \eta \pi^+ \pi^-) \ [10^{-3}]$
$\eta \pi^+ \pi^-$	$4.676 \pm 0.030 \pm 0.232 \pm 0.158$
$a_0(980)^+\pi^-$	$3.422 \pm 0.033 \pm 0.193 \pm 0.115$
$a_2(1320)^+\pi^-$	$0.181 \pm 0.009 \pm 0.017 \pm 0.006$
$a_2(1700)^+\pi^-$	$0.049 \pm 0.005 \pm 0.007 \pm 0.002$
$S_{KK}\eta$	$0.114 \pm 0.006 \pm 0.014 \pm 0.004$
$S_{\pi\pi}\eta$	$0.761 \pm 0.019 \pm 0.05 \pm 0.026$
$(\pi^+\pi^-)_S\eta$	$0.829 \pm 0.020 \pm 0.049 \pm 0.028$
$f_2(1270)\eta$	$0.368 \pm 0.012 \pm 0.056 \pm 0.012$
$f_4(2050)\eta$	$0.026 \pm 0.004 \pm 0.008 \pm 0.001$
Exotic candidates	U.L. [90% C.L.]
$\pi_1(1400)$	0.58 ± 0.20 < 0.046
$\pi_1(1600)$	0.11 ± 0.10 < 0.015
$\pi_1(2015)$	0.06 ± 0.03 < 0.008

- ✓ Clear evidence for $a_2(1700)$ in χ_{c1} decays
- ✓ First measurement of $g_{\eta/\pi}$ using $a_0(980)$ → ηπ line shape
- ✓ Upper limits for π₁(1⁻⁺) in 1.4 - 2.0 GeV/c² region are measured

Conclusion and outlook

- Many interesting results in light quark spectroscopy from BESIII
 - \checkmark Systematic studies to understand X(1835) and other structures observed near ppbar threshold
 - X(1835) nature unclear: p̄p bound state, glueball, excited η meson?
 - ✓ Sophisticated model independent partial wave analysis of $J/\psi \rightarrow \gamma \pi^0 \pi^0$
 - \checkmark PWA of J/ψ→γφφ
 - ✓ Amplitude Analysis of $\chi_{C1} \rightarrow \eta \pi^+ \pi^-$
- Expect more important results from BESIII