Introduction to the SM (1)

Yuval Grossman

Cornell

General remarks

- Please ask questions!
- Email: yg73@cornell.edu
- The plan:
- Intro to model building and the SM
- The gauge sector and SSB
- Flavors: quarks and leptons

Why are we here?

What is HEP?

Find the basic laws of Nature

Under some assumption this translated into

- We have quite a good answer
- It is very elegant, it is based on simple axioms and symmetries
- The generalized coordinates are fields
- We use particles to answer this question

QFT: a reminder

What is a field?

- In math: something that has a value in each point in space
- For physics we care about $\phi(x, t)$
- Temperature (scalar field)
- Wind (vector field)
- Density of people (?)
- Electric and magnetic fields (vector fields)
- How good is the field description of each of these?
- In physics a field used to be associated with a source, but now we know that fields are fundamental

How to solve a field theory?

Recall mechanics: We need to find $x(t)$

- $x(t)$ minimizes the action, S. This is an axiom
- There is one action for the whole system

$$
S=\int_{t_{1}}^{t_{2}} L(x, \dot{x}) d t
$$

- The solution is given by the E-L equation

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)=\frac{\partial L}{\partial x}
$$

- Once we know L we can find $x(t)$ up to initial conditions
- Mechanics is reduced to the question "what is L ?"

Solving field theories

A field theory: mechanics with many time dimensions

- We need to find the $\phi(x, t) \equiv \phi\left(t_{\mu}\right)$
- ϕ is the generalized coordinate, while x and t are treated the same
- We still need to minimize S

$$
S=\int \mathcal{L}\left[\phi\left(t_{\mu}\right), \partial_{\mu} \phi\left(t_{\mu}\right)\right] d^{4} t \quad \Rightarrow \quad \partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)}\right)=\frac{\partial \mathcal{L}}{\partial \phi}
$$

- We have a way to solve field theories!
- Field theory is reduced to the question "what is \mathcal{L} ?"

The harmonic oscillator

Why do we care so much about harmonic oscillators?

- Because we really care about springs?
- Because we really care about pendulums?

The harmonic oscillator

Why do we care so much about harmonic oscillators?

- Because we really care about springs?
- Because we really care about pendulums?

Because almost any function around its minimum can be approximated as a harmonic function!

Coupled oscillators

- There are normal modes, and they are are not "local"
- The energy of each mode is conserved
- Once we keep non-harmonic terms energy moves between modes

$$
V(x, y)=\frac{k_{1} x^{2}}{2}+\frac{k_{2} y^{2}}{2}+\alpha x^{2} y
$$

- What determines the rate of energy transfer?
- Assuming small oscillations, fields are coupled oscillators!

Quantum mechanics

The quantum SHO

$$
H=\frac{p^{2}}{2 m}+\frac{m \omega^{2} x^{2}}{2} \quad E_{n}=(n+1 / 2) \hbar \omega
$$

Consider a system with 2 DOFs and same mass with

$$
V(x, y)=\frac{k x^{2}}{2}+\frac{k y^{2}}{2}+\alpha x y
$$

The normal modes are

$$
q_{ \pm}=\frac{1}{\sqrt{2}}(x \pm y) \quad \omega_{ \pm}^{2}=\frac{k \pm \alpha}{m}
$$

Quantum coupled oscillators

$$
\begin{gathered}
V(x, y)=\frac{k x^{2}}{2}+\frac{k y^{2}}{2}+\alpha x y \\
q_{ \pm}=\frac{1}{\sqrt{2}}(x \pm y) \quad \omega_{ \pm}^{2}=\frac{k \pm \alpha}{m}
\end{gathered}
$$

1) What is the QM spectrum of this system?

Quantum coupled oscillators

$$
\begin{gathered}
V(x, y)=\frac{k x^{2}}{2}+\frac{k y^{2}}{2}+\alpha x y \\
q_{ \pm}=\frac{1}{\sqrt{2}}(x \pm y) \quad \omega_{ \pm}^{2}=\frac{k \pm \alpha}{m}
\end{gathered}
$$

1) What is the QM spectrum of this system?

$$
\left(n_{+}+1 / 2\right) \hbar \omega_{+}+\left(n_{-}+1 / 2\right) \hbar \omega_{-} \quad\left|n_{+}, n_{-}\right\rangle
$$

2) What we will have when we add a $\lambda x^{2} y$ term

Quantum coupled oscillators

$$
\begin{gathered}
V(x, y)=\frac{k x^{2}}{2}+\frac{k y^{2}}{2}+\alpha x y \\
q_{ \pm}=\frac{1}{\sqrt{2}}(x \pm y) \quad \omega_{ \pm}^{2}=\frac{k \pm \alpha}{m}
\end{gathered}
$$

1) What is the QM spectrum of this system?

$$
\left(n_{+}+1 / 2\right) \hbar \omega_{+}+\left(n_{-}+1 / 2\right) \hbar \omega_{-} \quad\left|n_{+}, n_{-}\right\rangle
$$

2) What we will have when we add a $\lambda x^{2} y$ term

Energy can transfer between the modes!

SHO and photons

I have two questions:

- What is the energy that it takes to excite a SHO by one level?
- What is the energy of the photon?

Excitations of SHOs are particles

- Feynman diagrams are a tool that use perturbation theory to calculate probably of transition

A short summary

- QFT is our framework to understand the basic laws of Nature
- Given \mathcal{L} we use perturbation theory and Feynman diagrams to calculate
- Our aim is to find \mathcal{L}

Symmetries

Symmetries and representations

Example: 3d real space in classical mechanics with several particles with coordinated a, b, c, \ldots

- We require that L is invariant under rotation
- We construct invariants from the DOFs. They are called singlets or scalars

$$
C_{s}=a_{i} b_{i}, \quad C_{a}=\epsilon_{i j k} a_{i} b_{j} c_{k}
$$

- We then require that L is a function of the C_{s} and C_{a} and their time derivative

Generalizations

- In mechanics, \vec{r} lives in 3d real space and is a vector
- Fields do not live in real space. They live in some mathematical space
- They also do not have to be vectors, but can be scalars or tensors (representation)
- The idea is similar to what we did in mechanics
- We require \mathcal{L} to be invariant under rotation in that mathematical space
- Thus \mathcal{L} depends only on combinations of fields that form singlets
- All this is related to a subject called Lie groups
- We usually care about $S O(N), S U(N)$ and $U(1)$

Local symmetries

Local symmetry

Basic idea: rotations depend on x_{μ}

- It is kind of logical and we think that all imposed symmetries in Nature are local
- The kinetic term $\left|\partial_{\mu} \phi\right|^{2}$ in not invariant
- We want a kinetic term (why?)
- We can save the kinetic term if we add a field that is
- Massless
- Spin 1

Local symmetries \Rightarrow force fields

Accidental symmetries

- We only impose local symmetries
- Yet, because we truncate the expansion, we can get symmetries as output
- They are global, and are called accidental
- Example: $U(1)$ with $X(q=1)$ and $Y(q=-4)$

$$
V\left(X X^{*}, Y Y^{*}\right) \Rightarrow U(1)_{X} \times U(1)_{Y}
$$

- $X^{4} Y$ breaks this symmetry
- In the SM baryon and lepton numbers are accidental symmetries

The SM

How to "built" Lagrangians

- \mathcal{L} is:
- The most general one that is invariant under some symmetries (democratic principle)
- We work up to some order (usually 4)
- We need the following input:
- What are the symmetries we impose
- What DOFs we have and how they transform under the symmetry
- The output is
- A Lagrangian with N parameters
- We need to measure its parameters and test it

The SM

Input: Symmetries and fields

- Symmetry: 4d Poincare and

$$
S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}
$$

- Fields:
- 3 copies of QUDLE fermions

$$
\begin{aligned}
& Q_{L}(3,2)_{1 / 6} \quad U_{R}(3,1)_{2 / 3} \quad D_{R}(3,1)_{-1 / 3} \\
& L_{L}(1,2)_{-1 / 2} \quad E_{R}(1,1)_{-1}
\end{aligned}
$$

- One scalar

$$
\phi(1,2)_{+1 / 2}
$$

Then Nature is described by

- Output: the most general \mathcal{L} up to $\operatorname{dim} 4$

$$
\mathcal{L}=\mathcal{L}_{\text {kin }}+\mathcal{L}_{\phi}+\mathcal{L}_{\psi}+\mathcal{L}_{\text {Yukawa }}
$$

- This model has a $U(1)_{B} \times U(1)_{e} \times U(1)_{\mu} \times U(1)_{\tau}$ accidental symmetry
- Initial set of measurements to find the parameters
- SSB: $S U(2)_{L} \times U(1)_{Y} \rightarrow U(1)_{E M}$
- Fermion masses, gauge couplings and mixing angles

The SM pass (almost) all of it tests

Some summary

- We have rules to built Lagrangians based on symmetries
- We use them to get the SM
- Tomorrow we will discuss the SM in more details

