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General remarks

Please ask questions!

Email: yg73@cornell.edu

The plan:

Intro to model building and the SM

The gauge sector and SSB

Flavors: quarks and leptons
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Why are we here?
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What is HEP?

Find the basic laws of Nature

Under some assumption this translated into

L = ?

We have quite a good answer

It is very elegant, it is based on simple axioms and
symmetries

The generalized coordinates are fields

We use particles to answer this question
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QFT: a reminder
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What is a field?

In math: something that has a value in each point in
space

For physics we care about φ(x, t)

Temperature (scalar field)

Wind (vector field)

Density of people (?)

Electric and magnetic fields (vector fields)

How good is the field description of each of these?

In physics a field used to be associated with a source,
but now we know that fields are fundamental
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How to solve a field theory?

Recall mechanics: We need to find x(t)

x(t) minimizes the action, S. This is an axiom

There is one action for the whole system

S =
∫ t2

t1
L(x, ẋ)dt

The solution is given by the E-L equation

d

dt

(

∂L

∂ẋ

)

=
∂L

∂x

Once we know L we can find x(t) up to initial conditions

Mechanics is reduced to the question “what is L?”
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Solving field theories

A field theory: mechanics with many time dimensions

We need to find the φ(x, t) ≡ φ(tµ)

φ is the generalized coordinate, while x and t are
treated the same

We still need to minimize S

S =
∫

L[φ(tµ), ∂µφ(tµ)]d4t ⇒ ∂µ

(

∂L
∂ (∂µφ)

)

=
∂L
∂φ

We have a way to solve field theories!

Field theory is reduced to the question “what is L?”
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The harmonic oscillator

Why do we care so much about harmonic oscillators?

Because we really care about springs?

Because we really care about pendulums?
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The harmonic oscillator

Why do we care so much about harmonic oscillators?

Because we really care about springs?

Because we really care about pendulums?

Because almost any function around its minimum can be
approximated as a harmonic function!
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Coupled oscillators

There are normal modes, and they are are not “local”

The energy of each mode is conserved

Once we keep non-harmonic terms energy moves
between modes

V (x, y) =
k1x2

2
+

k2y2

2
+ αx2y

What determines the rate of energy transfer?

Assuming small oscillations, fields are coupled
oscillators!
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Quantum mechanics

Y. Grossman The SM (1) HCPSS, Aug. 11, 2016 p. 11



The quantum SHO

H =
p2

2m
+

mω2x2

2
En = (n + 1/2)~ω

Consider a system with 2 DOFs and same mass with

V (x, y) =
kx2

2
+

ky2

2
+ αxy

The normal modes are

q± =
1√
2

(x ± y) ω2
±

=
k ± α

m
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Quantum coupled oscillators

V (x, y) =
kx2

2
+

ky2

2
+ αxy

q± =
1√
2

(x ± y) ω2
±

=
k ± α

m

1) What is the QM spectrum of this system?
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Quantum coupled oscillators

V (x, y) =
kx2

2
+

ky2

2
+ αxy

q± =
1√
2

(x ± y) ω2
±

=
k ± α

m

1) What is the QM spectrum of this system?

(n+ + 1/2)~ω+ + (n− + 1/2)~ω− |n+, n−〉

2) What we will have when we add a λx2y term

Y. Grossman The SM (1) HCPSS, Aug. 11, 2016 p. 13



Quantum coupled oscillators

V (x, y) =
kx2

2
+

ky2

2
+ αxy

q± =
1√
2

(x ± y) ω2
±

=
k ± α

m

1) What is the QM spectrum of this system?

(n+ + 1/2)~ω+ + (n− + 1/2)~ω− |n+, n−〉

2) What we will have when we add a λx2y term

Energy can transfer between the modes!
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SHO and photons

I have two questions:

What is the energy that it takes to excite a SHO by one
level?

What is the energy of the photon?

Excitations of SHOs are particles

Feynman diagrams are a tool that use perturbation
theory to calculate probably of transition

Y. Grossman The SM (1) HCPSS, Aug. 11, 2016 p. 14



A short summary

QFT is our framework to understand the basic laws of
Nature

Given L we use perturbation theory and Feynman
diagrams to calculate

Our aim is to find L
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Symmetries
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Symmetries and representations

Example: 3d real space in classical mechanics with several
particles with coordinated a, b, c,...

We require that L is invariant under rotation

We construct invariants from the DOFs. They are
called singlets or scalars

Cs = aibi, Ca = ǫijkaibjck

We then require that L is a function of the Cs and Ca

and their time derivative
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Generalizations

In mechanics, ~r lives in 3d real space and is a vector

Fields do not live in real space. They live in some
mathematical space

They also do not have to be vectors, but can be scalars
or tensors (representation)

The idea is similar to what we did in mechanics

We require L to be invariant under rotation in that
mathematical space

Thus L depends only on combinations of fields that
form singlets

All this is related to a subject called Lie groups

We usually care about SO(N), SU(N) and U(1)
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Local symmetries
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Local symmetry

Basic idea: rotations depend on xµ

It is kind of logical and we think that all imposed
symmetries in Nature are local

The kinetic term |∂µφ|2 in not invariant

We want a kinetic term (why?)

We can save the kinetic term if we add a field that is

Massless

Spin 1

Local symmetries ⇒ force fields
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Accidental symmetries

We only impose local symmetries

Yet, because we truncate the expansion, we can get
symmetries as output

They are global, and are called accidental

Example: U(1) with X(q = 1) and Y (q = −4)

V (XX∗, Y Y ∗) ⇒ U(1)X × U(1)Y

X4Y breaks this symmetry

In the SM baryon and lepton numbers are accidental
symmetries
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The SM

Y. Grossman The SM (1) HCPSS, Aug. 11, 2016 p. 22



How to “built” Lagrangians

L is:

The most general one that is invariant under some
symmetries (democratic principle)

We work up to some order (usually 4)

We need the following input:

What are the symmetries we impose

What DOFs we have and how they transform under
the symmetry

The output is

A Lagrangian with N parameters

We need to measure its parameters and test it
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The SM

Input: Symmetries and fields

Symmetry: 4d Poincare and

SU(3)C × SU(2)L × U(1)Y

Fields:

3 copies of QUDLE fermions

QL(3, 2)1/6 UR(3, 1)2/3 DR(3, 1)−1/3

LL(1, 2)−1/2 ER(1, 1)−1

One scalar

φ(1, 2)+1/2
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Then Nature is described by

Output: the most general L up to dim 4

L = Lkin + Lφ + Lψ + LY ukawa

This model has a U(1)B × U(1)e × U(1)µ × U(1)τ
accidental symmetry

Initial set of measurements to find the parameters

SSB: SU(2)L × U(1)Y → U(1)EM
Fermion masses, gauge couplings and mixing
angles

The SM pass (almost) all of it tests
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Some summary

We have rules to built Lagrangians based on
symmetries

We use them to get the SM

Tomorrow we will discuss the SM in more details
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