Statistical Methods for Particle Physics Lecture 1: introduction & statistical tests

https://indico.fnal.gov/conferenceTimeTable.py?confId=11505

Lectures on Statistics HCPSS – Fermilab 11,12 August 2016

Glen Cowan Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

HCPSS 2016 / Statistics Lecture 1

Outline

Lecture 1: Introduction and review of fundamentals Probability, random variables, pdfs Parameter estimation, maximum likelihood Statistical tests for discovery and limits

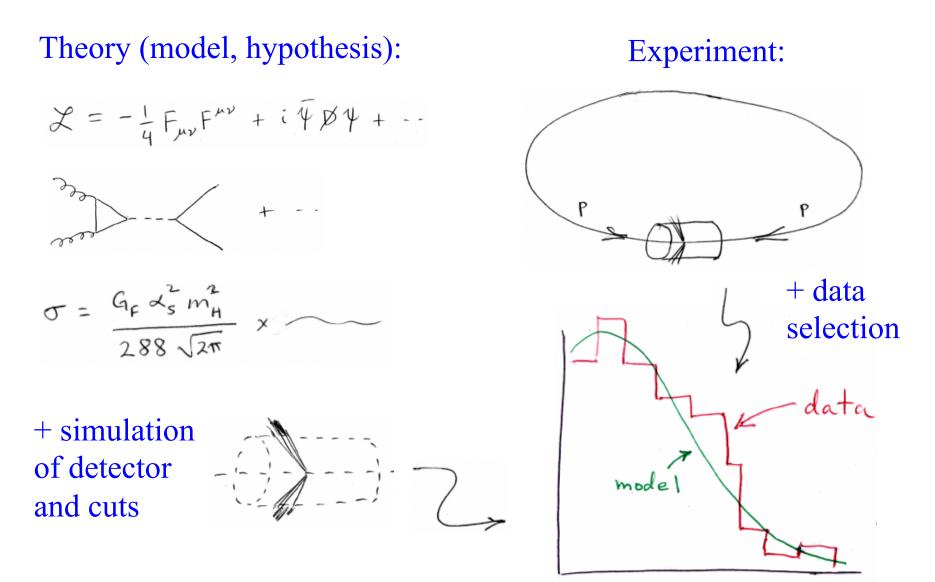
Lecture 2: Further topics

Brief overview of multivariate methods Nuisance parameters and systematic uncertainties Experimental sensitivity

Some statistics books, papers, etc.

- G. Cowan, *Statistical Data Analysis*, Clarendon, Oxford, 1998 R.J. Barlow, *Statistics: A Guide to the Use of Statistical Methods in the Physical Sciences*, Wiley, 1989
- Ilya Narsky and Frank C. Porter, *Statistical Analysis Techniques in Particle Physics*, Wiley, 2014.
- L. Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986
- F. James., *Statistical and Computational Methods in Experimental Physics*, 2nd ed., World Scientific, 2006
- S. Brandt, *Statistical and Computational Methods in Data Analysis*, Springer, New York, 1998 (with program library on CD) K.A. Olive et al. (Particle Data Group), *Review of Particle Physics*, Chin. Phys. C, 38, 090001 (2014); see also pdg.lbl.gov sections on probability, statistics, Monte Carlo

Theory ↔ Statistics ↔ Experiment



HCPSS 2016 / Statistics Lecture 1

Quick review of probablility

Frequentist (*A* = outcome of repeatable observation):

$$P(A) = \lim_{n \to \infty} \frac{\text{outcome is } A}{n}$$

Subjective (A = hypothesis): P(

$$P(A) =$$
degree of belief that A is true

Conditional probability:
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Bayes' theorem:
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{P(B|A)P(A)}{\sum_i P(B|A_i)P(A_i)}$$

Frequentist Statistics – general philosophy

In frequentist statistics, probabilities are associated only with the data, i.e., outcomes of repeatable observations (shorthand: \vec{x}).

Probability = limiting frequency

Probabilities such as

P (Higgs boson exists), *P* (0.117 < $\alpha_{\rm s}$ < 0.121),

etc. are either 0 or 1, but we don't know which.

The tools of frequentist statistics tell us what to expect, under the assumption of certain probabilities, about hypothetical repeated observations.

A hypothesis is is preferred if the data are found in a region of high predicted probability (i.e., where an alternative hypothesis predicts lower probability).

Bayesian Statistics – general philosophy

In Bayesian statistics, use subjective probability for hypotheses:

probability of the data assuming hypothesis *H* (the likelihood) $P(H|\vec{x}) = \frac{P(\vec{x}|H)\pi(H)}{\int P(\vec{x}|H)\pi(H) dH}$ posterior probability, i.e., after seeing the data $P(H|\vec{x}) = \frac{P(\vec{x}|H)\pi(H)}{\int P(\vec{x}|H)\pi(H) dH}$ normalization involves sum over all possible hypotheses

Bayes' theorem has an "if-then" character: If your prior probabilities were $\pi(H)$, then it says how these probabilities should change in the light of the data.

No general prescription for priors (subjective!)

Quick review of frequentist parameter estimation

Suppose we have a pdf characterized by one or more parameters:

$$f(x;\theta) = \frac{1}{\theta}e^{-x/\theta}$$

random variable

parameter

Suppose we have a sample of observed values: $\vec{x} = (x_1, \ldots, x_n)$

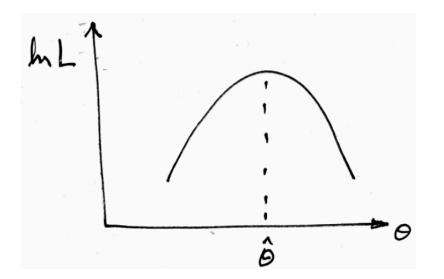
We want to find some function of the data to estimate the parameter(s):

 $\hat{\theta}(\vec{x}) \leftarrow \text{estimator written with a hat}$

Sometimes we say 'estimator' for the function of $x_1, ..., x_n$; 'estimate' for the value of the estimator with a particular data set.

Maximum Likelihood (ML) estimators

The most important frequentist method for constructing estimators is to take the value of the parameter(s) that maximize the likelihood (or equivalently the log-likelihod):

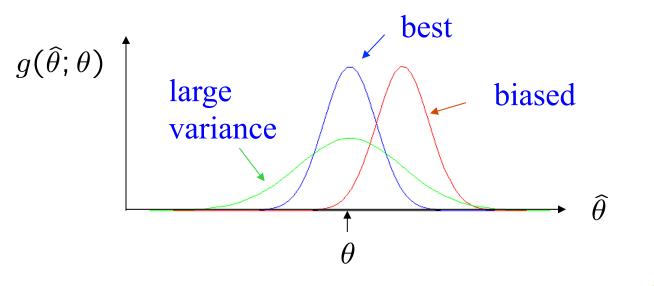


 $\theta = \operatorname{argmax} L(x|\theta)$

In some cases we can find the ML estimator as a closed-form function of the data; more often it is found numerically.

Properties of estimators

Estimators are functions of the data and thus characterized by a sampling distribution with a given (co)variance:



In general they may have a nonzero bias: $b = E[\hat{\theta}] - \theta$

Under conditions usually satisfied in practice, bias of ML estimators is zero in the large sample limit, and the variance is as small as possible for unbiased estimators. ML example: parameter of exponential pdf

Consider exponential pdf,
$$f(t; \tau) = \frac{1}{\tau}e^{-t/\tau}$$

and suppose we have i.i.d. data, t_1, \ldots, t_n

The likelihood function is
$$L(\tau) = \prod_{i=1}^{n} \frac{1}{\tau} e^{-t_i/\tau}$$

The value of τ for which $L(\tau)$ is maximum also gives the maximum value of its logarithm (the log-likelihood function):

$$\ln L(\tau) = \sum_{i=1}^{n} \ln f(t_i; \tau) = \sum_{i=1}^{n} \left(\ln \frac{1}{\tau} - \frac{t_i}{\tau} \right)$$

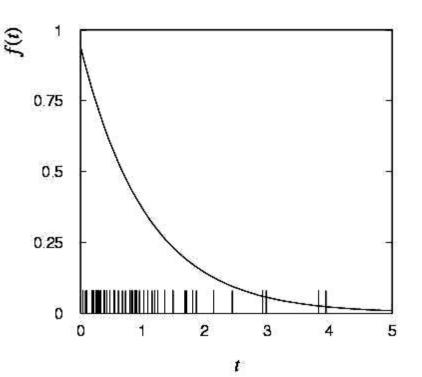
ML example: parameter of exponential pdf (2) Find its maximum by setting $\frac{\partial \ln L(\tau)}{\partial \tau} = 0$,

Monte Carlo test: generate 50 values using $\tau = 1$:

 $\rightarrow \quad \hat{\tau} = \frac{1}{n} \sum_{i=1}^{n} t_i$

We find the ML estimate:

$$\hat{\tau} = 1.062$$



ML example: parameter of exponential pdf (3) For the exponential distribution one has for mean, variance:

$$E[t] = \int_0^\infty t \, \frac{1}{\tau} e^{-t/\tau} \, dt = \tau$$

$$V[t] = \int_0^\infty (t - \tau)^2 \frac{1}{\tau} e^{-t/\tau} dt = \tau^2$$

For the ML estimator $\hat{\tau} = \frac{1}{n} \sum_{i=1}^{n} t_i$ we therefore find

$$E[\hat{\tau}] = E\left[\frac{1}{n}\sum_{i=1}^{n}t_i\right] = \frac{1}{n}\sum_{i=1}^{n}E[t_i] = \tau \quad \longrightarrow \quad b = E[\hat{\tau}] - \tau = 0$$

$$V[\hat{\tau}] = V\left[\frac{1}{n}\sum_{i=1}^{n} t_i\right] = \frac{1}{n^2}\sum_{i=1}^{n} V[t_i] = \frac{\tau^2}{n} \longrightarrow \quad \sigma_{\hat{\tau}} = \frac{\tau}{\sqrt{n}}$$

HCPSS 2016 / Statistics Lecture 1

Variance of estimators from information inequality

The information inequality (RCF) sets a lower bound on the variance of any estimator (not only ML):

$$V[\hat{\theta}] \ge \left(1 + \frac{\partial b}{\partial \theta}\right)^2 / E\left[-\frac{\partial^2 \ln L}{\partial \theta^2}\right] \qquad \text{Bound (MVB)} \\ (b = E[\hat{\theta}] - \theta)$$

Often the bias b is small, and equality either holds exactly or is a good approximation (e.g. large data sample limit). Then,

$$V[\hat{\theta}] \approx -1 \left/ E\left[\frac{\partial^2 \ln L}{\partial \theta^2}\right] \right.$$

Estimate this using the 2nd derivative of $\ln L$ at its maximum:

$$\widehat{V}[\widehat{\theta}] = -\left(\frac{\partial^2 \ln L}{\partial \theta^2}\right)^{-1} \bigg|_{\theta = \widehat{\theta}}$$

HCPSS 2016 / Statistics Lecture 1

Variance of estimators: graphical method Expand $\ln L(\theta)$ about its maximum:

$$\ln L(\theta) = \ln L(\hat{\theta}) + \left[\frac{\partial \ln L}{\partial \theta}\right]_{\theta = \hat{\theta}} (\theta - \hat{\theta}) + \frac{1}{2!} \left[\frac{\partial^2 \ln L}{\partial \theta^2}\right]_{\theta = \hat{\theta}} (\theta - \hat{\theta})^2 + \dots$$

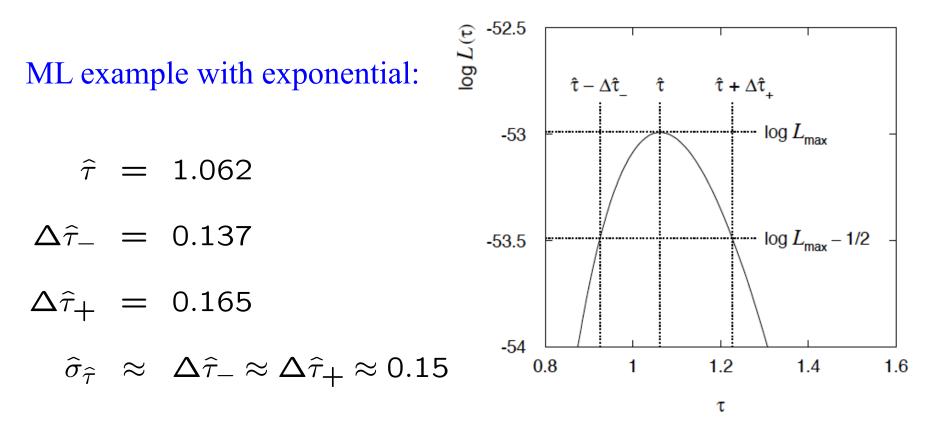
First term is $\ln L_{max}$, second term is zero, for third term use information inequality (assume equality):

$$\ln L(\theta) \approx \ln L_{\max} - \frac{(\theta - \widehat{\theta})^2}{2\widehat{\sigma^2}_{\widehat{\theta}}}$$

i.e.,
$$\ln L(\hat{\theta} \pm \hat{\sigma}_{\hat{\theta}}) \approx \ln L_{\max} - \frac{1}{2}$$

 \rightarrow to get $\hat{\sigma}_{\hat{\theta}}$, change θ away from $\hat{\theta}$ until ln *L* decreases by 1/2.

Example of variance by graphical method



Not quite parabolic $\ln L$ since finite sample size (n = 50).

HCPSS 2016 / Statistics Lecture 1

Information inequality for *N* parameters Suppose we have estimated *N* parameters $\vec{\theta} = (\theta_1, \dots, \theta_N)$. The (inverse) minimum variance bound is given by the

Fisher information matrix:

$$I_{ij} = E\left[-\frac{\partial^2 \ln L}{\partial \theta_i \partial \theta_j}\right] = -n \int f(x; \vec{\theta}) \frac{\partial^2 \ln f(x; \vec{\theta})}{\partial \theta_i \partial \theta_j} dx$$

The information inequality then states that $V - I^{-1}$ is a positive semi-definite matrix, where $V_{ij} = \text{cov}[\hat{\theta}_i, \hat{\theta}_j]$. Therefore

$$V[\hat{\theta}_i] \ge (I^{-1})_{ii}$$

Often use I^{-1} as an approximation for covariance matrix, estimate using e.g. matrix of 2nd derivatives at maximum of L.

Frequentist statistical tests

Consider a hypothesis H_0 and alternative H_1 .

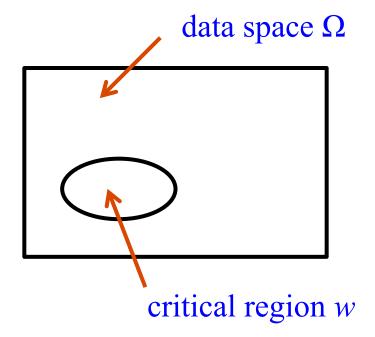
A test of H_0 is defined by specifying a critical region *w* of the data space such that there is no more than some (small) probability α , assuming H_0 is correct, to observe the data there, i.e.,

$$P(x \in w \mid H_0) \le \alpha$$

Need inequality if data are discrete.

 α is called the size or significance level of the test.

If x is observed in the critical region, reject H_0 .

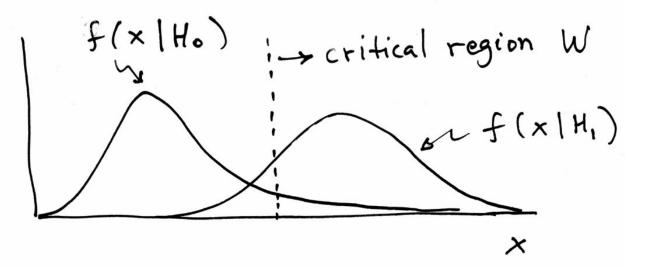


Definition of a test (2)

But in general there are an infinite number of possible critical regions that give the same significance level α .

So the choice of the critical region for a test of H_0 needs to take into account the alternative hypothesis H_1 .

Roughly speaking, place the critical region where there is a low probability to be found if H_0 is true, but high if H_1 is true:



Type-I, Type-II errors

Rejecting the hypothesis H_0 when it is true is a Type-I error. The maximum probability for this is the size of the test:

$$P(x \in W \mid H_0) \le \alpha$$

But we might also accept H_0 when it is false, and an alternative H_1 is true.

This is called a Type-II error, and occurs with probability

$$P(x \in \mathbf{S} - W | H_1) = \beta$$

One minus this is called the power of the test with respect to the alternative H_1 :

Power =
$$1 - \beta$$

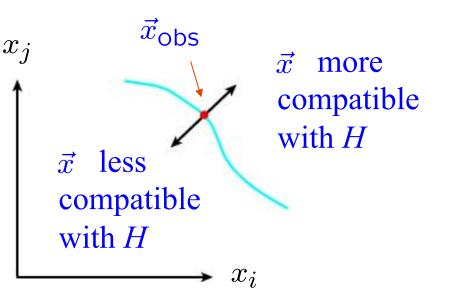
Testing significance / goodness-of-fit Suppose hypothesis *H* predicts pdf $f(\vec{x}|H)$ for a set of observations $\vec{x} = (x_1, \dots, x_n)$.

We observe a single point in this space: \vec{x}_{ODS}

What can we say about the validity of *H* in light of the data?

Decide what part of the data space represents less compatibility with *H* than does the point \vec{x}_{ODS} .

This region therefore has greater compatibility with some alternative *H*'.



p-values

Express 'goodness-of-fit' by giving the *p*-value for *H*:

p = probability, under assumption of H, to observe data with equal or lesser compatibility with H relative to the data we got.

This is not the probability that *H* is true!

In frequentist statistics we don't talk about P(H) (unless H represents a repeatable observation). In Bayesian statistics we do; use Bayes' theorem to obtain

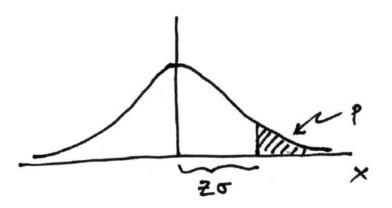
$$P(H|\vec{x}) = \frac{P(\vec{x}|H)\pi(H)}{\int P(\vec{x}|H)\pi(H) \, dH}$$

where $\pi(H)$ is the prior probability for *H*.

For now stick with the frequentist approach; result is *p*-value, regrettably easy to misinterpret as P(H).

Significance from *p*-value

Often define significance Z as the number of standard deviations that a Gaussian variable would fluctuate in one direction to give the same p-value.



$$p = \int_{Z}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \, dx = 1 - \Phi(Z)$$
 1 - TMath::Freq

 $Z = \Phi^{-1}(1-p)$ TMath::NormQuantile

HCPSS 2016 / Statistics Lecture 1

Test statistics and *p*-values

Consider a parameter μ proportional to rate of signal process.

Often define a function of the data (test statistic) q_{μ} that reflects level of agreement between the data and the hypothesized value μ .

Usually define q_{μ} so that higher values increasingly incompatibility with the data (more compatible with a relevant alternative).

We can define critical region of test of μ by $q_{\mu} \ge \text{const.}$, or equivalently define the *p*-value of μ as:

 $p_{\mu} = \int_{q_{\mu,obs}}^{\infty} f(q_{\mu}|\mu) \, dq_{\mu}$ observed value of q_{μ} pdf of q_{μ} assuming μ Equivalent formulation of test: reject μ if $p_{\mu} < \alpha$.

G. Cowan

Confidence interval from inversion of a test

Carry out a test of size α for all values of μ .

The values that are not rejected constitute a *confidence interval* for μ at confidence level CL = $1 - \alpha$.

The confidence interval will by construction contain the true value of μ with probability of at least $1 - \alpha$.

The interval will cover the true value of μ with probability $\geq 1 - \alpha$. Equivalently, the parameter values in the confidence interval have *p*-values of at least α .

To find edge of interval (the "limit"), set $p_{\mu} = \alpha$ and solve for μ .

The Poisson counting experiment

Suppose we do a counting experiment and observe *n* events.

Events could be from *signal* process or from *background* – we only count the total number.

Poisson model:

$$P(n|s,b) = \frac{(s+b)^n}{n!}e^{-(s+b)}$$

s = mean (i.e., expected) # of signal events

b = mean # of background events

Goal is to make inference about *s*, e.g.,

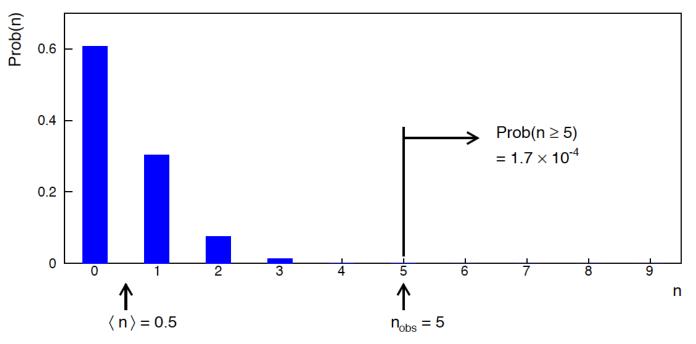
test s = 0 (rejecting $H_0 \approx$ "discovery of signal process")

test all non-zero *s* (values not rejected = confidence interval)

In both cases need to ask what is relevant alternative hypothesis. G. Cowan HCPSS 2016 / Statistics Lecture 1 Poisson counting experiment: discovery *p*-value Suppose b = 0.5 (known), and we observe $n_{obs} = 5$. Should we claim evidence for a new discovery?

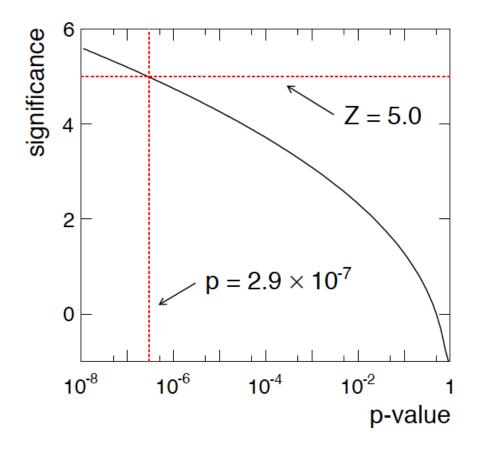
Take *n* itself as the test statistic, *p*-value for hypothesis s = 0 is

$$p$$
-value = $P(n \ge 5; b = 0.5, s = 0)$
= $1.7 \times 10^{-4} \ne P(s = 0)!$



HCPSS 2016 / Statistics Lecture 1

Poisson counting experiment: discovery significance Equivalent significance for $p = 1.7 \times 10^{-4}$: $Z = \Phi^{-1}(1-p) = 3.6$ Often claim discovery if Z > 5 ($p < 2.9 \times 10^{-7}$, i.e., a "5-sigma effect")



In fact this tradition should be revisited: *p*-value intended to quantify probability of a signallike fluctuation assuming background only; not intended to cover, e.g., hidden systematics, plausibility signal model, compatibility of data with signal, "look-elsewhere effect" (~multiple testing), etc.

Frequentist upper limit on Poisson parameter

Consider again the case of observing $n \sim \text{Poisson}(s + b)$. Suppose b = 4.5, $n_{\text{obs}} = 5$. Find upper limit on *s* at 95% CL. Relevant alternative is s = 0 (critical region at low *n*) *p*-value of hypothesized *s* is $P(n \le n_{\text{obs}}; s, b)$

Upper limit s_{up} at $CL = 1 - \alpha$ found by solving $p_s = \alpha$ for s:

$$\alpha = P(n \le n_{\text{obs}}; s_{\text{up}}, b) = \sum_{n=0}^{n_{\text{obs}}} \frac{(s_{\text{up}} + b)^n}{n!} e^{-(s_{\text{up}} + b)}$$

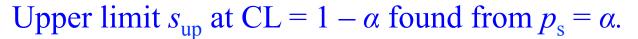
$$s_{\rm up} = \frac{1}{2} F_{\chi^2}^{-1} (1 - \alpha; 2(n_{\rm obs} + 1)) - b$$

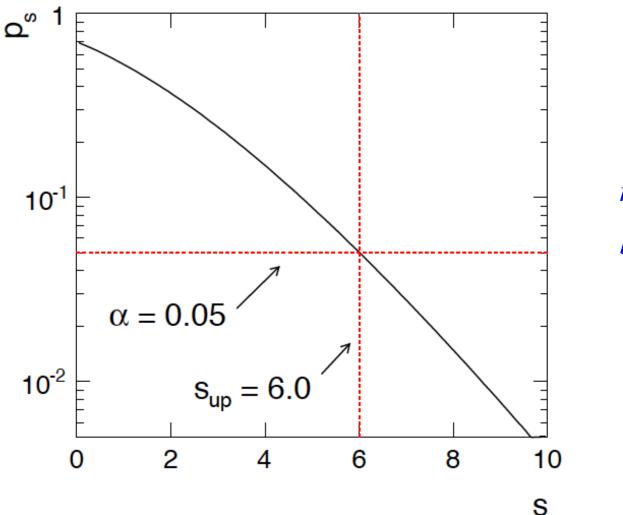
$$=\frac{1}{2}F_{\chi^2}^{-1}(0.95;2(5+1)) - 4.5 = 6.0$$

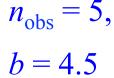
G. Cowan

HCPSS 2016 / Statistics Lecture 1

Frequentist upper limit on Poisson parameter

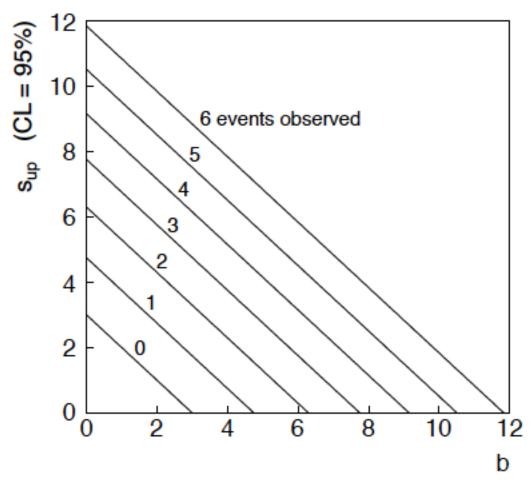






HCPSS 2016 / Statistics Lecture 1

$n \sim \text{Poisson}(s+b)$: frequentist upper limit on *s* For low fluctuation of *n* formula can give negative result for s_{up} ; i.e. confidence interval is empty.



HCPSS 2016 / Statistics Lecture 1

Limits near a physical boundary

Suppose e.g. b = 2.5 and we observe n = 0.

If we choose CL = 0.9, we find from the formula for s_{up}

 $s_{\rm up} = -0.197$ (CL = 0.90)

Physicist:

We already knew $s \ge 0$ before we started; can't use negative upper limit to report result of expensive experiment!

Statistician:

The interval is designed to cover the true value only 90% of the time — this was clearly not one of those times.

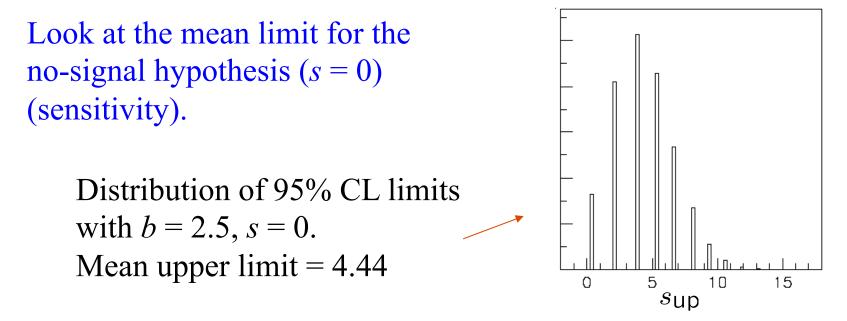
Not uncommon dilemma when testing parameter values for which one has very little experimental sensitivity, e.g., very small *s*.

Expected limit for s = 0

Physicist: I should have used CL = 0.95 — then $s_{up} = 0.496$

Even better: for CL = 0.917923 we get $s_{up} = 10^{-4}!$

Reality check: with b = 2.5, typical Poisson fluctuation in *n* is at least $\sqrt{2.5} = 1.6$. How can the limit be so low?



The Bayesian approach to limits

In Bayesian statistics need to start with 'prior pdf' $\pi(\theta)$, this reflects degree of belief about θ before doing the experiment.

Bayes' theorem tells how our beliefs should be updated in light of the data *x*:

$$p(\theta|x) = \frac{L(x|\theta)\pi(\theta)}{\int L(x|\theta')\pi(\theta') d\theta'} \propto L(x|\theta)\pi(\theta)$$

Integrate posterior pdf $p(\theta | x)$ to give interval with any desired probability content.

For e.g. $n \sim \text{Poisson}(s+b)$, 95% CL upper limit on *s* from

$$0.95 = \int_{-\infty}^{s_{\rm up}} p(s|n) \, ds$$

Bayesian prior for Poisson parameter

Include knowledge that $s \ge 0$ by setting prior $\pi(s) = 0$ for s < 0.

Could try to reflect 'prior ignorance' with e.g.

$$\pi(s) = \begin{cases} 1 & s \ge 0\\ 0 & \text{otherwise} \end{cases}$$

Not normalized but this is OK as long as L(s) dies off for large s.

Not invariant under change of parameter — if we had used instead a flat prior for, say, the mass of the Higgs boson, this would imply a non-flat prior for the expected number of Higgs events.

Doesn't really reflect a reasonable degree of belief, but often used as a point of reference;

or viewed as a recipe for producing an interval whose frequentist properties can be studied (coverage will depend on true *s*).

Bayesian interval with flat prior for s

Solve to find limit s_{up} :

$$s_{\rm up} = \frac{1}{2} F_{\chi^2}^{-1} [p, 2(n+1)] - b$$

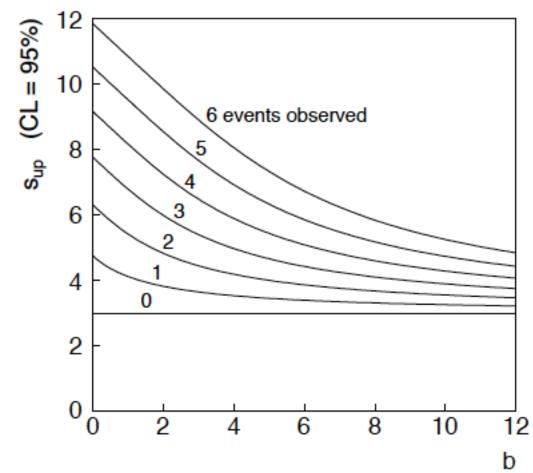
where

$$p = 1 - \alpha \left(1 - F_{\chi^2} \left[2b, 2(n+1) \right] \right)$$

For special case b = 0, Bayesian upper limit with flat prior numerically same as one-sided frequentist case ('coincidence'). Bayesian interval with flat prior for s

For b > 0 Bayesian limit is everywhere greater than the (one sided) frequentist upper limit.

Never goes negative. Doesn't depend on *b* if n = 0.



HCPSS 2016 / Statistics Lecture 1

Priors from formal rules

Because of difficulties in encoding a vague degree of belief in a prior, one often attempts to derive the prior from formal rules, e.g., to satisfy certain invariance principles or to provide maximum information gain for a certain set of measurements.

> Often called "objective priors" Form basis of Objective Bayesian Statistics

The priors do not reflect a degree of belief (but might represent possible extreme cases).

In Objective Bayesian analysis, can use the intervals in a frequentist way, i.e., regard Bayes' theorem as a recipe to produce an interval with certain coverage properties.

Priors from formal rules (cont.)

For a review of priors obtained by formal rules see, e.g.,

Robert E. Kass and Larry Wasserman, *The Selection of Prior Distributions by Formal Rules*, J. Am. Stat. Assoc., Vol. 91, No. 435, pp. 1343-1370 (1996).

Formal priors have not been widely used in HEP, but there is recent interest in this direction, especially the reference priors of Bernardo and Berger; see e.g.

L. Demortier, S. Jain and H. Prosper, *Reference priors for high energy physics*, Phys. Rev. D 82 (2010) 034002, arXiv:1002.1111.

D. Casadei, *Reference analysis of the signal + background model in counting experiments*, JINST 7 (2012) 01012; arXiv:1108.4270.

Prototype search analysis

Search for signal in a region of phase space; result is histogram of some variable *x* giving numbers:

$$\mathbf{n} = (n_1, \ldots, n_N)$$

Assume the n_i are Poisson distributed with expectation values

$$E[n_i] = \mu s_i + b_i$$

strength parameter

where

$$s_{i} = s_{\text{tot}} \int_{\text{bin } i} f_{s}(x; \boldsymbol{\theta}_{s}) \, dx \,, \quad b_{i} = b_{\text{tot}} \int_{\text{bin } i} f_{b}(x; \boldsymbol{\theta}_{b}) \, dx \,.$$

signal background

Prototype analysis (II)

Often also have a subsidiary measurement that constrains some of the background and/or shape parameters:

$$\mathbf{m} = (m_1, \ldots, m_M)$$

Assume the m_i are Poisson distributed with expectation values

$$E[m_i] = u_i(\boldsymbol{\theta})$$

nuisance parameters ($\boldsymbol{\theta}_{s}, \boldsymbol{\theta}_{b}, b_{tot}$)

Likelihood function is

$$L(\mu, \theta) = \prod_{j=1}^{N} \frac{(\mu s_j + b_j)^{n_j}}{n_j!} e^{-(\mu s_j + b_j)} \quad \prod_{k=1}^{M} \frac{u_k^{m_k}}{m_k!} e^{-u_k}$$

G. Cowan

The profile likelihood ratio

Base significance test on the profile likelihood ratio:

 $\lambda(\mu) = \frac{L(\mu, \hat{\hat{\theta}})}{L(\hat{\mu}, \hat{\hat{\theta}})}$ maximize L maximize L

Define critical region of test of μ by the region of data space that gives the lowest values of $\lambda(\mu)$.

Important advantage of profile LR is that its distribution becomes independent of nuisance parameters in large sample limit.

Test statistic for discovery

Suppose relevant alternative to background-only ($\mu = 0$) is $\mu \ge 0$. So take critical region for test of $\mu = 0$ corresponding to high q_0 and $\hat{\mu} \ge 0$ (data characteristic for $\mu \ge 0$).

That is, to test background-only hypothesis define statistic

$$q_0 = \begin{cases} -2\ln\lambda(0) & \hat{\mu} \ge 0\\ 0 & \hat{\mu} < 0 \end{cases}$$

i.e. here only large (positive) observed signal strength is evidence against the background-only hypothesis.

Note that even though here physically $\mu \ge 0$, we allow $\hat{\mu}$ to be negative. In large sample limit its distribution becomes Gaussian, and this will allow us to write down simple expressions for distributions of our test statistics.

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554

Distribution of q_0 in large-sample limit

Assuming approximations valid in the large sample (asymptotic) limit, we can write down the full distribution of q_0 as

$$f(q_0|\mu') = \left(1 - \Phi\left(\frac{\mu'}{\sigma}\right)\right)\delta(q_0) + \frac{1}{2}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{q_0}}\exp\left[-\frac{1}{2}\left(\sqrt{q_0} - \frac{\mu'}{\sigma}\right)^2\right]$$

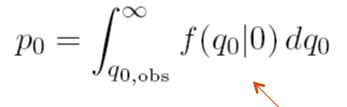
The special case $\mu' = 0$ is a "half chi-square" distribution:

$$f(q_0|0) = \frac{1}{2}\delta(q_0) + \frac{1}{2}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{q_0}}e^{-q_0/2}$$

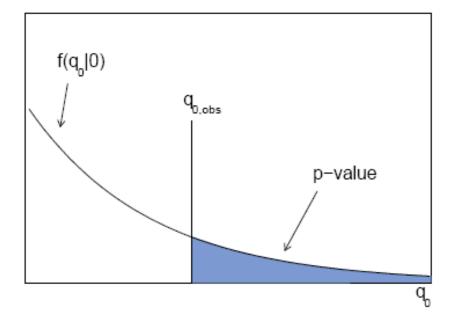
In large sample limit, $f(q_0|0)$ independent of nuisance parameters; $f(q_0|\mu')$ depends on nuisance parameters through σ .

p-value for discovery

Large q_0 means increasing incompatibility between the data and hypothesis, therefore *p*-value for an observed $q_{0,obs}$ is



use e.g. asymptotic formula



From *p*-value get equivalent significance,

$$Z = \Phi^{-1}(1-p)$$

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554

Cumulative distribution of q_0 , significance

From the pdf, the cumulative distribution of q_0 is found to be

$$F(q_0|\mu') = \Phi\left(\sqrt{q_0} - \frac{\mu'}{\sigma}\right)$$

The special case $\mu' = 0$ is

$$F(q_0|0) = \Phi\left(\sqrt{q_0}\right)$$

The *p*-value of the $\mu = 0$ hypothesis is

$$p_0 = 1 - F(q_0|0)$$

Therefore the discovery significance Z is simply

$$Z = \Phi^{-1}(1 - p_0) = \sqrt{q_0}$$

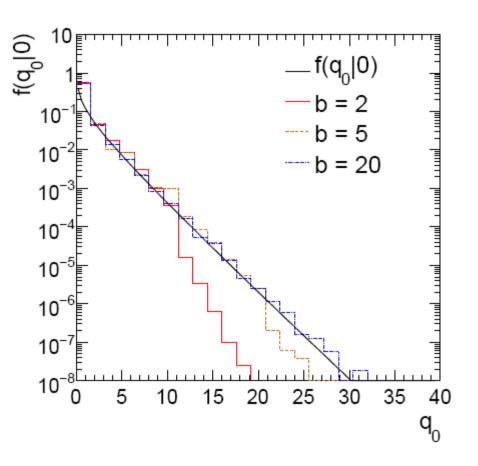
Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554

Monte Carlo test of asymptotic formula

 $n \sim \text{Poisson}(\mu s + b)$ $m \sim \text{Poisson}(\tau b)$

Here take $\tau = 1$.

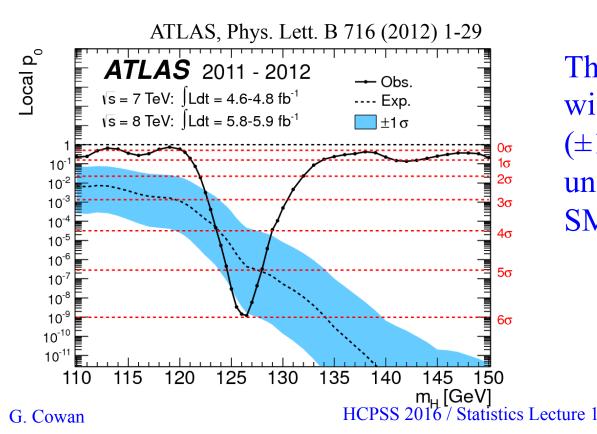
Asymptotic formula is good approximation to 5σ level ($q_0 = 25$) already for $b \sim 20$.



How to read the p_0 plot

The "local" p_0 means the *p*-value of the background-only hypothesis obtained from the test of $\mu = 0$ at each individual $m_{\rm H}$, without any correct for the Look-Elsewhere Effect.

The "Expected" (dashed) curve gives the median p_0 under assumption of the SM Higgs ($\mu = 1$) at each $m_{\rm H}$.



The blue band gives the width of the distribution $(\pm 1\sigma)$ of significances under assumption of the SM Higgs.

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554

Test statistic for upper limits

For purposes of setting an upper limit on μ use

$$q_{\mu} = \begin{cases} -2\ln\lambda(\mu) & \hat{\mu} \leq \mu \\ 0 & \hat{\mu} > \mu \end{cases} \quad \text{where} \quad \lambda(\mu) = \frac{L(\mu, \hat{\hat{\theta}})}{L(\hat{\mu}, \hat{\theta})}$$

I.e. when setting an upper limit, an upwards fluctuation of the data is not taken to mean incompatibility with the hypothesized μ :

From observed
$$q_{\mu}$$
 find *p*-value: $p_{\mu} = \int_{q_{\mu,\text{obs}}}^{\infty} f(q_{\mu}|\mu) dq_{\mu}$

Large sample approximation:

$$p_{\mu} = 1 - \Phi\left(\sqrt{q_{\mu}}\right)$$

95% CL upper limit on μ is highest value for which *p*-value is not less than 0.05.

G. Cowan

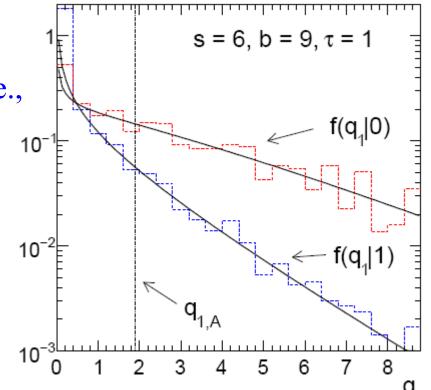
Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554

Monte Carlo test of asymptotic formulae

Consider again $n \sim \text{Poisson}(\mu s + b), m \sim \text{Poisson}(\tau b)$ Use q_{μ} to find *p*-value of hypothesized μ values.

E.g. $f(q_1|1)$ for *p*-value of $\mu=1$. Typically interested in 95% CL, i.e., *p*-value threshold = 0.05, i.e., $q_1 = 2.69$ or $Z_1 = \sqrt{q_1} = 1.64$. Median[$q_1 | 0$] gives "exclusion sensitivity". Here asymptotic formulae good

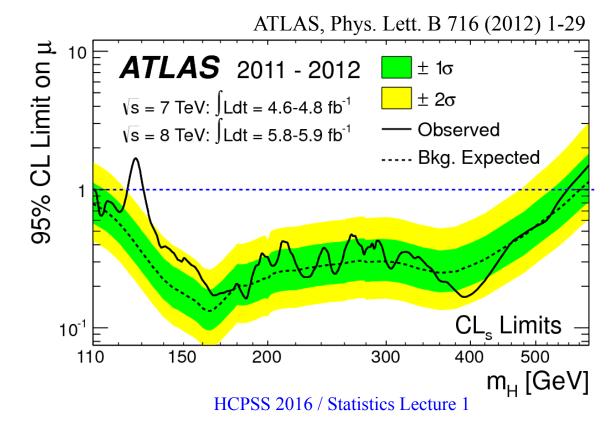
for s = 6, b = 9.



How to read the green and yellow limit plots For every value of $m_{\rm H}$, find the upper limit on μ .

Also for each $m_{\rm H}$, determine the distribution of upper limits $\mu_{\rm up}$ one would obtain under the hypothesis of $\mu = 0$.

The dashed curve is the median μ_{up} , and the green (yellow) bands give the $\pm 1\sigma$ (2σ) regions of this distribution.

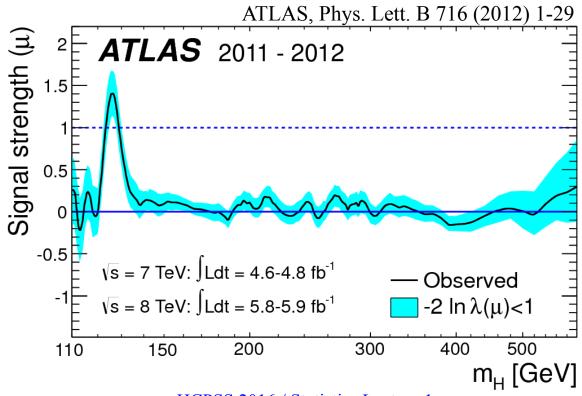


How to read the "blue band"

On the plot of $\hat{\mu}$ versus $m_{\rm H}$, the blue band is defined by

 $-2\ln\lambda(\mu) = -2\ln(L(\mu)/L(\hat{\mu})) < 1$ i.e., $\ln L(\mu) > \ln L(\hat{\mu}) - \frac{1}{2}$

i.e., it approximates the 1-sigma error band (68.3% CL conf. int.)



HCPSS 2016 / Statistics Lecture 1

Finishing Lecture 1

So far we have introduced the basic ideas of:
Probability (frequentist, subjective)
Parameter estimation (maximum likelihood)
Statistical tests (reject *H* if data found in critical region)
Confidence intervals (region of parameter space not rejected by a test of each parameter value)

We saw tests based on the profile likelihood ratio statistic

Sampling distribution independent of nuisance parameters in large sample limit; simple formulae for p-value.

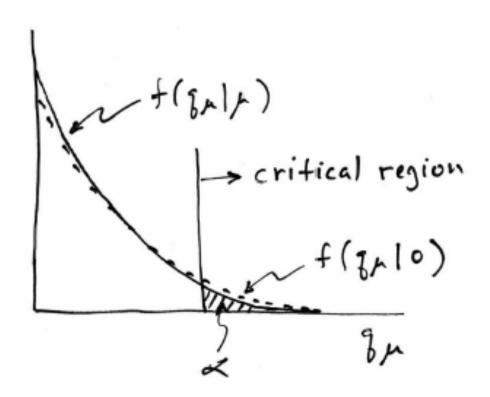
Formula for upper limit can give empty confidence interval if e.g. data fluctuate low relative to expected background. Can be avoided/mitigated using Bayesian, CLs, unified,...

Extra slides

Low sensitivity to μ

It can be that the effect of a given hypothesized μ is very small relative to the background-only ($\mu = 0$) prediction.

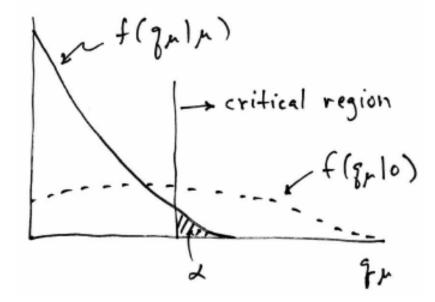
This means that the distributions $f(q_{\mu}|\mu)$ and $f(q_{\mu}|0)$ will be almost the same:



HCPSS 2016 / Statistics Lecture 1

Having sufficient sensitivity

In contrast, having sensitivity to μ means that the distributions $f(q_{\mu}|\mu)$ and $f(q_{\mu}|0)$ are more separated:

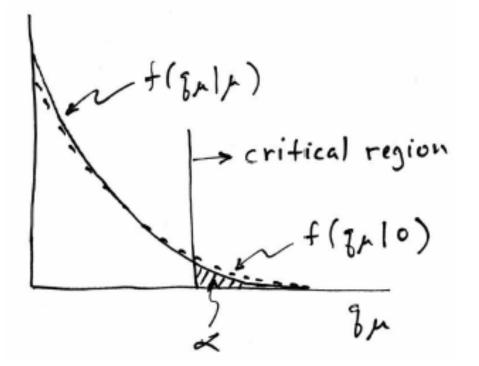


That is, the power (probability to reject μ if $\mu = 0$) is substantially higher than α . Use this power as a measure of the sensitivity.

Spurious exclusion

Consider again the case of low sensitivity. By construction the probability to reject μ if μ is true is α (e.g., 5%).

And the probability to reject μ if $\mu = 0$ (the power) is only slightly greater than α .



This means that with probability of around $\alpha = 5\%$ (slightly higher), one excludes hypotheses to which one has essentially no sensitivity (e.g., $m_{\rm H} = 1000$ TeV).

"Spurious exclusion"

Ways of addressing spurious exclusion

The problem of excluding parameter values to which one has no sensitivity known for a long time; see e.g.,

Virgil L. Highland, *Estimation of Upper Limits from Experimental Data*, July 1986, Revised February 1987, Temple University Report C00-3539-38.

In the 1990s this was re-examined for the LEP Higgs search by Alex Read and others

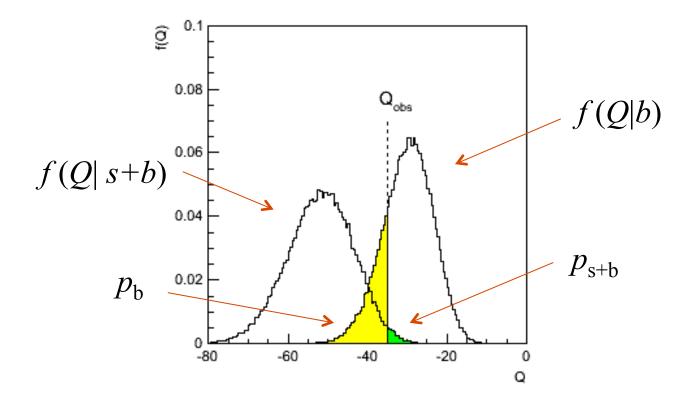
T. Junk, Nucl. Instrum. Methods Phys. Res., Sec. A 434, 435 (1999); A.L. Read, J. Phys. G 28, 2693 (2002).

and led to the "CL_s" procedure for upper limits.

Unified intervals also effectively reduce spurious exclusion by the particular choice of critical region.

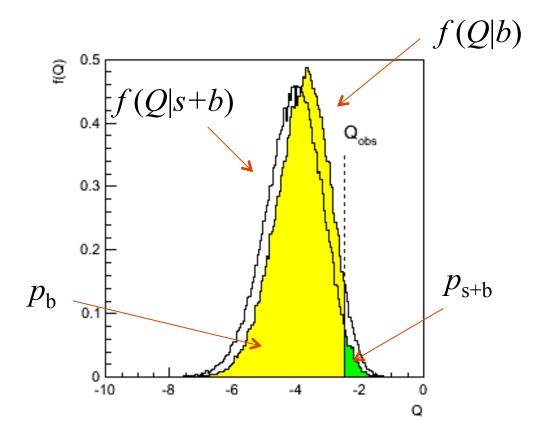
The CL_s procedure

In the usual formulation of CL_s , one tests both the $\mu = 0$ (*b*) and $\mu > 0$ ($\mu s+b$) hypotheses with the same statistic $Q = -2\ln L_{s+b}/L_b$:



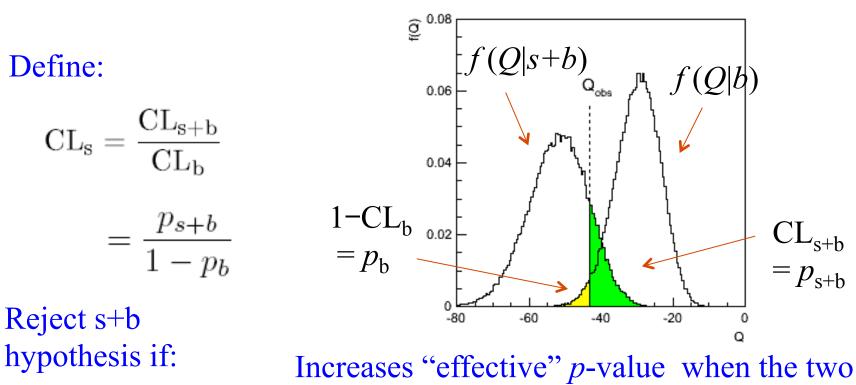
The CL_s procedure (2)

As before, "low sensitivity" means the distributions of Q under b and s+b are very close:



The CL_s procedure (3)

The CL_s solution (A. Read et al.) is to base the test not on the usual *p*-value (CL_{s+b}), but rather to divide this by CL_b (~ one minus the *p*-value of the *b*-only hypothesis), i.e.,



 $CL_s \leq \alpha$

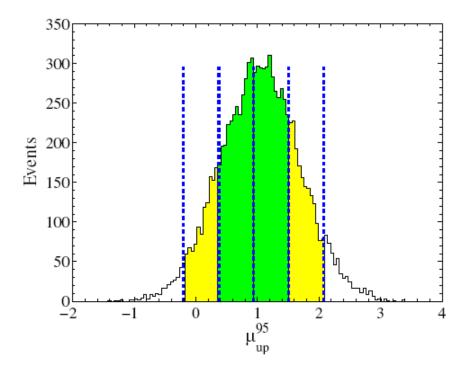
Increases "effective" *p*-value when the two distributions become close (prevents exclusion if sensitivity is low).

Setting upper limits on $\mu = \sigma / \sigma_{\rm SM}$

Carry out the CLs procedure for the parameter $\mu = \sigma/\sigma_{SM}$, resulting in an upper limit μ_{up} .

In, e.g., a Higgs search, this is done for each value of $m_{\rm H}$.

At a given value of $m_{\rm H}$, we have an observed value of $\mu_{\rm up}$, and we can also find the distribution $f(\mu_{\rm up}|0)$:



 $\pm 1\sigma$ (green) and $\pm 2\sigma$ (yellow) bands from toy MC;

Vertical lines from asymptotic formulae.

Approximate confidence intervals/regions from the likelihood function

Suppose we test parameter value(s) $\theta = (\theta_1, ..., \theta_n)$ using the ratio

$$\lambda(\theta) = \frac{L(\theta)}{L(\hat{\theta})} \qquad \qquad 0 \le \lambda(\theta) \le 1$$

Lower $\lambda(\theta)$ means worse agreement between data and hypothesized θ . Equivalently, usually define

$$t_{\theta} = -2\ln\lambda(\theta)$$

so higher t_{θ} means worse agreement between θ and the data.

p-value of
$$\theta$$
 therefore $p_{\theta} = \int_{t_{\theta,\text{obs}}}^{\infty} f(t_{\theta}|\theta) dt_{\theta}$
need pdf

G. Cowan

Confidence region from Wilks' theorem Wilks' theorem says (in large-sample limit and providing certain conditions hold...)

 $f(t_{\theta}|\theta) \sim \chi_n^2 \qquad \text{chi-square dist. with $\#$ d.o.f. =} \\ \# \text{ of components in $\theta = (\theta_1, ..., \theta_n)$.}$

Assuming this holds, the *p*-value is

 $p_{\theta} = 1 - F_{\chi_n^2}(t_{\theta})$ where $F_{\chi_n^2}(t_{\theta}) \equiv \int_0^{t_{\theta}} f_{\chi_n^2}(t'_{\theta}) t'_{\theta}$

To find boundary of confidence region set $p_{\theta} = \alpha$ and solve for t_{θ} :

$$t_{\theta} = -2\ln\frac{L(\theta)}{L(\hat{\theta})} = F_{\chi_n^2}^{-1}(1-\alpha)$$

Confidence region from Wilks' theorem (cont.) i.e., boundary of confidence region in θ space is where

$$\ln L(\theta) = \ln L(\hat{\theta}) - \frac{1}{2}F_{\chi_n^2}^{-1}(1-\alpha)$$

For example, for $1 - \alpha = 68.3\%$ and n = 1 parameter,

$$F_{\chi_1^2}^{-1}(0.683) = 1$$

and so the 68.3% confidence level interval is determined by

$$\ln L(\theta) = \ln L(\hat{\theta}) - \frac{1}{2}$$

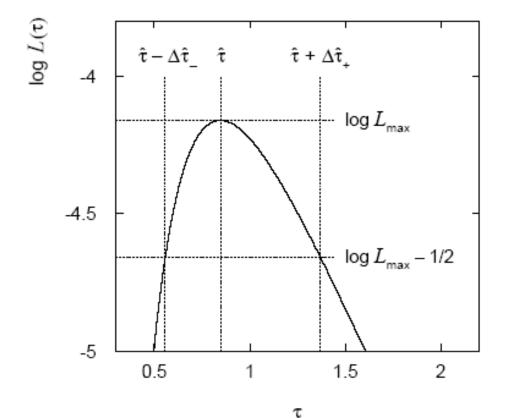
Same as recipe for finding the estimator's standard deviation, i.e.,

 $[\hat{\theta} - \sigma_{\hat{\theta}}, \hat{\theta} + \sigma_{\hat{\theta}}]$ is a 68.3% CL confidence interval.

Example of interval from $\ln L$

For n = 1 parameter, CL = 0.683, $Q_{\alpha} = 1$.

Exponential example, now with only 5 events:



Parameter estimate and approximate 68.3% CL confidence interval:

 $\hat{\tau} = 0.85^{+0.52}_{-0.30}$

Multiparameter case

For increasing number of parameters, $CL = 1 - \alpha$ decreases for confidence region determined by a given

$$Q_{\alpha} = F_{\chi_n^2}^{-1}(1-\alpha)$$

Q_{lpha}	1-lpha					
	n = 1	n = 2	n = 3	n = 4	n = 5	
1.0	0.683	0.393	0.199	0.090	0.037	
2.0	0.843	0.632	0.428	0.264	0.151	
4.0	0.954	0.865	0.739	0.594	0.451	
9.0	0.997	0.989	0.971	0.939	0.891	

Multiparameter case (cont.)

Equivalently, Q_{α} increases with *n* for a given $CL = 1 - \alpha$.

1 0			$ar{Q}_{lpha}$		
1-lpha	n = 1	n = 2	n = 3	n = 4	n = 5
0.683	1.00	2.30	3.53	4.72	5.89
0.90	2.71	4.61	6.25	7.78	9.24
0.95	3.84	5.99	7.82	9.49	11.1
0.99	6.63	9.21	11.3	13.3	15.1

Large sample distribution of the profile likelihood ratio (Wilks' theorem, cont.) Suppose problem has likelihood $L(\theta, \nu)$, with

$$\theta = (\theta_1, \dots, \theta_N)$$
 \leftarrow parameters of interest
 $\nu = (\nu_1, \dots, \nu_M)$ \leftarrow nuisance parameters

Want to test point in θ -space. Define profile likelihood ratio:

$$\lambda(\theta) = \frac{L(\theta, \hat{\hat{\nu}}(\theta))}{L(\hat{\theta}, \hat{\nu})}, \text{ where } \hat{\hat{\nu}}(\theta) = \underset{\nu}{\operatorname{argmax}} L(\theta, \nu)$$

$$(10)$$
(profiled" values of ν

and define $q_{\theta} = -2 \ln \lambda(\theta)$.

Wilks' theorem says that distribution $f(q_{\theta}|\theta, v)$ approaches the chi-square pdf for N degrees of freedom for large sample (and regularity conditions), independent of the nuisance parameters v.

p-values in cases with nuisance parameters

Suppose we have a statistic q_{θ} that we use to test a hypothesized value of a parameter θ , such that the *p*-value of θ is

$$p_{\theta} = \int_{q_{\theta,\text{obs}}}^{\infty} f(q_{\theta}|\theta,\nu) \, dq_{\theta}$$

Fundamentally we want to reject θ only if $p_{\theta} < \alpha$ for all v.

 \rightarrow "exact" confidence interval

Recall that for statistics based on the profile likelihood ratio, the distribution $f(q_{\theta}|\theta, v)$ becomes independent of the nuisance parameters in the large-sample limit.

But in general for finite data samples this is not true; one may be unable to reject some θ values if all values of v must be considered, even those strongly disfavoured by the data (resulting interval for θ "overcovers").

Profile construction ("hybrid resampling")

K. Cranmer, PHYSTAT-LHC Workshop on Statistical Issues for LHC Physics, 2008. oai:cds.cern.ch:1021125, cdsweb.cern.ch/record/1099969.

Approximate procedure is to reject θ if $p_{\theta} \le \alpha$ where the *p*-value is computed assuming the profiled values of the nuisance parameters:

<u>^</u>	"double hat" notation means
$\hat{\hat{ u}}(heta)$	value of parameter that maximizes
	likelihood for the given θ .

The resulting confidence interval will have the correct coverage for the points $(\theta, \hat{v}(\theta))$.

Elsewhere it may under- or overcover, but this is usually as good as we can do (check with MC if crucial or small sample problem).