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Outline 
Lecture 1:  Introduction and review of fundamentals 

 Probability, random variables, pdfs 
 Parameter estimation, maximum likelihood 
 Statistical tests for discovery and limits 

Lecture 2:  Further topics 
 (Brief overview of multivariate methods) → extra slides 
 Nuisance parameters and systematic uncertainties 
 Experimental sensitivity 
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Systematic uncertainties and nuisance parameters 
In general our model of the data is not perfect: 

x  

L 
(x

|θ
) 

model:   

truth: 

Can improve model by including  
additional adjustable parameters. 

Nuisance parameter ↔ systematic uncertainty. Some point in the 
parameter space of the enlarged model should be “true”.   

Presence of nuisance parameter decreases sensitivity of analysis 
to the parameter of interest (e.g., increases variance of estimate). 
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Example:  fitting a straight line 

Data: 
 
Model:  yi independent and all follow yi  ~ Gauss(µ(xi ), σi ) 

  

 

assume xi and σi known. 

Goal:  estimate θ0  

Here suppose we don’t care  
about θ1 (example of a  
“nuisance parameter”) 
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Maximum likelihood fit with Gaussian data 

In this example, the yi are assumed independent, so the 
likelihood function is a product of Gaussians: 

Maximizing the likelihood is here equivalent to minimizing 

i.e., for Gaussian data, ML same as Method of Least Squares (LS) 



G. Cowan  HCPSS 2016 / Statistics Lecture 2 6 

θ1 known a priori 

For Gaussian yi, ML same as LS 
 
Minimize χ2 → estimator 

Come up one unit from      

to find  
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Correlation between 

             causes errors 

to increase. 

Standard deviations from 

tangent lines to contour 

 

ML (or LS) fit of θ0 and θ1 
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The information on θ1 

improves accuracy of 

 

If we have a measurement t1 ~ Gauss (θ1, σt1) 



G. Cowan  HCPSS 2016 / Statistics Lecture 2 Lecture 13  page 9 

The Bayesian approach 

In Bayesian statistics we can associate a probability with 
a hypothesis, e.g., a parameter value θ. 

        Interpret probability of θ as ‘degree of belief’ (subjective). 

Need to start with ‘prior pdf’ π(θ), this reflects degree  
of belief about θ before doing the experiment. 

        Our experiment has data x, → likelihood function L(x|θ). 

Bayes’ theorem tells how our beliefs should be updated in 
light of the data x: 

Posterior pdf  p(θ | x) contains all our knowledge about θ. 
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Bayesian method 

We need to associate prior probabilities with θ0 and θ1, e.g., 

Putting this into Bayes’ theorem gives: 

posterior    ∝                  likelihood         ✕       prior 

← based on previous  
     measurement 

‘non-informative’, in any 
case much broader than 
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Bayesian method (continued) 

Usually need numerical methods (e.g. Markov Chain Monte 
Carlo) to do integral. 

We then integrate (marginalize)  p(θ0, θ1 | x) to find p(θ0 | x): 

In this example we can do the integral (rare).  We find 
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Digression: marginalization with MCMC 
Bayesian computations involve integrals like 

often high dimensionality and impossible in closed form, 
also impossible with ‘normal’ acceptance-rejection Monte Carlo. 

Markov Chain Monte Carlo (MCMC) has revolutionized 
Bayesian computation.   

MCMC (e.g., Metropolis-Hastings algorithm) generates  
correlated sequence of random numbers: 

 cannot use for many applications, e.g., detector MC; 
 effective stat. error greater than if all values independent . 

Basic idea:  sample multidimensional  
look, e.g., only at distribution of parameters of interest.  
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MCMC basics:  Metropolis-Hastings algorithm 
Goal:  given an n-dimensional pdf  
generate a sequence of points  

1)  Start at some point  

2)  Generate   

Proposal density 
e.g. Gaussian centred 
about 

3)  Form Hastings test ratio 

4)  Generate 

5)  If 

else 

move to proposed point 

old point repeated 

6)  Iterate 
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Metropolis-Hastings (continued) 
This rule produces a correlated sequence of points (note how  
each new point depends on the previous one). 

For our purposes this correlation is not fatal, but statistical 
errors larger than if points were independent. 

The proposal density can be (almost) anything, but choose 
so as to minimize autocorrelation.  Often take proposal 
density symmetric: 

Test ratio is (Metropolis-Hastings): 

I.e. if the proposed step is to a point of higher           , take it;   
if not, only take the step with probability  
If proposed step rejected, hop in place. 
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Although numerical values of answer here same as in frequentist 
case, interpretation is different (sometimes unimportant?) 

Example:  posterior pdf from MCMC 
Sample the posterior pdf from previous example with MCMC: 

Summarize pdf of parameter of 
interest with, e.g., mean, median, 
standard deviation, etc. 
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Bayesian method with alternative priors 
Suppose we don’t have a previous measurement of θ1 but rather,  
e.g., a theorist says it should be positive and not too much  greater 
than 0.1 "or so", i.e., something like 

From this we obtain (numerically) the posterior pdf for θ0: 

This summarizes all  
knowledge about θ0. 

Look also at result from  
variety of  priors. 
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I.  Discovery sensitivity for counting experiment with b known: 
 

 (a) 
 

 (b)  Profile likelihood  
                   ratio test & Asimov: 

II.  Discovery sensitivity with uncertainty in b, σb: 
 

 (a) 
  
 (b)  Profile likelihood ratio test & Asimov: 

Expected discovery significance for counting  
experiment with background uncertainty 
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 Counting experiment with known background 
Count a number of events n ~ Poisson(s+b), where 

 s = expected number of events from signal, 

 b = expected number of background events. 

Usually convert to equivalent significance: 

To test for discovery of signal compute p-value of s = 0 hypothesis, 

where Φ is the standard Gaussian cumulative distribution, e.g., 
Z > 5 (a 5 sigma effect) means p < 2.9 ×10-7. 

To characterize sensitivity to discovery, give expected (mean 
or median) Z under assumption of a given s. 
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s/√b for expected discovery significance 
For large s + b, n → x ~ Gaussian(µ,σ) , µ = s + b, σ = √(s + b). 

For observed value xobs, p-value of s = 0 is Prob(x > xobs | s = 0),: 

Significance for rejecting s = 0 is therefore 

Expected (median) significance assuming signal rate s is 
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Better approximation for significance 
Poisson likelihood for parameter s is 

So the likelihood ratio statistic for testing s = 0 is 

To test for discovery use profile likelihood ratio: 

For now  
no nuisance  
params. 
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Approximate Poisson significance (continued) 

For sufficiently large s + b, (use Wilks’ theorem),  

To find median[Z|s], let n → s + b (i.e., the Asimov data set): 

This reduces to s/√b for s << b. 
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n ~ Poisson(s+b),  median significance, 
assuming s, of the hypothesis s = 0 

“Exact” values from MC, 
jumps due to discrete data. 
 
Asimov √q0,A good approx. 
for broad range of s, b. 
 
s/√b only good for s « b. 

CCGV, EPJC 71 (2011) 1554, arXiv:1007.1727 
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Extending s/√b to case where b uncertain 
The intuitive explanation of s/√b is that it compares the signal, 
 s, to the standard deviation of n assuming no signal, √b. 

Now suppose the value of b is uncertain, characterized by a  
standard deviation σb. 

A reasonable guess is to replace √b by the quadratic sum of 
√b and σb, i.e., 

This has been used to optimize some analyses e.g. where  
σb cannot be neglected. 
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Profile likelihood with b uncertain 

This is the well studied “on/off” problem:  Cranmer 2005; 
Cousins, Linnemann, and Tucker 2008; Li and Ma 1983,... 

Measure two Poisson distributed values: 

 n ~ Poisson(s+b)         (primary or “search” measurement) 

 m ~ Poisson(τb)  (control measurement, τ known) 

The likelihood function is 

Use this to construct profile likelihood ratio (b is nuisance 
parmeter): 
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Ingredients for profile likelihood ratio 

To construct profile likelihood ratio from this need estimators: 

and in particular to test for discovery (s = 0),  
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Asymptotic significance 
Use profile likelihood ratio for q0, and then from this get discovery 
significance using asymptotic approximation (Wilks’ theorem): 

Essentially same as in: 



Or use the variance of b = m/τ,   
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Asimov approximation for median significance 
To get median discovery significance, replace n, m by their 
expectation values assuming background-plus-signal model: 

 n → s + b 
 m → τb 

,   to eliminate τ: ˆ 
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Limiting cases 
Expanding the Asimov formula in powers of s/b and 
σb

2/b (= 1/τ) gives 

So the “intuitive” formula can be justified as a limiting case 
of the significance from the profile likelihood ratio test evaluated  
with the Asimov data set. 
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Testing the formulae:  s = 5 
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Using sensitivity to optimize a cut 
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Extra slides 
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Resources on multivariate methods 

C.M. Bishop, Pattern Recognition and Machine Learning, 
Springer, 2006 

T. Hastie, R. Tibshirani, J. Friedman, The Elements of 
Statistical Learning, 2nd ed., Springer, 2009 

R. Duda, P. Hart, D. Stork, Pattern Classification, 2nd ed., 
Wiley, 2001 

A. Webb, Statistical Pattern Recognition, 2nd ed., Wiley, 2002. 

Ilya Narsky and Frank C. Porter, Statistical Analysis 
Techniques in Particle Physics, Wiley, 2014. 

朱永生 （ 著）， 数据多元 分析， 科学出版社，  
北京，2009。 
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Software  
Rapidly growing area of development – two important resources: 
 
TMVA, Höcker, Stelzer, Tegenfeldt, Voss, Voss, physics/0703039 

 From tmva.sourceforge.net, also distributed with ROOT 
 Variety of classifiers 
 Good manual, widely used in HEP 

scikit-learn 
 Python-based tools for Machine Learning 
 scikit-learn.org 

 Large user community 
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A simulated SUSY event in ATLAS 

high pT 
muons 

high pT jets  
of hadrons 

missing transverse energy 

p p 
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Background events 
This event from Standard  
Model ttbar production also 
has high  pT jets and muons, 
and some missing transverse 
energy. 

→ can easily mimic a SUSY event. 
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Defining a multivariate critical region 
For each event, measure, e.g., 

 x1 =  missing energy, x2 = electron pT, x3 = ... 

Each event is a point in n-dimensional x-space; critical region 
is now defined by a ‘decision boundary’ in this space. 
What is best way to determine the boundary? 

W 
H1    (s) 

H0    (b) Perhaps with ‘cuts’: 
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Other multivariate decision boundaries 
Or maybe use some other sort of decision boundary: 

W 
H1 

H0 

W 
H1 

H0 

linear or nonlinear 

Multivariate methods for finding optimal critical region have 
become a Big Industry (neural networks, boosted decision trees,...), 
benefitting from recent advances in Machine Learning. 
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Test statistics 
The boundary of the critical region for an n-dimensional data 
space x = (x1,..., xn) can be defined by an equation of the form 

We can work out the pdfs 

Decision boundary is now a 
single ‘cut’ on t, defining 
the critical region. 

So for an n-dimensional 
problem we have a 
corresponding 1-d problem. 

where t(x1,…, xn) is a scalar test statistic. 
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Test statistic based on likelihood ratio  
How can we choose a test’s critical region in an ‘optimal way’? 

 Neyman-Pearson lemma states: 

To get the highest power for a given significance level in a test of 
H0, (background) versus H1, (signal) the critical region should have 

inside the region, and  ≤ c outside, where c is a constant chosen 
to give a test of the desired size. 

Equivalently, optimal scalar test statistic is 

N.B. any monotonic function of this is leads to the same test. 
G. Cowan  
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Neyman-Pearson doesn’t usually help 
We usually don’t have explicit formulae for the pdfs f (x|s), f (x|b), 
so for a given x we can’t evaluate the likelihood ratio 

Instead we may have Monte Carlo models for signal and 
background processes, so we can produce simulated data: 

 generate x ~ f (x|s)     →     x1,..., xN 

 generate x ~ f (x|b)     →     x1,..., xN 
 
This gives samples of “training data” with events of known type. 

Can be expensive (1 fully simulated LHC event ~ 1 CPU minute). 
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Approximate LR from histograms 
Want t(x) = f (x|s)/ f(x|b) for x here 

N (x|s) ≈ f (x|s) 

N (x|b) ≈ f (x|b) 

N
(x
|s
)

N
(x
|b
)

One possibility is to generate 
MC data and construct 
histograms for both 
signal and background. 
 
Use (normalized) histogram  
values to approximate LR: 

x

x

Can work well for single  
variable. 
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Approximate LR from 2D-histograms 
Suppose problem has 2 variables.  Try using 2-D histograms: 

Approximate pdfs using N (x,y|s), N (x,y|b) in corresponding cells. 
But if we want M bins for each variable, then in n-dimensions we 
have Mn cells; can’t generate enough training data to populate. 

 → Histogram method usually not usable for n > 1 dimension. 

signal back- 
ground 
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Strategies for multivariate analysis 

Neyman-Pearson lemma gives optimal answer, but cannot be 
used directly, because we usually don’t have f (x|s), f (x|b). 

Histogram method with M bins for n variables requires that 
we estimate Mn parameters (the values of the pdfs in each cell), 
so this is rarely practical. 

A compromise solution is to assume a certain functional form 
for the test statistic t (x) with fewer parameters; determine them 
(using MC) to give best separation between signal and background. 

Alternatively, try to estimate the probability densities f (x|s) and  
f (x|b) (with something better than histograms) and use the  
estimated pdfs to construct an approximate likelihood ratio. 
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Linear test statistic 

Suppose there are n input variables:  x = (x1,..., xn).   
 

Consider a linear function: 

For a given choice of the coefficients w = (w1,..., wn) we will 
get pdfs f (y|s) and f (y|b) : 
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Linear test statistic 

Fisher:  to get large difference between means and small widths  
for f (y|s) and f (y|b),  maximize the difference squared of the 
expectation values divided by the sum of the variances: 

Setting ∂J / ∂wi = 0 gives for w = (w1, ... wn): 

, 
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The Fisher discriminant 

The resulting coefficients wi define a Fisher discriminant. 

Coefficients defined up to multiplicative constant; can also 
add arbitrary offset, i.e., usually define test statistic as 

Boundaries of the test’s 
critical region are surfaces  
of constant y(x), here linear  
(hyperplanes): 
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Fisher discriminant for Gaussian data 

Suppose the pdfs of the input variables, f (x|s) and f (x|b), are both  
multivariate Gaussians with same covariance but different means: 

f (x|s)  = Gauss(µs, V) 

f (x|b)  = Gauss(µb, V) 
Same covariance  
Vij = cov[xi, xj] 

In this case it can be shown  
that the Fisher discriminant is 

i.e., it is a monotonic function of the likelihood ratio and thus 
leads to the same critical region.  So in this case the Fisher 
discriminant provides an optimal statistical test. 
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The activation function 
For activation function h(·) often use logistic sigmoid: 
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Network architecture 
Theorem:  An MLP with a single hidden layer having a sufficiently 
large number of nodes can approximate arbitrarily well the optimal 
decision boundary. 
 
Holds for any continuous non-polynomial activation function 
Leshno, Lin, Pinkus and Schocken (1993) Neural Networks 6, 861-867 

However, the number of required nodes may be very large; cannot 
train well with finite samples of training data. 

Recent advances in Deep Neural Networks have shown important 
advantages in having multiple hidden layers. 

For a particle physics application of Deep Learning, see e.g.  
Baldi, Sadowski and Whiteson, Nature Communications 5 (2014);  arXiv:1402.4735. 



G. Cowan  HCPSS 2016 / Statistics Lecture 2 56 

Overtraining 
Including more parameters in a classifier makes its decision boundary  
increasingly flexible, e.g., more nodes/layers for a neural network. 

A “flexible” classifier may conform too closely to the training points;  
the same boundary will not perform well on an independent test  
data sample (→ “overtraining”). 

training sample independent test sample 
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Monitoring overtraining 
If we monitor the fraction of misclassified events (or similar, e.g.,  
error function E(w)) for test and training samples, it will usually  
decrease for both as the boundary is made more flexible: 

error 
rate 

flexibility (e.g., number  
of nodes/layers in MLP) 

test sample 
training sample 

optimum at minimum of 
error rate for test sample 

increase in error rate 
indicates overtraining 
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Neural network example from LEP II 
Signal:  e+e- → W+W-    (often 4 well separated hadron jets) 
Background:  e+e- → qqgg  (4 less well separated hadron jets) 

←  input variables based on jet 
structure, event shape, ... 
none by itself gives much separation. 

Neural network output: 

(Garrido, Juste and Martinez, ALEPH 96-144) 
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Summary on multivariate methods 
Particle physics has used several multivariate methods for many years: 

 linear (Fisher) discriminant 
 neural networks 
 naive Bayes   

and has in recent years started to use a few more: 

 boosted decision trees 
 support vector machines 
 kernel density estimation 
 k-nearest neighbour 

The emphasis is often on controlling systematic uncertainties between 
the modeled training data and Nature to avoid false discovery. 

Although many classifier outputs are "black boxes", a discovery 
at 5σ significance with a sophisticated (opaque) method will win the 
competition if backed up by, say, 4σ evidence from a cut-based method. 
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Particle i.d. in MiniBooNE 
Detector is a 12-m diameter tank 
of mineral oil exposed to a beam 
of neutrinos and viewed by 1520 
photomultiplier tubes: 

H.J. Yang, MiniBooNE PID, DNP06 

Search for νµ to νe oscillations  
required particle i.d. using  
information from the PMTs. 
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Decision trees 
Out of all the input variables, find the one for which with a 
single cut gives best improvement in signal purity: 

Example by MiniBooNE experiment, 
B. Roe et al., NIM 543 (2005) 577 

where wi. is the weight of the ith event. 

Resulting nodes classified as either 
signal/background. 

Iterate until stop criterion reached 
based on e.g. purity or minimum 
number of events in a node. 
The set of cuts defines the decision 
boundary. 
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Finding the best single cut 
The level of separation within a node can, e.g., be quantified by 
the Gini coefficient, calculated from the (s or b) purity as: 

For a cut that splits a set of events a into subsets b and c, one 
can quantify the improvement in separation by the change in  
weighted Gini coefficients: 

where, e.g.,   

Choose e.g. the cut to the maximize Δ; a variant of this 
scheme can use instead of Gini e.g. the misclassification rate: 



G. Cowan  HCPSS 2016 / Statistics Lecture 2 page 63 

Decision tree classifier 
The terminal nodes (leaves) are classified a signal or background 
depending on majority vote (or e.g. signal fraction greater than a 
specified threshold). 

This classifies every point in input-variable space as either signal 
or background, a decision tree classifier, with discriminant function 

f(x) = 1 if x in signal region, -1 otherwise 

Decision trees tend to be very sensitive to statistical fluctuations in 
the training sample. 

Methods such as boosting can be used to stabilize the tree. 
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AdaBoost 
First initialize the training sample T1 using the original 

x1,..., xN                   event data vectors 
y1,..., yN                   true class labels (+1 or -1) 
w1

(1),..., wN
(1)           event weights 

with the weights equal and normalized such that 

Then train the classifier f1(x) (e.g., a decision tree) with a method 
that uses the event weights.  Recall for an event at point  x,  

f1(x) = +1 for x in signal region, -1 in background region           

We will define an iterative procedure that gives a series of 
classifiers f1(x),  f2(x),... 



G. Cowan  HCPSS 2016 / Statistics Lecture 2 page 66 

Error rate of the kth classifier 
At the kth iteration the classifier fk(x) has an error rate 

where I(X) = 1 if X is true and is zero otherwise. 

Next assign a score to the kth classifier based on its error rate, 
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Updating the event weights 
The classifier at each iterative step is found from an updated  
training sample, in which the weight of event i is modified from  
step k to step k+1 according to 

Here Zk is a normalization factor defined such that the sum of the 
weights over all events is equal to one. 

That is, the weight for event i is increased in the k+1 training 
sample if it was classified incorrectly in step k.  

 Idea is that next time around the classifier should pay more 
 attention to this event and try to get it right. 
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Defining the classifier 
After K boosting iterations, the final classifier is defined as a  
weighted linear combination of the fk(x), 

One can show that the error rate on the training data of the final  
classifier satisfies the bound 

i.e. as long as the εk < ½ (better than random guessing), with 
enough boosting iterations every event in the training sample will 
be classified correctly. 
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Monitoring overtraining  

From MiniBooNE 
example: 
Performance stable 
after a few hundred 
trees. 
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A simple example (2D) 
Consider two variables, x1 and x2, and suppose we have formulas 
for the joint pdfs for both signal (s) and background (b) events (in 
real problems the formulas are usually not available). 

     f(x1|x2) ~ Gaussian, different means for s/b, 
    Gaussians have same σ, which depends on x2, 
    f(x2) ~ exponential, same for both s and b, 
    f(x1, x2) =  f(x1|x2) f(x2): 
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Joint and marginal distributions of x1, x2 

background 

signal 

Distribution f(x2) same for s, b. 

So does x2 help discriminate 
between the two event types? 
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Likelihood ratio for 2D example 
Neyman-Pearson lemma says best critical region is determined 
by the likelihood ratio: 

Equivalently we can use any monotonic function of this as 
a test statistic, e.g., 

Boundary of optimal critical region will be curve of constant ln t, 
and this depends on x2! 
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Contours of constant MVA output 

Exact likelihood ratio Fisher discriminant 
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Contours of constant MVA output 

Multilayer Perceptron 
1 hidden layer with 2 nodes 

Boosted Decision Tree 
200 iterations (AdaBoost) 

Training samples:  105 signal and 105 background events 



G. Cowan  HCPSS 2016 / Statistics Lecture 2 page 76 

ROC curve 

ROC = “receiver operating  
characteristic” (term from  
signal processing). 
 
Shows (usually) background  
rejection (1-εb) versus  
signal efficiency εs. 
 
Higher curve is better;  
usually analysis focused on 
a small part of the curve. 



G. Cowan  HCPSS 2016 / Statistics Lecture 2 page 77 

2D Example:  discussion 
Even though the distribution of x2 is same for signal and 
background, x1 and x2 are not independent, so using x2 as an input 
variable helps. 

Here we can understand why:  high values of x2 correspond to a 
smaller σ for the Gaussian of x1.  So high x2 means that the value 
of x1 was well measured. 

If we don’t consider x2, then all of the x1 measurements are 
lumped together.  Those with large σ (low x2) “pollute” the well 
measured events with low σ (high x2). 

Often in HEP there may be variables that are characteristic of how 
well measured an event is (region of detector, number of pile-up 
vertices,...).  Including these variables in a multivariate analysis 
preserves the information carried by the well-measured events, 
leading to improved performance. 
 
 
 
In this example we can understand why x2 is useful, even 
though both signal and background have same pdf for x2. 


