Statistical Methods for Particle Physics Lecture 2: further topics

https://indico.fnal.gov/conferenceTimeTable.py?confId=11505

Lectures on Statistics HCPSS - Fermilab
 11,12 August 2016

Glen Cowan
Physics Department
Royal Holloway, University of London
g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

Outline

Lecture 1: Introduction and review of fundamentals
Probability, random variables, pdfs
Parameter estimation, maximum likelihood
Statistical tests for discovery and limits
Lecture 2: Further topics
(Brief overview of multivariate methods) \rightarrow extra slides
Nuisance parameters and systematic uncertainties
Experimental sensitivity

Systematic uncertainties and nuisance parameters

In general our model of the data is not perfect:

Can improve model by including additional adjustable parameters.

$$
L(x \mid \theta) \rightarrow L(x \mid \theta, \nu)
$$

Nuisance parameter \leftrightarrow systematic uncertainty. Some point in the parameter space of the enlarged model should be "true".

Presence of nuisance parameter decreases sensitivity of analysis to the parameter of interest (e.g., increases variance of estimate).

Example: fitting a straight line

Data: $\left(x_{i}, y_{i}, \sigma_{i}\right), i=1, \ldots, n$.
Model: y_{i} independent and all follow $y_{i} \sim \operatorname{Gauss}\left(\mu\left(x_{i}\right), \sigma_{i}\right)$
$\mu\left(x ; \theta_{0}, \theta_{1}\right)=\theta_{0}+\theta_{1} x$, assume x_{i} and σ_{i} known.
Goal: estimate θ_{0}
Here suppose we don't care about θ_{l} (example of a "nuisance parameter")

Maximum likelihood fit with Gaussian data

In this example, the y_{i} are assumed independent, so the likelihood function is a product of Gaussians:

$$
L\left(\theta_{0}, \theta_{1}\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma_{i}} \exp \left[-\frac{1}{2} \frac{\left(y_{i}-\mu\left(x_{i} ; \theta_{0}, \theta_{1}\right)\right)^{2}}{\sigma_{i}^{2}}\right],
$$

Maximizing the likelihood is here equivalent to minimizing

$$
\chi^{2}\left(\theta_{0}, \theta_{1}\right)=-2 \ln L\left(\theta_{0}, \theta_{1}\right)+\text { const }=\sum_{i=1}^{n} \frac{\left(y_{i}-\mu\left(x_{i} ; \theta_{0}, \theta_{1}\right)\right)^{2}}{\sigma_{i}^{2}} .
$$

i.e., for Gaussian data, ML same as Method of Least Squares (LS)

θ_{1} known a priori

$$
L\left(\theta_{0}\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma_{i}} \exp \left[-\frac{1}{2} \frac{\left(y_{i}-\mu\left(x_{i} ; \theta_{0}, \theta_{1}\right)\right)^{2}}{\sigma_{i}^{2}}\right]
$$

$$
\chi^{2}\left(\theta_{0}\right)=-2 \ln L\left(\theta_{0}\right)+\text { const }=\sum_{i=1}^{n} \frac{\left(y_{i}-\mu\left(x_{i} ; \theta_{0}, \theta_{1}\right)\right)^{2}}{\sigma_{i}^{2}} .
$$

For Gaussian y_{i}, ML same as LS
Minimize $\chi^{2} \rightarrow$ estimator $\hat{\theta}_{0}$.
Come up one unit from $\chi_{\text {min }}^{2}$ to find $\sigma_{\hat{\theta}_{0}}$.

ML (or LS) fit of θ_{0} and θ_{1}

$\chi^{2}\left(\theta_{0}, \theta_{1}\right)=-2 \ln L\left(\theta_{0}, \theta_{1}\right)+$ const $=\sum_{i=1}^{n} \frac{\left(y_{i}-\mu\left(x_{i} ; \theta_{0}, \theta_{1}\right)\right)^{2}}{\sigma_{i}^{2}}$.
Standard deviations from tangent lines to contour $\chi^{2}=\chi_{\text {min }}^{2}+1$.

Correlation between
$\hat{\theta}_{0}, \hat{\theta}_{1}$ causes errors to increase.

If we have a measurement $t_{1} \sim \operatorname{Gauss}\left(\theta_{1}, \sigma_{t 1}\right)$

$$
\begin{aligned}
& L\left(\theta_{0}, \theta_{1}\right)=\frac{1}{\sqrt{2 \pi} \sigma_{t}} e^{-\left(t_{1}-\theta_{1}\right)^{2} / 2 \sigma_{t_{1}}^{2}} \prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma_{i}} \exp \left[-\frac{1\left(y_{i}-\mu\left(x_{i} ; \theta_{0}, \theta_{1}\right)\right)^{2}}{\sigma_{i}^{2}}\right] \\
& \chi^{2}\left(\theta_{0}, \theta_{1}\right)=\sum_{i=1}^{n} \frac{\left(y_{i}-\mu\left(x_{i} ; \theta_{0}, \theta_{1}\right)\right)^{2}}{\sigma_{i}^{2}}+\frac{\left(t_{1}-\theta_{1}\right)^{2}}{\sigma_{t_{1}}^{2}}
\end{aligned}
$$

The Bayesian approach

In Bayesian statistics we can associate a probability with a hypothesis, e.g., a parameter value θ.

Interpret probability of θ as 'degree of belief' (subjective). Need to start with 'prior pdf' $\pi(\theta)$, this reflects degree of belief about θ before doing the experiment.

Our experiment has data x, \rightarrow likelihood function $L(x \mid \theta)$.
Bayes' theorem tells how our beliefs should be updated in light of the data x :

$$
p(\theta \mid x)=\frac{L(x \mid \theta) \pi(\theta)}{\int L\left(x \mid \theta^{\prime}\right) \pi\left(\theta^{\prime}\right) d \theta^{\prime}} \propto L(x \mid \theta) \pi(\theta)
$$

Posterior pdf $p(\theta \mid x)$ contains all our knowledge about θ.

Bayesian method

We need to associate prior probabilities with θ_{0} and θ_{1}, e.g.,

$$
\begin{aligned}
& \pi\left(\theta_{0}, \theta_{1}\right)=\pi_{0}\left(\theta_{0}\right) \pi_{1}\left(\theta_{1}\right) \quad \text { 'non-informative', in any } \\
& \pi_{0}\left(\theta_{0}\right)=\text { const. } \quad \text { case much broader than } L\left(\theta_{0}\right) \\
& \pi_{1}\left(\theta_{1}\right)=\frac{1}{\sqrt{2 \pi} \sigma_{t_{1}}} e^{-\left(\theta_{1}-t_{1}\right)^{2} / 2 \sigma_{t_{1}}^{2}} \quad \leftarrow \text { based on previous } \\
& \text { measurement }
\end{aligned}
$$

Putting this into Bayes' theorem gives:
$p\left(\theta_{0}, \theta_{1} \mid \vec{y}\right) \propto \prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma_{i}} e^{-\left(y_{i}-\mu\left(x_{i} ; \theta_{0}, \theta_{1}\right)\right)^{2} / 2 \sigma_{i}^{2}} \pi_{0} \frac{1}{\sqrt{2 \pi} \sigma_{t_{1}}} e^{-\left(\theta_{1}-t_{1}\right)^{2} / 2 \sigma_{t_{1}}^{2}}$
β
posterior \propto
likelihood

Bayesian method (continued)

We then integrate (marginalize) $p\left(\theta_{0}, \theta_{1} \mid x\right)$ to find $p\left(\theta_{0} \mid x\right)$:

$$
p\left(\theta_{0} \mid x\right)=\int p\left(\theta_{0}, \theta_{1} \mid x\right) d \theta_{1} .
$$

In this example we can do the integral (rare). We find

$$
\begin{aligned}
p\left(\theta_{0} \mid x\right) & =\frac{1}{\sqrt{2 \pi} \sigma_{\theta_{0}}} e^{-\left(\theta_{0}-\hat{\theta}_{0}\right)^{2} / 2 \sigma_{\theta_{0}}^{2}} \text { with } \\
\hat{\theta}_{0} & =\text { same as ML estimator } \\
\sigma_{\theta_{0}} & =\sigma_{\hat{\theta}_{0}} \text { (same as before) }
\end{aligned}
$$

Usually need numerical methods (e.g. Markov Chain Monte Carlo) to do integral.

Digression: marginalization with MCMC

Bayesian computations involve integrals like

$$
p\left(\theta_{0} \mid x\right)=\int p\left(\theta_{0}, \theta_{1} \mid x\right) d \theta_{1} .
$$

often high dimensionality and impossible in closed form, also impossible with 'normal' acceptance-rejection Monte Carlo.
Markov Chain Monte Carlo (MCMC) has revolutionized Bayesian computation.

MCMC (e.g., Metropolis-Hastings algorithm) generates correlated sequence of random numbers: cannot use for many applications, e.g., detector MC; effective stat. error greater than if all values independent.

Basic idea: sample multidimensional $\vec{\theta}$, look, e.g., only at distribution of parameters of interest.

MCMC basics: Metropolis-Hastings algorithm

Goal: given an n-dimensional pdf $p(\vec{\theta})$, generate a sequence of points $\vec{\theta}_{1}, \vec{\theta}_{2}, \vec{\theta}_{3}, \ldots$

1) Start at some point $\vec{\theta}_{0}$ Proposal density $q\left(\vec{\theta} ; \vec{\theta}_{0}\right)$ e.g. Gaussian centred about $\vec{\theta}_{0}$
2) Form Hastings test ratio $\alpha=\min \left[1, \frac{p(\vec{\theta}) q\left(\vec{\theta}_{0} ; \vec{\theta}\right)}{p\left(\vec{\theta}_{0}\right) q\left(\overrightarrow{\theta^{\prime}} ; \vec{\theta}_{0}\right)}\right]$
3) Generate $u \sim$ Uniform $[0,1]$
4) If $u \leq \alpha, \vec{\theta}_{1}=\vec{\theta}, \longleftarrow$ move to proposed point else $\quad \vec{\theta}_{1}=\vec{\theta}_{0} \leftarrow$ old point repeated
5) Iterate

Metropolis-Hastings (continued)

This rule produces a correlated sequence of points (note how each new point depends on the previous one).

For our purposes this correlation is not fatal, but statistical errors larger than if points were independent.

The proposal density can be (almost) anything, but choose so as to minimize autocorrelation. Often take proposal density symmetric: $q\left(\vec{\theta} ; \vec{\theta}_{0}\right)=q\left(\vec{\theta}_{0} ; \vec{\theta}\right)$

Test ratio is (Metropolis-Hastings): $\alpha=\min \left[1, \frac{p(\vec{\theta})}{p\left(\vec{\theta}_{0}\right)}\right]$
I.e. if the proposed step is to a point of higher $p(\vec{\theta})$, take it; if not, only take the step with probability $p(\vec{\theta}) / p\left(\vec{\theta}_{0}\right)$.
If proposed step rejected, hop in place.

Example: posterior pdf from MCMC

Sample the posterior pdf from previous example with MCMC:

Summarize pdf of parameter of interest with, e.g., mean, median, standard deviation, etc.

Although numerical values of answer here same as in frequentist case, interpretation is different (sometimes unimportant?)

Bayesian method with alternative priors

Suppose we don't have a previous measurement of θ_{1} but rather, e.g., a theorist says it should be positive and not too much greater than 0.1 "or so", i.e., something like

$$
\pi_{1}\left(\theta_{1}\right)=\frac{1}{\tau} e^{-\theta_{1} / \tau}, \quad \theta_{1} \geq 0, \quad \tau=0.1 .
$$

From this we obtain (numerically) the posterior pdf for θ_{0} :

Look also at result from variety of priors.

Expected discovery significance for counting experiment with background uncertainty
I. Discovery sensitivity for counting experiment with b known:
(a) $\frac{s}{\sqrt{b}}$
(b) Profile likelihood ratio test \& Asimov: $\sqrt{2\left((s+b) \ln \left(1+\frac{s}{b}\right)-s\right)}$
II. Discovery sensitivity with uncertainty in b, σ_{b} :
(a) $\frac{s}{\sqrt{b+\sigma_{b}^{2}}}$
(b) Profile likelihood ratio test \& Asimov:

$$
\left[2\left((s+b) \ln \left[\frac{(s+b)\left(b+\sigma_{b}^{2}\right)}{b^{2}+(s+b) \sigma_{b}^{2}}\right]-\frac{b^{2}}{\sigma_{b}^{2}} \ln \left[1+\frac{\sigma_{b}^{2} s}{b\left(b+\sigma_{b}^{2}\right)}\right]\right)\right]^{1 / 2}
$$

Counting experiment with known background

Count a number of events $n \sim \operatorname{Poisson}(s+b)$, where
$s=$ expected number of events from signal,
$b=$ expected number of background events.
To test for discovery of signal compute p-value of $s=0$ hypothesis,

$$
p=P\left(n \geq n_{\mathrm{obs}} \mid b\right)=\sum_{n=n_{\mathrm{obs}}}^{\infty} \frac{b^{n}}{n!} e^{-b}=1-F_{\chi^{2}}\left(2 b ; 2 n_{\mathrm{obs}}\right)
$$

Usually convert to equivalent significance: $Z=\Phi^{-1}(1-p)$ where Φ is the standard Gaussian cumulative distribution, e.g., $Z>5$ (a 5 sigma effect) means $p<2.9 \times 10^{-7}$.

To characterize sensitivity to discovery, give expected (mean or median) Z under assumption of a given s.

s / \sqrt{b} for expected discovery significance

For large $s+b, n \rightarrow x \sim \operatorname{Gaussian}(\mu, \sigma), \mu=s+b, \sigma=\sqrt{ }(s+b)$.
For observed value $x_{\text {obs }} p$-value of $s=0$ is $\operatorname{Prob}\left(x>x_{\text {obs }} \mid s=0\right)$,:

$$
p_{0}=1-\Phi\left(\frac{x_{\mathrm{obs}}-b}{\sqrt{b}}\right)
$$

Significance for rejecting $s=0$ is therefore

$$
Z_{0}=\Phi^{-1}\left(1-p_{0}\right)=\frac{x_{\mathrm{obs}}-b}{\sqrt{b}}
$$

Expected (median) significance assuming signal rate s is

$$
\operatorname{median}\left[Z_{0} \mid s+b\right]=\frac{s}{\sqrt{b}}
$$

Better approximation for significance

Poisson likelihood for parameter s is

$$
L(s)=\frac{(s+b)^{n}}{n!} e^{-(s+b)}
$$

For now no nuisance params.
To test for discovery use profile likelihood ratio:

$$
q_{0}=\left\{\begin{array}{ll}
-2 \ln \lambda(0) & \hat{s} \geq 0, \\
0 & \hat{s}<0 .
\end{array} \quad \lambda(s)=\frac{L(s, \hat{\boldsymbol{\theta}}(s))}{L(\hat{s}, \hat{\boldsymbol{\theta}})}\right.
$$

So the likelihood ratio statistic for testing $s=0$ is

$$
q_{0}=-2 \ln \frac{L(0)}{L(\hat{s})}=2\left(n \ln \frac{n}{b}+b-n\right) \quad \text { for } n>b, 0 \text { otherwise }
$$

Approximate Poisson significance (continued)

For sufficiently large $s+b$, (use Wilks' theorem),

$$
Z=\sqrt{2\left(n \ln \frac{n}{b}+b-n\right)} \quad \text { for } n>b \text { and } Z=0 \text { otherwise. }
$$

To find median[Z|s], let $n \rightarrow s+b$ (i.e., the Asimov data set):

$$
Z_{\mathrm{A}}=\sqrt{2\left((s+b) \ln \left(1+\frac{s}{b}\right)-s\right)}
$$

This reduces to $s / \sqrt{ } b$ for $\mathrm{s} \ll \mathrm{b}$.

$n \sim \operatorname{Poisson}(s+b)$, median significance, assuming s, of the hypothesis $s=0$

CCGV, EPJC 71 (2011) 1554, arXiv:1007.1727

"Exact" values from MC, jumps due to discrete data.

Asimov $V_{q_{0, \mathrm{~A}}}$ good approx. for broad range of s, b.
$s / \sqrt{ } b$ only good for $s « b$.

Extending $s / \sqrt{ } b$ to case where b uncertain

The intuitive explanation of $s / \sqrt{ } b$ is that it compares the signal, s, to the standard deviation of n assuming no signal, $\sqrt{ } b$.

Now suppose the value of b is uncertain, characterized by a standard deviation σ_{b}.
A reasonable guess is to replace $\sqrt{ } b$ by the quadratic sum of \sqrt{b} and σ_{b}, i.e.,

$$
\operatorname{med}[Z \mid s]=\frac{s}{\sqrt{b+\sigma_{b}^{2}}}
$$

This has been used to optimize some analyses e.g. where σ_{b} cannot be neglected.

Profile likelihood with b uncertain

This is the well studied "on/off" problem: Cranmer 2005; Cousins, Linnemann, and Tucker 2008; Li and Ma 1983,...
Measure two Poisson distributed values:

$$
\begin{array}{ll}
n \sim \operatorname{Poisson}(s+b) & (\text { primary or "search" measurement) } \\
m \sim \operatorname{Poisson}(\tau b) & (\text { control measurement, } \tau \text { known })
\end{array}
$$

The likelihood function is

$$
L(s, b)=\frac{(s+b)^{n}}{n!} e^{-(s+b)} \frac{(\tau b)^{m}}{m!} e^{-\tau b}
$$

Use this to construct profile likelihood ratio (b is nuisance parmeter):

$$
\lambda(0)=\frac{L(0, \hat{b}(0))}{L(\hat{s}, \hat{b})}
$$

Ingredients for profile likelihood ratio

To construct profile likelihood ratio from this need estimators:

$$
\begin{aligned}
\hat{s} & =n-m / \tau, \\
\hat{b} & =m / \tau, \\
\hat{\hat{b}}(s) & =\frac{n+m-(1+\tau) s+\sqrt{(n+m-(1+\tau) s)^{2}+4(1+\tau) s m}}{2(1+\tau)} .
\end{aligned}
$$

and in particular to test for discovery $(s=0)$,

$$
\hat{\hat{b}}(0)=\frac{n+m}{1+\tau}
$$

Asymptotic significance

Use profile likelihood ratio for q_{0}, and then from this get discovery significance using asymptotic approximation (Wilks' theorem):

$$
\begin{aligned}
Z & =\sqrt{q_{0}} \\
& =\left[-2\left(n \ln \left[\frac{n+m}{(1+\tau) n}\right]+m \ln \left[\frac{\tau(n+m)}{(1+\tau) m}\right]\right)\right]^{1 / 2} \\
& \text { for } n>\hat{b} \text { and } Z=0 \text { otherwise. }
\end{aligned}
$$

Essentially same as in:
Robert D. Cousins, James T. Linnemann and Jordan Tucker, NIM A 595 (2008) 480501; arXiv:physics/0702156.
Tipei Li and Yuqian Ma, Astrophysical Journal 272 (1983) 317-324.

Asimov approximation for median significance

To get median discovery significance, replace n, m by their expectation values assuming background-plus-signal model:

$$
n \rightarrow s+b
$$

$$
m \longrightarrow \tau b
$$

$Z_{\mathrm{A}}=\left[-2\left((s+b) \ln \left[\frac{s+(1+\tau) b}{(1+\tau)(s+b)}\right]+\tau b \ln \left[1+\frac{s}{(1+\tau) b}\right]\right)\right]^{1 / 2}$
Or use the variance of $\hat{b}=m / \tau, V[\hat{b}] \equiv \sigma_{b}^{2}=\frac{b}{\tau}$, to eliminate τ :

$$
Z_{\mathrm{A}}=\left[2\left((s+b) \ln \left[\frac{(s+b)\left(b+\sigma_{b}^{2}\right)}{b^{2}+(s+b) \sigma_{b}^{2}}\right]-\frac{b^{2}}{\sigma_{b}^{2}} \ln \left[1+\frac{\sigma_{b}^{2} s}{b\left(b+\sigma_{b}^{2}\right)}\right]\right)\right]^{1 / 2}
$$

Limiting cases

Expanding the Asimov formula in powers of s / b and $\sigma_{b}^{2} / b(=1 / \tau)$ gives

$$
Z_{\mathrm{A}}=\frac{s}{\sqrt{b+\sigma_{b}^{2}}}\left(1+\mathcal{O}(s / b)+\mathcal{O}\left(\sigma_{b}^{2} / b\right)\right)
$$

So the "intuitive" formula can be justified as a limiting case of the significance from the profile likelihood ratio test evaluated with the Asimov data set.

Testing the formulae: $s=5$

Using sensitivity to optimize a cut

(a)

Figure 1: (a) The expected significance as a function of the cut value $x_{\text {cut }}$; (b) the distributions of signal and background with the optimal cut value indicated.

Extra slides

Resources on multivariate methods

C．M．Bishop，Pattern Recognition and Machine Learning， Springer， 2006

T．Hastie，R．Tibshirani，J．Friedman，The Elements of Statistical Learning， $2^{\text {nd }}$ ed．，Springer， 2009
R．Duda，P．Hart，D．Stork，Pattern Classification， $2^{\text {nd }}$ ed．， Wiley， 2001

A．Webb，Statistical Pattern Recognition， $2^{\text {nd }}$ ed．，Wiley， 2002.
Ilya Narsky and Frank C．Porter，Statistical Analysis
Techniques in Particle Physics，Wiley， 2014.
朱永生（编著），实验数据多元统计分析，科学出版社，北京，2009。

Software

Rapidly growing area of development - two important resources:

TMVA, Höcker, Stelzer, Tegenfeldt, Voss, Voss, physics/0703039
From tmva.sourceforge. net, also distributed with ROOT
Variety of classifiers
Good manual, widely used in HEP
scikit-learn
Python-based tools for Machine Learning scikit-learn.org
Large user community

A simulated SUSY event in ATLAS

Background events

This event from Standard Model ttbar production also has high p_{T} jets and muons, and some missing transverse energy.
\rightarrow can easily mimic a SUSY event.

Defining a multivariate critical region

For each event, measure, e.g.,

$$
x_{1}=\text { missing energy, } x_{2}=\operatorname{electron} p_{\mathrm{T}}, x_{3}=\ldots
$$

Each event is a point in n-dimensional x-space; critical region is now defined by a 'decision boundary' in this space.
What is best way to determine the boundary?

Perhaps with 'cuts':

$$
\begin{aligned}
& x_{i}<c_{i} \\
& x_{j}<c_{j}
\end{aligned}
$$

Other multivariate decision boundaries

Or maybe use some other sort of decision boundary:
linear

or nonlinear

Multivariate methods for finding optimal critical region have become a Big Industry (neural networks, boosted decision trees,...), benefitting from recent advances in Machine Learning.

Test statistics

The boundary of the critical region for an n-dimensional data space $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ can be defined by an equation of the form

$$
t\left(x_{1}, \ldots, x_{n}\right)=t_{\mathrm{cut}}
$$

where $t\left(x_{1}, \ldots, x_{n}\right)$ is a scalar test statistic.
We can work out the pdfs $g\left(t \mid H_{0}\right), g\left(t \mid H_{1}\right), \ldots$

Decision boundary is now a single 'cut' on t, defining the critical region.

So for an n-dimensional problem we have a corresponding 1-d problem.

Test statistic based on likelihood ratio

How can we choose a test's critical region in an 'optimal way'?
Neyman-Pearson lemma states:
To get the highest power for a given significance level in a test of H_{0}, (background) versus H_{1}, (signal) the critical region should have

$$
\frac{f\left(\mathbf{x} \mid H_{1}\right)}{f\left(\mathbf{x} \mid H_{0}\right)}>c
$$

inside the region, and $\leq c$ outside, where c is a constant chosen to give a test of the desired size.

Equivalently, optimal scalar test statistic is

$$
t(\mathbf{x})=\frac{f\left(\mathbf{x} \mid H_{1}\right)}{f\left(\mathbf{x} \mid H_{0}\right)}
$$

N.B. any monotonic function of this is leads to the same test.

Neyman-Pearson doesn't usually help

We usually don't have explicit formulae for the pdfs $f(x \mid s), f(x \mid b)$, so for a given \boldsymbol{x} we can't evaluate the likelihood ratio

$$
t(\mathrm{x})=\frac{f(\mathrm{x} \mid s)}{f(\mathbf{x} \mid b)}
$$

Instead we may have Monte Carlo models for signal and background processes, so we can produce simulated data:

$$
\begin{aligned}
\text { generate } \boldsymbol{x} \sim f(\boldsymbol{x} \mid \mathrm{s}) & \rightarrow \quad \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N} \\
\text { generate } \boldsymbol{x} \sim f(\boldsymbol{x} \mid \mathrm{b}) & \rightarrow \quad \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}
\end{aligned}
$$

This gives samples of "training data" with events of known type.
Can be expensive (1 fully simulated LHC event ~ 1 CPU minute).

Approximate LR from histograms

Want $t(x)=f(x \mid \mathrm{s}) / f(x \mid \mathrm{b})$ for x here

One possibility is to generate MC data and construct histograms for both signal and background.

Use (normalized) histogram values to approximate LR:

$$
t(x) \approx \frac{N(x \mid s)}{N(x \mid b)}
$$

Can work well for single variable.

Approximate LR from 2D-histograms

Suppose problem has 2 variables. Try using 2-D histograms:
signal

background

Approximate pdfs using $N(x, y \mid \mathrm{s}), N(x, y \mid \mathrm{b})$ in corresponding cells.
But if we want M bins for each variable, then in n-dimensions we have M^{n} cells; can't generate enough training data to populate.
\rightarrow Histogram method usually not usable for $n>1$ dimension.

Strategies for multivariate analysis

Neyman-Pearson lemma gives optimal answer, but cannot be used directly, because we usually don't have $f(x \mid \mathrm{s}), f(x \mid \mathrm{b})$.

Histogram method with M bins for n variables requires that we estimate M^{n} parameters (the values of the pdfs in each cell), so this is rarely practical.

A compromise solution is to assume a certain functional form for the test statistic $t(\boldsymbol{x})$ with fewer parameters; determine them (using MC) to give best separation between signal and background.

Alternatively, try to estimate the probability densities $f(x \mid \mathbf{s})$ and $f(x \mid b)$ (with something better than histograms) and use the estimated pdfs to construct an approximate likelihood ratio.

Linear test statistic

Suppose there are n input variables: $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$.
Consider a linear function: $\quad y(\mathbf{x})=\sum_{i=1}^{n} w_{i} x_{i}$
For a given choice of the coefficients $\boldsymbol{w}=\left(w_{1}, \ldots, w_{n}\right)$ we will get pdfs $f(y \mid \mathrm{s})$ and $f(y \mid \mathrm{b})$:

Linear test statistic

Fisher: to get large difference between means and small widths for $f(y \mid \mathbf{s})$ and $f(y \mid \mathbf{b})$, maximize the difference squared of the expectation values divided by the sum of the variances:

$$
J(\mathbf{w})=\frac{(E[y \mid s]-E[y \mid b])^{2}}{V[y \mid s]+V[y \mid b]}
$$

Setting $\partial J / \partial w_{i}=0$ gives for $\boldsymbol{w}=\left(w_{1}, \ldots w_{n}\right)$:

$$
\begin{aligned}
\mathbf{w} & \propto W^{-1}\left(\mu_{\mathrm{b}}-\mu_{\mathrm{s}}\right) \\
W_{i j} & =\operatorname{cov}\left[x_{i}, x_{j} \mid \mathrm{s}\right]+\operatorname{cov}\left[x_{i}, x_{j} \mid \mathrm{b}\right] \\
\mu_{i, \mathrm{~s}} & =E\left[x_{i} \mid s\right], \quad \mu_{i, \mathrm{~b}}=E\left[x_{i} \mid b\right]
\end{aligned}
$$

The Fisher discriminant

The resulting coefficients w_{i} define a Fisher discriminant.
Coefficients defined up to multiplicative constant; can also add arbitrary offset, i.e., usually define test statistic as

$$
y(\mathbf{x})=w_{0}+\sum_{i=1}^{n} w_{i} x_{i}
$$

Boundaries of the test's critical region are surfaces of constant $y(x)$, here linear (hyperplanes):

Fisher discriminant for Gaussian data

Suppose the pdfs of the input variables, $f(x \mid \mathbf{s})$ and $f(x \mid \mathbf{b})$, are both multivariate Gaussians with same covariance but different means:

$$
\begin{aligned}
& f(\boldsymbol{x} \mid \mathbf{s})=\operatorname{Gauss}\left(\boldsymbol{\mu}_{\mathrm{s}}, V\right) \longleftarrow \begin{array}{l}
\text { Same covariance } \\
f(\boldsymbol{x} \mid \mathrm{b})=\operatorname{Gauss}\left(\boldsymbol{\mu}_{\mathrm{b}}, V\right) \longleftarrow
\end{array} V_{i j}=\operatorname{cov}\left[x_{i}, x_{j}\right]
\end{aligned}
$$

In this case it can be shown that the Fisher discriminant is

$$
y(\mathrm{x}) \sim \ln \frac{f(\mathrm{x} \mid \mathrm{s})}{f(\mathrm{x} \mid \mathrm{b})}
$$

i.e., it is a monotonic function of the likelihood ratio and thus leads to the same critical region. So in this case the Fisher discriminant provides an optimal statistical test.

Transformation of inputs

If the data are not Gaussian with equal covariance, a linear decision boundary is not optimal. But we can try to subject the data to a transformation

$$
\varphi_{1}(\vec{x}), \ldots, \varphi_{m}(\vec{x})
$$

and then treat the ϕ_{i} as the new input variables. This is often called "feature space" and the ϕ_{i} are "basis functions". The basis functions can be fixed or can contain adjustable parameters which we optimize with training data (cf. neural networks).

In other cases we will see that the basis functions only enter as dot products

$$
\vec{\varphi}\left(\vec{x}_{i}\right) \cdot \vec{\varphi}\left(\vec{x}_{j}\right)=K\left(\vec{x}_{i}, \vec{x}_{j}\right)
$$

and thus we will only need the "kernel function" $K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{\boldsymbol{j}}\right)$

Linear decision boundaries

A linear decision boundary is only optimal when both classes follow multivariate Gaussians with equal covariances and different means.

For some other cases a linear boundary is almost useless.

Nonlinear transformation of inputs

We can try to find a transformation, $x_{1}, \ldots, x_{n} \rightarrow \varphi_{1}(\vec{x}), \ldots, \varphi_{m}(\vec{x})$ so that the transformed "feature space" variables can be separated better by a linear boundary:

Neural networks

Neural networks originate from attempts to model neural processes (McCulloch and Pitts, 1943; Rosenblatt, 1962).

Widely used in many fields, and for many years the only "advanced" multivariate method popular in HEP.

We can view a neural network as a specific way of parametrizing the basis functions used to define the feature space transformation.

The training data are then used to adjust the parameters so that the resulting discriminant function has the best performance.

The single layer perceptron

Define the discriminant using $y(\vec{x})=h\left(w_{0}+\sum_{i=1}^{n} w_{i} x_{i}\right)$
where h is a nonlinear, monotonic activation function; we can use e.g. the logistic sigmoid $h(x)=\left(1+e^{-x}\right)^{-1}$.

If the activation function is monotonic, the resulting $y(\boldsymbol{x})$ is equivalent to the original linear discriminant. This is an example of a "generalized linear model" called the single layer perceptron.

The activation function

For activation function $h(\cdot)$ often use logistic sigmoid:

$$
h(x)=\frac{1}{1+e^{-x}}
$$

The multilayer perceptron

Now use this idea to define not only the output $y(\boldsymbol{x})$, but also the set of transformed inputs $\varphi_{1}(\vec{x}), \ldots, \varphi_{m}(\vec{x})$ that form a "hidden layer":

Superscript for weights indicates layer number

$$
\begin{aligned}
& \varphi_{i}(\vec{x})=h\left(w_{i 0}^{(1)}+\sum_{j=1}^{n} w_{i j}^{(1)} x_{j}\right) \\
& y(\vec{x})=h\left(w_{10}^{(2)}+\sum_{j=1}^{n} w_{1 j}^{(2)} \varphi_{j}(\vec{x})\right)
\end{aligned}
$$

This is the multilayer perceptron, our basic neural network model; straightforward to generalize to multiple hidden layers.

Network architecture

Theorem: An MLP with a single hidden layer having a sufficiently large number of nodes can approximate arbitrarily well the optimal decision boundary.

Holds for any continuous non-polynomial activation function Leshno, Lin, Pinkus and Schocken (1993) Neural Networks 6, 861-867

However, the number of required nodes may be very large; cannot train well with finite samples of training data.

Recent advances in Deep Neural Networks have shown important advantages in having multiple hidden layers.

For a particle physics application of Deep Learning, see e.g. Baldi, Sadowski and Whiteson, Nature Communications 5 (2014); arXiv:1402.4735.

Overtraining

Including more parameters in a classifier makes its decision boundary increasingly flexible, e.g., more nodes/layers for a neural network.

A "flexible" classifier may conform too closely to the training points; the same boundary will not perform well on an independent test data sample (\rightarrow "overtraining").

Monitoring overtraining

If we monitor the fraction of misclassified events (or similar, e.g., error function $E(w)$) for test and training samples, it will usually decrease for both as the boundary is made more flexible:

flexibility (e.g., number
of nodes/layers in MLP)

Neural network example from LEP II

Signal: $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{W}^{+} \mathrm{W}^{-} \quad$ (often 4 well separated hadron jets)
Background: $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{qqgg}$ (4 less well separated hadron jets)

\leftarrow input variables based on jet structure, event shape, ... none by itself gives much separation.

Neural network output:

(Garrido, Juste and Martinez, ALEPH 96-144)

Summary on multivariate methods

Particle physics has used several multivariate methods for many years:

linear (Fisher) discriminant
neural networks naive Bayes

and has in recent years started to use a few more:
> boosted decision trees
> support vector machines
> kernel density estimation
> k-nearest neighbour

The emphasis is often on controlling systematic uncertainties between the modeled training data and Nature to avoid false discovery.

Although many classifier outputs are "black boxes", a discovery at 5σ significance with a sophisticated (opaque) method will win the competition if backed up by, say, 4σ evidence from a cut-based method.

Particle i.d. in MiniBooNE

Detector is a $12-\mathrm{m}$ diameter tank of mineral oil exposed to a beam of neutrinos and viewed by 1520 photomultiplier tubes:

MiniBooNE Detector

Search for v_{μ} to v_{e} oscillations required particle i.d. using information from the PMTs.

H.J. Yang, MiniBooNE PID, DNP06

Decision trees

Out of all the input variables, find the one for which with a single cut gives best improvement in signal purity:

$$
P=\frac{\sum_{\text {signal }} w_{i}}{\sum_{\text {signal }} w_{i}+\sum_{\text {background }} w_{i}}
$$

where w_{i}. is the weight of the i th event.
Resulting nodes classified as either signal/background.

Iterate until stop criterion reached based on e.g. purity or minimum number of events in a node.

The set of cuts defines the decision boundary.

Example by MiniBooNE experiment, B. Roe et al., NIM 543 (2005) 577

Finding the best single cut

The level of separation within a node can, e.g., be quantified by the Gini coefficient, calculated from the (s or b) purity as:

$$
G=p(1-p)
$$

For a cut that splits a set of events a into subsets band c, one can quantify the improvement in separation by the change in weighted Gini coefficients:

$$
\Delta=W_{a} G_{a}-W_{b} G_{b}-W_{c} G_{c} \quad \text { where, e.g., } \quad W_{a}=\sum_{i \in a} w_{i}
$$

Choose e.g. the cut to the maximize Δ; a variant of this scheme can use instead of Gini e.g. the misclassification rate:

$$
\varepsilon=1-\max (p, 1-p)
$$

Decision tree classifier

The terminal nodes (leaves) are classified a signal or background depending on majority vote (or e.g. signal fraction greater than a specified threshold).

This classifies every point in input-variable space as either signal or background, a decision tree classifier, with discriminant function

$$
f(\boldsymbol{x})=1 \text { if } \boldsymbol{x} \text { in signal region, }-1 \text { otherwise }
$$

Decision trees tend to be very sensitive to statistical fluctuations in the training sample.

Methods such as boosting can be used to stabilize the tree.

Boosting

Boosting is a general method of creating a set of classifiers which can be combined to achieve a new classifier that is more stable and has a smaller error than any individual one.

Often applied to decision trees but, can be applied to any classifier.
Suppose we have a training sample T consisting of N events with

$$
\begin{array}{ll}
\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N} & \text { event data vectors (each } \boldsymbol{x} \text { multivariate) } \\
y_{1}, \ldots, y_{N} & \text { true class labels, }+1 \text { for signal, }-1 \text { for background } \\
w_{1}, \ldots, w_{N} & \text { event weights }
\end{array}
$$

Now define a rule to create from this an ensemble of training samples
T_{1}, T_{2}, \ldots, derive a classifier from each and average them.
Trick is to create modifications in the training sample that give classifiers with smaller error rates than those of the preceding ones.
A successful example is AdaBoost (Freund and Schapire, 1997).

AdaBoost

First initialize the training sample T_{1} using the original

$$
\begin{array}{ll}
\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N} & \text { event data vectors } \\
\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{N} & \text { true class labels }(+ \\
\boldsymbol{w}_{1}^{(1)}, \ldots, \boldsymbol{w}_{N}^{(1)} & \text { event weights }
\end{array}
$$

with the weights equal and normalized such that

$$
\sum_{i=1}^{N} w_{i}^{(1)}=1
$$

Then train the classifier $f_{1}(\boldsymbol{x})$ (e.g., a decision tree) with a method that uses the event weights. Recall for an event at point \boldsymbol{x},

$$
f_{1}(\boldsymbol{x})=+1 \text { for } \boldsymbol{x} \text { in signal region, }-1 \text { in background region }
$$

We will define an iterative procedure that gives a series of classifiers $f_{1}(\boldsymbol{x}), f_{2}(\boldsymbol{x}), \ldots$

Error rate of the k th classifier

At the k th iteration the classifier $f_{k}(\boldsymbol{x})$ has an error rate

$$
\varepsilon_{k}=\sum_{i=1}^{N} w_{i}^{(k)} I\left(y_{i} f_{k}\left(\mathbf{x}_{i}\right) \leq 0\right)
$$

where $I(X)=1$ if X is true and is zero otherwise.
Next assign a score to the k th classifier based on its error rate,

$$
\alpha_{k}=\frac{1}{2} \ln \frac{1-\varepsilon_{k}}{\varepsilon_{k}}
$$

Updating the event weights

The classifier at each iterative step is found from an updated training sample, in which the weight of event i is modified from step k to step $k+1$ according to

$$
w_{i}^{(k+1)}=w_{i}^{(k)} \frac{e^{-\alpha_{k} f_{k}\left(\mathbf{x}_{i}\right) y_{i}}}{Z_{k}}
$$

Here Z_{k} is a normalization factor defined such that the sum of the weights over all events is equal to one.
That is, the weight for event i is increased in the $k+1$ training sample if it was classified incorrectly in step k.

Idea is that next time around the classifier should pay more attention to this event and try to get it right.

Defining the classifier

After K boosting iterations, the final classifier is defined as a weighted linear combination of the $f_{k}(\boldsymbol{x})$,

$$
t(\mathbf{x})=\sum_{k=1}^{K} \alpha_{k} f_{k}(\mathbf{x})
$$

One can show that the error rate on the training data of the final classifier satisfies the bound

$$
\varepsilon \leq \prod_{k=1}^{K} 2 \sqrt{\varepsilon_{k}\left(1-\varepsilon_{k}\right)}
$$

i.e. as long as the $\varepsilon_{k}<1 / 2$ (better than random guessing), with enough boosting iterations every event in the training sample will be classified correctly.

BDT example from MiniBooNE

~200 input variables for each event (v interaction producing e, μ or π).
Each individual tree is relatively weak, with a misclassification error rate $\sim 0.4-0.45$

B. Roe et al., NIM 543 (2005) 577

Monitoring overtraining

From MiniBooNE example:

Performance stable after a few hundred trees.

Training MC Samples .VS. ${ }_{x 10^{2}}^{\text {Testing MC Samples }}$

A simple example (2D)

Consider two variables, x_{1} and x_{2}, and suppose we have formulas for the joint pdfs for both signal (s) and background (b) events (in real problems the formulas are usually not available).
$f\left(x_{1} \mid x_{2}\right) \sim$ Gaussian, different means for s / b,
Gaussians have same σ, which depends on x_{2},
$f\left(x_{2}\right) \sim$ exponential, same for both s and b ,
$f\left(x_{1}, x_{2}\right)=f\left(x_{1} \mid x_{2}\right) f\left(x_{2}\right)$:

$$
\begin{aligned}
& f\left(x_{1}, x_{2} \mid \mathrm{s}\right)=\frac{1}{\sqrt{2 \pi} \sigma\left(x_{2}\right)} e^{-\left(x_{1}-\mu_{\mathrm{s}}\right)^{2} / 2 \sigma^{2}\left(x_{2}\right)} \frac{1}{\lambda} e^{-x_{2} / \lambda} \\
& f\left(x_{1}, x_{2} \mid \mathrm{b}\right)=\frac{1}{\sqrt{2 \pi} \sigma\left(x_{2}\right)} e^{-\left(x_{1}-\mu_{\mathrm{b}}\right)^{2} / 2 \sigma^{2}\left(x_{2}\right)} \frac{1}{\lambda} e^{-x_{2} / \lambda} \\
& \sigma\left(x_{2}\right)=\sigma_{0} e^{-x_{2} / \xi}
\end{aligned}
$$

Joint and marginal distributions of x_{1}, x_{2}

Distribution $f\left(x_{2}\right)$ same for s, b.
So does x_{2} help discriminate between the two event types?

Likelihood ratio for 2D example

Neyman-Pearson lemma says best critical region is determined by the likelihood ratio:

$$
t\left(x_{1}, x_{2}\right)=\frac{f\left(x_{1}, x_{2} \mid \mathbf{s}\right)}{f\left(x_{1}, x_{2} \mid \mathrm{b}\right)}
$$

Equivalently we can use any monotonic function of this as a test statistic, e.g.,

$$
\ln t=\frac{\frac{1}{2}\left(\mu_{\mathrm{b}}^{2}-\mu_{\mathrm{s}}^{2}\right)+\left(\mu_{\mathrm{s}}-\mu_{\mathrm{b}}\right) x_{1}}{\sigma_{0}^{2} e^{-2 x_{2} / \xi}}
$$

Boundary of optimal critical region will be curve of constant $\ln t$, and this depends on x_{2} !

Contours of constant MVA output

Exact likelihood ratio

Fisher discriminant

Contours of constant MVA output

Multilayer Perceptron 1 hidden layer with 2 nodes

Boosted Decision Tree 200 iterations (AdaBoost)

Training samples: 10^{5} signal and 10^{5} background events

ROC curve

$\mathrm{ROC}=$ "receiver operating characteristic" (term from signal processing).

Shows (usually) background rejection $\left(1-\varepsilon_{b}\right)$ versus signal efficiency ε_{s}.

Higher curve is better; usually analysis focused on a small part of the curve.

2D Example: discussion

Even though the distribution of x_{2} is same for signal and background, x_{1} and x_{2} are not independent, so using x_{2} as an input variable helps.

Here we can understand why: high values of x_{2} correspond to a smaller σ for the Gaussian of x_{1}. So high x_{2} means that the value of x_{1} was well measured.

If we don't consider x_{2}, then all of the x_{1} measurements are lumped together. Those with large σ (low x_{2}) "pollute" the well measured events with low σ (high x_{2}).

Often in HEP there may be variables that are characteristic of how well measured an event is (region of detector, number of pile-up vertices,...). Including these variables in a multivariate analysis preserves the information carried by the well-measured events, leading to improved performance.

