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Aspects of Machine Learning (ML) in HEP /

A

* Optimization
— Bottom line is performance
— But can we build new better (simple?) features?

background rejection

signal efficiency

* Teaching the learning P g e -
— Guide and boost performance of ML algorithms 17 E
using physics knowledge (1.e. domain specitic E + o
knowledge) - o
, . L. 05 1 e
— We don’t want ML to relearn special relativity o
B
[Translated] Pse.udorapidity m)
* Learning from Learning ...(if we can)
— Can we extract information about what the ML
is learning? k" 1 oo
— Can we use this information to design new "l 1
variables? il 1H o
— Often visualization is a key component b, ] I
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What is Machine Learning?

G1ving computers the ability to learn without
explicitly programming them (Arthur Samuel, 1959)

Statistics + Algorithms

Computer Science + Probability + Optimization
Techniques

Fitting data with complex functions

Pattern recognition: identifying patterns and
regularities in data



What do we use ML for? /

* Supervised Learning

— Given data with variables / features {x, € X} and targets {y. € Y},
learn the function mapping {{X)=Y

— Classification: Y 1s a finite set of labels
— Regression: Y € Real Numbers

* Unsupervised Learning
— Given some data D={x;, € X}, but no labels, find structure in the data

— Clustering: partition the data into groups
D={D,UD,UD,...UD,}

— Dimensionality reduction: find a low dimensional (less complex)
representation of the data with a mapping Z=h(X)

* Reinforcement learning

— Learn to make the best sequence of decisions to achieve a given goal
when feedback 1s delayed until you reach the goal




What do we use ML for? /

* Supervised Learning

— Given data with variables / features {x, € X} and targets {y. € Y},
learn the function mapping {{X)=Y

o o . . M S f t d
— Classification: Y 1s a finite set of labels ain focts today on

supervised learning in HEP

— Regression: Y € Real Numbers

ervised Learning
D={x. € X}, but no labels, find

— G1ven so ure 1n the data

— Clustering: partition the d

Won'’t Discuss this today... But there are existing and future applications in HEP
— D1me 1ty reduction: IInd a Iow dimensional QmpleX)
resentation of the data with a mapping Z=h(X)

— Learn to make the S to achieve a given goal
when feedback 1s delg yO e goal

Won't Discuss this at all today... Not yet clear how it will be used in HEP




Supervised Learning

> | Function with
adjustable
parameters

True labels:

Higgs =1

Bkg =0
* Design function with adjustable parameters
* Use alabeled training-set to compute error
* Adjust parameters to reduce error function
* Repeat until parameters stabilize

* Estimate final performance on fest-set

Error/Loss
Function

—> Error

Y. Le Cun




Classification

Rectangular cuts Linear discriminant

* Learn a function to separate x| sl e
difterent classes of data

* Avoid over-fitting: /

— Learning too fined details about
your training sample that will not
generalize to unseen data X,




Machine Learning Applied Widely in HEP

In analysis:

— Classitying signal from background, especially

in complex final states

— Reconstructing heavy particles and improving
the energy / mass resolution

In reconstruction:

— Improving detector level inputs to

reconstruction

— Particle 1dentification tasks
— Energy / direction calibration

* In the trigger:

— Quickly 1dentitying complex final states

* In computing:

— Estimating dataset popularity, and determining
how number and location ot dataset replicas

Events / 0.05

Data/Pred.

Events/0.014

9
ATLAS ¢ Data
700 , |s-8Tev,203 b wt E
1-jet 1-tag it =
600 M Others 3
500 ¢ ' 72 Uncertainty 5
B 77 7777
0.8 0, L i G XA
0.3 -0.2 0.1 0 0.1 0.2 0.3 0.4
BDT Response
5 8 TeV
L B e o A
F CMS Barrel E
10 §_Slmulat‘lon H—yy, p> 25 GeV .
g ¢ Photons E
108 —— Sum of pdfs
107
103—
1 T ‘
10 I L 1 Ll L !

1.8 2
E‘lrueIEraw
[0} T L 1 T T
'8 | ATLAS Simulation Zly* =t |
e Tau Particle Flow Diagonal fraction: 74.7%
<
Sant>12°- 0.2 25 36 5.3 56.6 |
©
k)
0]
g 3 0.2 0.6 0.3 92.5 40.2
[
8 h*>27°— 0.4 6.0 35.4 0.1 0.4 —
0]
o
h*z°— 9.4 74.8 56.3 0.9 25
h*E= 89.7 16.0 4.3 1.2 0.3 —
| | | | |
h* h* 70 h*>27° 3h* 3h*217°

Generated decay mode



Machine Learning in High Energy Physics

S

Many recent application of ML in HEP
rely on Ensembles of decision trees, such
as Boosted Decision Trees and Random
Forests

)

p(blue)=0/7

Powertul algorithms that are relatively no

simple, easy to train, and tend not to

overfit (especially Random Forests) o(blue)=1/7 blue)y8/s

They are very popular in general:

— Test 179 classifiers (no deep neural networks) on 121 datasets
http://jmlr.csail.mit.edu/papers/volumel5/delgado14a/delgado14a.pdf

— The classifiers most likely to be the bests are the random forest (RIF) versions, the
best of which (...) achieves 94.1% of the maximum accuracy overcoming 90% in

the 84.3% of the data sets

But, Deep Neural Networks have outperformed such algorithms in certain

domains, like Object Recognition in images
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Neural Networks and Deep Learning /




Neural Networks A

Input Hidden Output
layer layer layer

Input #1

Input #2
O - Qutput | inputs

~—— X !

Input #3

o |/
J

Activation
Function

Input #4

— .

X = Input vector

* “Typical” neural network circa 2005

* Typical questions of optimization

— Which variables to choose as inputs? How correlated are they?
— How many nodes in the hidden layer?



Neural Networks A

Input Hidden Output
layer layer layer
Input #1 | Y= O(UZ T C) ool | |
:. / osl |
A 0.7} [ 4o
Input #2 < 09y + e
‘ - Output ol
Input #3 o]
‘ ) % 5 0 5
Input #4 S % o(x) = sigmoid function
/‘ ‘\ is the Activation Function
X = Input vector
P z=oc(Wx+0)

* “Typical” neural network circa 2005

* Typical questions of optimization

— Which variables to choose as inputs? How correlated are they?
— How many nodes in the hidden layer?



Training a Neural Network A

1 Nexa

MSE = fles (i - f(xi))z

e Define a loss function that 1 =

depends on predictions
f{x;w) and targets y Lyee =~ 9, ~310g f(x)=(1-3)log1 - f(x)

i=1

t B(WX)




Training a Neural Network A

* Define a loss function that .
depends on predictions .
1 examples

f(x;w) and targets y Ly = 3, 1o f(x)=(1=3)log(l- £(x)

i=1

1 Nexa

MSE = N Z’Zpl (i - f(x,-))z

* Add regularization to control the [ EW;
model complexity and reduce overfitting 24




Training a Neural Network A

* Define a loss function that
depends on predictions

N,

1 examples
MSE = E (y; _f(x,-))z
N =3

N,

f(x;w) and targets y Lycs =~ S5 -y log £(x) = (1 -y log( - £(x,)
* Add regularization to control the [ EWZ'
model complexity and reduce overfitting 24

* Minimize the loss function using
backpropagation

— Fancy word for chain rule

v L9 98, 08 98
Y df ag, dg,., 08, Iw,

— Compute average gradient on training set  w

* Update weights with gradient descent

< —_
w,<~w;,-aVv, L

— a1s called the learning rate




Deep Neural Networks /

) hidden layer 1 hidden layer 2 hidden layer 3
input layver —
ez e ¥ < output layer
\ 5
54
= »:
== P >3 ———
' —

* As data complexity grows, need exponentially large number of
neurons 1n a single-hidden-layer network to capture all the
structure In the data

* Deep neural networks have many hidden layers
— Factorize the learning of structure in the data across many layers

 Ditficult to train, only recently has this become possible...



Why did it take so long to train DNN’s? s

2007 ANALOG
19 exabytes

- Paper, film, audiotape and vinyl: 6 %
- Analogvideotapes (VHS, etc): 94 % ANALOG t
7| - Portable media, flash drives: 2%

- Portable hard disks:2.4% DIGITAL @
- CDs and minidisks:6.8%

Global Information Storage Capacity
in optimally compressed bytes

- Computer serversand mainframes:8.9 %

- Digital tape: 11.8 %

1986 « é

ANALOG i / /

2.6 exabytes H - DVD/Blu-ray: 22.8 % o’
= . DIGITAL ‘

DIGITAL \ : STORAGE

0.02 exabytes "‘
o

-PCharddisks:44.5% P%
123 billion gigabytes

“beginning

of the digital age”
50%
% digital: Jhevinieibloy s il i
1% 3% 25% 94 % DIGITAL
280 exabytes

Source: Hilbert, M., & Lopez, P. (2011). The World’s Technological Capacity to Store, Communicate, and
Compute Information. Science, 332(6025), 60 —65. http://www.martinhilbert.net/WorldinfoCapacity.html

* Big Data

— (Hundreds of) Millions of parameters — large dataset vital for training

* GPU’s
— NN’s require a lot of matrix multiplications... perfect for GPU’s
— Dramatically increased the speed of training

* But these aren’t the only reasons...



Training Improvements

* Gradient descent 1s computationally
costly (since we compute gradient = w.
over full training set)

* Stochastic gradient descent — R

— Compute gradient on one event at a
time (in practice a small batch)

— Noisy estimates average out

— Stochastic behavior can allow “jumping”

out of bad critical points , |
V/ g
. . w, 1P ——  momentum [}
— Scales well with dataset and model size Eiia— )
— But can have some convergence : o magree
. . -1 adadelta |y
difficulties S rmsprop :

, -3
— Improvements include: /

Momentum, RMSprop, AdaGrad, ... B

I

-5



Better Activation Functions A

ReLU(z)
1/(14e")
tanh(x)

-3 -2 -1 0 1 2 3

* Vanishing gradient problem * Rectified Linear Unit (ReLU)

— Derivative of sigmoid: — ReLU(x) = max {0, x}
90 (x — Derivative 1s constant!
Y s@-ow)
ox oReLU(x) | 1 whenx>0
— Nearly 0 when x 1s far from 0! dx 0 otherwise

— Gradient descent impossible! — ReLU gradient doesn’t vanish



.

Better Regularization Inside the Network

(") )
<7 X<
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(b) After applying dropout.

(a) Standard Neural Net

* Dropout

— Randomly remove nodes during training

adaptation of nodes

— Avoid co

— Essentially a large model averaging procedure



Deep NNs in HEP analysis E:;:f:::“s:;:T;z,“'ff;;c;f?;’&‘;(’%

H—7tt benchmark

* Compare dense Deep NN against -

BDT’s and shallow NN’s
* Deep NN found to outpertorm : S
3 sol - - High-level variables_
shallow NN and BDT’s R R o
. . . . . Layers
— small but statistically significant gain < | Shallow networks  Deep networks
over simpler ML algorithms
* Physicists are good at doing Sl |5 |E
: Sosl[2] 5] |2
physics! Nl i B
— Typical physics variables are high BSM Higgs benchmarlk
. o . AUC
performln g (e.g. lnvarlant mas S’ Technique Low-level High-level Complete
BDT 0.73 (0.01)  0.78 (0.01) 0.81 (0.01)
Razor etc> NN 0.733 (0.007) 0.777 (0.001)  0.816 (0.004)
) : DN 0.880 (0.001) 0.800 (< 0.001) 0.885 (0.002)
- But D eep NN’S Can learn Well from Technique Low-level DIS;()i;:li}l,eileglnlﬁCanéeomplete

NN 2.50 3.10 3.70

only 4-vector inputs DN 480 360 5 0




What is deep learning doing? A

* Hierarchical learning of representations

* Use low level inputs in smart ways
— e.g. FFeed 1n 1mage pixels, rather than pre-computed features
— Learn the structure in the data, rather than engineer it

— No explicit need for feature engineering... unless you want to

* What deep learning 1s NOT:
— A silver bullet
— Replacement for thinking + domain knowledge
— Always better than BDT, SVM, ...

— Just feedforward neural networks!

Luke de Oliveira



.

* Successlive layers build upon information learned

Higher Level Representations

igher

1in lower layers to construct progressively h

level representations of data

Optimal stimulus
of a given neuron
http://arxiv.org/abs/1112.6209

/
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NOT Simple Feedforward Neural Networks A

* NN’s as a complex graph
— Nodes of graph are the layers
— Edges of graph are data flow

Filter
Concatenation

— Layers added to achieve a specific SOl US— A —

1x1 Convolution

task, e.g. regularization

1x1 Convolution 3x3 Pooling

Previous Layer

e Better to ask:

— What does each layer / module do? Inception module
“Network-in-network”

— How 1s it connected to the previous
and next layer?

Convolution
Pooling

GooglLeNet
ILSVRC 2014 Winner
4AM parameters Other



The Tip of the Iceberg

Feedforward NNs

Neural Turing Machines Memory NNs




The Tip of the Iceberg

T .

Feedforward NNs 3 sa\ad _ computer vision tasks

Neural Turing Machines Memory NNs




Typical Neural Network Hidden Layer

.

output

input

X1

2

.o

oo

Hidden layer

Different Colors represent
different weights W*x



Local Connectivity A

output 5

Hidden layer
Different Colors represent
different weights W*x

seoe

Input  x, X5 X3 X4 X5 Xe

Local connectivity: each neuron has a small “field of view” of a few inputs



Shared Weights — Convolutions A

output 5

Hidden layer
Different Colors represent
different weights W*x

z, |z, | z3 | z4
Input  x, X; X3 X4 X5 Xe

| IV

Shared weights: each neuron uses the same weights...

Eftect — the neuron 1s scanned over difterent tields of view — Convolution



Convolutional Layer

output

Hidden layer
Different Colors represent
different weights W*x

input  x, X5 X3 X4 X5 Xe
Add more neurons which scans the field of view

Each neuron is a I7/ter being convolved with the input

Convolutional Layer with 4 filters production 4x4 output vector size



Convolution in 2D

Center element of the kernel is placed over the (0 X 0)
source pixel. The source pixel is then replaced
with a weighted sum of itself and nearby pixels.

Source pixel

Convolution kernel
(emboss)

New pixel value (destination pixel) « 1 [ e



What do filters do?

A

i ‘ through

ﬂ
a l through

image

N\

filter

/AN
e ]
N /N
| I
HEN |

| |
HENE
| |
H EEN
/AN

[ ]1.0
[ ]os5
oo

image

through

through

x
[]
[]
[]
x

filter

= 6.6

-7.8

[ ]1.0 - really want
[ ]0.2 - sort of want
#-1.0-don’t want



VGGNet (2014) /

* Runner up, 2014 ILSVRC
1mage recognition challenge

— 140M parameters
- s — 2-3 week training time on
2 4-GPU system
D=256

D=512

D=512

D=4096 D=4096 D=1000

L | P ) —7

224x224 112x112 56x56 28x28 14x14 FC FC FC + Softmax




Representation Learning

Filter Matching images

Layer 1

L. Monier, G. Renard, https://github.com/holbertonschool/deep-learning




Representation Learning

L. Monier, G. Renard, https://github.com/holbertonschool/deep-learning




Representation Learning

L. Monier, G. Renard, https://github.com/holbertonschool/deep-learning




Deep Learning for Image Recognition A

30 -

—28%
26%
25
20
16%
15
12%
10
g Sy 5.3% 5.1% 4.9%
SINNEENNNI

2010 20117 2012 2013 2014 2015 Human 2015
(Baidu) (MS)

Classification error (%)

* Deep Convolutional Networks now have super-human
performance in image recognition (ILSVRC Challenge)



Deep learning and High Energy Physics A




Deep learning and High Energy Physics A

* How can we make use of high-pertformance deep
learning algorithms in HEP?

* Can deep learning find interesting and useful
high-level representations of physics data?

— Can they teach us something new?

* Think about our low-level data in news ways that
are amenable to deep learning

— Can we frame HEP questions as 1if they were 1mage
recognition tasks?



Neutrino Identification at NOVA

arXiv:1604.01444
3D schematic of View from the top Particle 1
NOVA particle detector T e e
Interaction
Point
Particle 2
__________ - - = =
Neutrino
from Particle 3
Fermilab
PVC cell filled with
liquid scintillator 70 20
60 60
View from the side Particle 2 > B ¥ —
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- Particle 1 20 20 4
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Pla Plane
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Fermilab
71 meter 70 70 '
Particle 3
60 60
50 50 L
. . o EAN
* Two 2D projections of the interactions : iz
20 40 o 60 80 100 20 40 plane 60 80
X-view Y-view
(b) v, CC interaction.
L] . L] L]
* Goal: discriminate between ditterent . -
L] L] [ ] 60 60
neutrino interactions / backgrounds e 1
. .
10| 10|
20 40 o 60 80 100 20 40 plane 60 80
X-view Y-view

(c) NC interaction.




arXiv:1604.01444

Neutrino Identification at NOVA

View from the top Particle 1

3D schematic of
NOvA particledetector = =< moa oo oo oo Softmax Output
ienction Avg Pooling
6x5

1 meter

* Treat 2D projections as images

— Convolutional Neural network for imaging

tasks

* Make use of GoogLeNet

— Use first layers with usetful representations for
structures in NOVA detector (e.g. edges, ...)

— Train with two image inputs, one for each view

Particle 3

Inception
Module

Max Pooling
3x3, stride 2

LRN

Convolution
3x3

Convolution
1x1

LRN

Max Pooling
3x3, stride 2

Convolution
7x7, stride 2

X View

Particle 2
Neutrino .
from ! Particle 3 Inception
Fermilab /} M odule
PVC cell filled with
liquid scintillator
Inception Inception
Particle 2 Module Module
1 LILUIVE H_Soeeh
H ‘IH\H}%",,‘JH
H 15 CLr 1HHH Max Pooling Max Pooling
= : I Particle 3x3, stride 2 3x3, stride 2
Interaction |~ i :
Point H /} =
....... 1203, H Inception Inception
Neutrino = A Module Module
from H !
Fermilab = 1 A
= = o= .

Inception
Module

Max Pooling
3x3, stride 2

LRN

Convolution
3x3

Convolution
1x1

LRN

Max Pooling
3x3, stride 2

Convolution
7x7, stride 2

Y View




Neutrino Identification at NOVA i A

80 ' ! ) ! n.....m-
I
50- s 7
8 401 _-_--l_—-'—'— W 1 -....n-.
30-H.- | ......“

10}

| o =
0 1 L L 1
-

0 20 40 60 80 100

Image Y-view ===  First CONV layer filters ===  Qutput of convolution

* Convolution filters and outputs show interesting features about how
the NN 1s providing discrimination

* Major gains over current algorithms in v _-CC discrimination:
35% — 49% signal efficiency for the same background rejection



Jets at the LHC

ATLAS

EXPERIMENT

Run Number: 271298, Event Number: 174020293

Date: 2015-07-10 22:20:53 CEST

| |
| oW |
‘ oo |
- u e




Machine Learning and Jet Physics

A

* Can we use In internal structure of a jet (1.e. the individual

energy depositions) to classify different kinds ot jets?

Boosted W Jet, R = 0.6

" Boson jet |

-0.2

0

02 04 06 08 1
n

5.8

5.61

4.67

Boosted QCD Jet, R=0.6

1
5.2r 1
1

~~QCDjet

54f )

L] n
"4

s b=

-O.

]

\
4.8¢

-12 -1 -08 -06 -04 -02
n

* Subfield of jet-substructure tries to answer this question using
physics motivated features

* (Can we learn the important information for discrimination
directly from the data? And understand what we learned?



The Jet-Image

A

* Treat the detector as a camera: The Jet-Image

— Calorimeter towers as pixels

— Energy depositions as intensity

* Use all available information for jet classification

Relative ¢
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Discriminating Signal and Background A

* In the past, explored linear http://arxiv.ore/abs/1407.5675
classification techniques 25F ' ' ' P
-11Ke
. 0.6
applled to Jet_ImageS Radiation around 1* W-like
5ok subjetin QCD jets i 0.4
L. . \ Radjiation along
— Similar / improved ‘..I direction 102
erformance over physics- L5F i between subjet< |
P . . phy _ Noinfoin ———qy in Wejets 0.0
inspired variables & presences of
15t subjet / 1-0-2
1.0F -
) Wide 2nd 404
— Image paradigm allows 4— subjet in
excellent insight into the 05F Hard ond QCD jets- —0.6
“physics” governing subjet in 08
. .. . W-jets :
discrimination through 0.0} J .06 Subjet lAR e O
visualization 00 05 1.0 1.5 20 25 co1

Q2 \ Coefficient

: o Discriminant f(x) = w*x
e Linear methods can be Iimited

— All the physics inside of a jet is not linear



Deep Jets — Convolutional Neural Networks A

Convolved
Convolutions Feature Layers

Max-Pooling

W—- W/ event

Repeat



Performance with Deep Neural Networks

A

1/(Background Efficiency)

—_
(6}
o

—_
o
o

Pythia 8, \s=13 TeV

250 < pT/GeV <300 GeV, 65 < mass/GeV <95

State of the art
In physics

— MmMass
— Ty
AR

.......... Random

Fisher
—— Maxout i ,
—— Convnet Deep NN's

Signal Efficiency



Combining Deep NN’s with Substructure Variables

Pythia 8, \s=13 TeV

250 < pT/GeV <300 GeV, 65 < mass/GeV <95

>

(&) . ’
S 150 - Combine Deep NN’s
5 — mass+Convnet with jet mass

% B 1,,+Convnet

= - NEElee T » Combine Deep NN’s
o with substructure
o o —

2100 Maxout features

©

Large gains from
combining mass with
Deep NN

O
o

Deep NN’s not fully
learning jet mass?

Signal Efficiency



Conditional Correlations with Network Output

DNN Output

ty

Normglized to Uni
R
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Jet Mass / GeV
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n
T

0.01
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Pr(Jet Mass / GeV | DNN Output)



Extracting the Physics A

Looking “into” the network to better see
what 1t 1s learning



Convolved representations

Iul"!’ "Hl HH

First layer 11x11 convolutional filters

W

~ . .

ud ? @
E L] - -

Convolved jet image differences
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Average Most Activating Jet Images
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Physics in deep representations

/e

Correlation of Deep Network output with pixel activations.
py €[250,300] matched to QCD, my;€[65,95] GeV

1.0
signal-like 0.60
background-like

0.45

§ 0.5 I=
. c

()
= {0.30 &
c =
< T
© 10.15 S
5 c
£ =
< 0.0 {0.00 &
< o
5 S
v -0.15
2 e
L ?
7 -0.30 5
T —0.5 r 9
E

—-0.45

—-0.60

-1.0 1 1 1
-1.0 -0.5 0.0 0.5 1.0

[Transformed] Pseudorapidity (n)

Pearson Correlation Coefficient of the pixels intensity with the network
output: how discriminating information is contained within the network




Physics In deep representations

/

Correlation of Deep Network output with pixel activations.

py €[250,300] matched to QCD, my;€[65,95] GeV
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Pearson Correlation Coefficient of the pixels intensity with the network
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\ Learning About Learning

N

Restricted Phase Space: 79 < m < 81 GeV and 0.19 < 7,, <0.21
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Learning something beyond mass and T, ...

Spatial information indicative of radiation pattern for W and QCD:
New information learned by the network potentially related to colorflow
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Where 1s DL in HEP going next? A




Where 1s DL in HEP going next? A

* Computer vision and 1imaging techniques may have broad

apph() ablllty e AElectromagnetic

4. shower (e, y)

— Calorimeter shower classification?
— Energy calibration regression?
— Pileup reduction?

— Tracking?

* Sequential learning techniques (not discussed 1n this talk)
may be useful in tasks with variable length data
— Typical neural networks and BDT’s require a fixed input size

— But not all discrimination tasks in HEP have a fixed size data
representation, e.g. jets with variable numbers of constituents,
variable number of jets in an events, ...

* New network training paradigms may help fast
simulations, or reduce systematic uncertainties...



New way to train networks... Potential for HEP?

61
. « . » Generative Adversarial Nets
e T'rain two networks agamst
each other | B | cenerator Y. Le Cun
One to generates an 1mage Vector Network L
- Discriminator
Real/Fake

Second one to distinguish 7| Network
real / fake images

Random | Training Real
Index Set Image

Potential applications for fast

simulation?
minmaxV (D, G) = Equpg @) 108 D(@)] + Exnp, ) log(1 — D(G(2))].

https://arxiv.org/abs/1406.2661

* Domain adaptation: train with

Gradient Reversal Layers and Domain Adaptation

one dataset (MC) and apply on

a slightly different one (data) {2 o
« s s . . f g
— Minimize use of information o) ﬂ 0 ﬂ D) Edm label y
not in both domains L) o D ® D N
9Ly = label 1>1e(11(t01 Gyl 0/)
. féo - W < domain classifier Gy(-;64)
Potential to reduce data/MC 2, y ot
dlfferences and SYStemath feature extractor G (-;6y) {?J)@i@ I:> B domain label d
uncertainties during 2 oL,
Lo 005 Ld
tr ainin g E) forwardprop  backprop (and produced derivatives)

http://arxiv.org/abs/1409.7495




Conclusion A

* Machine learning already used widely in HEP

* Deep learning 1s a new and powertful paradigm for
machine learning in certain contexts

* Framing HEP data in the new ways can allow us to
benefit from deep learning

* Already seen performance improvements and new
insights when using deep learning in HEP

* Large potential for new image recognition and deep
learning applications in HEP



Backup




Useful Python ML software

.

Anaconda / Conda — easy to setup python ML / scientific computing
environments

— https://www.continuum.io/downloads
— http://conda.pydata.org/docs/get-started.html

Integrating ROOT / PyROOT into conda

— https://nlesc.gitbooks.io/cern-root-conda-recipes/content/index.html
— https://conda.anaconda.org/NLeSC

Converting ROOT trees to python numpy arrays / panda dataframes
— https://pypi.python.org/pypi/root numpy/
— https://github.com/ibab/root_pandas

Scikit-learn — general ML library
— http://scikit-learn.org/stable/

Deep learning frameworks / auto-difterentiation packages
— https://www.tensorflow.org/
— http://deeplearning.net/software/theano/

High level deep learning package build on top of Theano / Tensorflow
— https://keras.io/




Decision Trees

A




Optimizing a Decision Tree A

* Building an optimal decision tree 1s an NP-complete
problem

— Hard to find a global optimization for all splittings at
the same time

* Greedy optimization — optimize one split at a time
— Start with one leat
— Split leat in two
— Repeat as needed



Optimizing a Decision Tree A

* When to split? Minimize impurity = 2, - Impurity(leaf)*size(leaf)

— Typical leat impurity functions:
— Gini = p*(1-p)
— Entropy = -p*log(p) — (1-p)*log(1-p)

* Where p 1s the fraction of signal events in leaf, and size is the number of
events falling into that leaf

— Mean Square Error (regression): (1/n,) 2.. .r (y, —m)?

* Where y; 1s the true value, and m is the average y of events in the leaf

* When to stop splitting? Many criteria
— Fixed tree depth
— Information gain is not enough
— Fix minimum samples needed in leaf
— Fix minimum number of" samples needed to split leaf



Overfitting A

Variable 2

0.0 = £ A

20

Variable 1

10 15

-1.0 -05 0.0 05

* Single decision trees can quickly overfit

* Especially when increasing the depth of the tree



Ensemble Methods A

* Combine many decision trees, use the ensemble for prediction
1 Ntree
* Averaging: D(x)=—— E d.(x)
tree i=l
— Random Forest, averaging combined with:

* Bagging: Only use a subset of events for each tree training
* Feature subsets: Only use a subset of features for each tree

N,

* Boosting (weighted voting): D(x)= Ereeaidi(x)
i=1
— Weight computed such that events in
current tree have higher weight misclassified in previous trees

— Several boosting algorithms
e AdaBoost

* Gradient Boosting
* XGBoost



Ensembles of Trees

e Ensembles of trees
tend to work very well

5 o . e
‘33';: ‘:' o 5

— Relatively simple : '.,.':.-'.:._.;.... AR

— Relatively easy to train

— Tend not to overfit

data

(especially random
forests)

— Work with different
feature types:
continuous, categorical,
etc.

50 trees 2000 trees
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Neural Networks




Non-Linear Activations /

e The activation function in the NN must be a non-linear function

— It all the activations were linear, the network would be linear:
(X)) =W, (W, (... W, X)) = UX, where U = II. W.

* Linear functions can only correctly classity linearly separable datal!

* For complex datasets, need nonlinearities to properly learn data
structure

Linear Classifier Non-linear Classifier



Neural Networks and Local Minima %

* Large NN’s difficult to train...trapping in local minimum?

* Not in large neural networks hups//arzivorg/abs/1412.0233
— Most local minima equivalent, and resonable
— Global minima may represent overtraining

— Most bad (high error) critical points are saddle points (different than
small NN’s)



Weight Initializations and Training Procedures A

* Used to set weights to some small
initial value

— Creates an almost linear classifier

* Now initialize such that node outputs
are normally distributed

X, —>
* Pre-training with auto-encoder % —>
— Network reproduces the inputs % —>

— Hidden layer 1s a non-linear AN hyy ()

dimensionality reduction
— Learn important features ot the input

X —>

Xs —>

— Not as common anymore, except 1n
certain clrcumstances. ..

Layer L, Layer L3

* Adversarial training, invented 2014
— Will potential HEP applications later



MaxQOut

output

input

X1

Max{z,, z,, z5, 2,}

Zy

Zy

Z3

Zy

Hidden layer

Different Colors represent
different weights W*x



RelLU Networks /

Output

Hidden layer 2

Hidden layer 1

Input
http://www.imlr.org/proceedings/papers/v15/glorotlla/glorotlla.pdf
* Sparse propagation of activations and gradients in a network of rectifier
units. The input selects a subset of active neurons and computation is

linear in this subset.

* Model is “linear-by-parts”, and can thus be seen as an exponential
number of linear models that share parameters

* Non-linearity in model comes from path selection



Convolutions in 2D A

Stridg =1

D=4 Shared weights!!!
0O00000O0ooond =
| | Y M R R R OdO00O00000boooddt
| | Y M M R R OO0O00dtoboboodot
OO ooOoOoooondn L=W=5 O0O00oddodOodt
| | o | (| Y R R R OO000oO00Ooocooood
| | | Y R A R OdO00O0000dboooddt
OdO0O00dbobooodtn OdO000000b0ooddt
OJO0O0ddobooodOd OdO0O00ddbooodot
OO00odoodnoondn O0O000Oddoododt
Ooooddobooodot OO0 odot
OdO0O0ddbooododOn OdO0O00ddboooddt
N ) OdO00O00000boooddt
N O P 1 OdO0O00ddbooodot

- — L O0O000000000000C
Input image Convolved image

* Scan the filters over the 2D image, producing the
convolved 1mages



Max Pooling A
-\
L] ]
N
11 ]
111 11
11111 |
T 111111 Max Pooling
Layer N Layer N+1

* Down-sample the input by taking MAX or

average over a region of Inputs

— Keep only the most useful information



Daya Bay




Daya Bay Neutrino Experiment I A

* Aim to reconstruct inverse P-decay interactions from
scintillation light recorded in 8x24 PMT’s

* Study discrimination power using CNN’s

— Supervised learning — observed excellent performance (97%
accuracy)

— Unsupervised learning: ML learns itselt what 1s interesting!

2D distant preserving representation of
10D encoding of events

<—— Reconstructed inputs 150

AN

N O U s WN K= O
=

Nonlinear decoing layers
(using deconvolutions)

|
|
|
|
|
10DencodingTT TT : > O
I
|
|
|

50}

=50+

)

Nonlinear encoding layers
(using convolutions)

-100 |

(KRR EEE N R K

———— Inputs (8x24)
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Jet-Images




Jet tagging using jet substructure A

* Typical approach: I QCD t
Use physics inspired variables to 2 Wiet) = - DJet -

, N
187 . , . m
. \ 1

520 | g

provide signal / background f \ :
. . . . 161, - l - ' s @O
discrimination \., S
AR N

4.8

4.6

1 -12 -1 -08 -06 -04 -02

* Typical physics inspired variables w o g :
exploit differences in:

e J I S A PPORNNM ARSERRRLAAANAM AN NS A
et mass = 0.1 4iVS=8 Tev S Multjets (leading jet) ]
L ) O q™)<1.2 —_— Gau.ssia.n fit to signal
* N-prong structure: B 0120 20" <300V & 0sschg007
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* Radiation pattern: 0.041¢
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o Color flow
arXiv:1510.05821 M [GeV]




Jet tagging using jet substructure A

* Typical approach: o neie
Use physics inspired variables to o Wiet| = = QCDjet -
grow.de.&gpal / background N Wl e

1scrimination alh L ome e
12 $ /1/ 48 .
 Typical physics inspired variables 90 o g o o i TR e e e s
exploit differences in: 65 GeV <m <95 GeV
0.08 :
* Jet mass L — Wets
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* N-prong structure:
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o 1l-prong (QCD) 9 0.05} Van Tilburg
o 2-prong (W,Z,H) S 004l
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* Radiation pattern: 0.02)
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o Soft gluon emission
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Pre-processing and space-time symmetries A

Pythia 8, /s =13 TeV

240 < pT/GeV <260 GeV, 65 <mass/GeV <95

Pre-processing steps

>

may not be Lorentz £ % m2 = Y EE,(1-cos(6)))

. o oy — No pixelation

InVal’lant _"5 — Only pixelation
&') 0.25 - - Pix+Translate (naive) (x0.75)
‘_é‘ - Pix+Translate

* Translations in 1 are S 02 "~ PoeTranslatesFlp

e Pix+Translate+m/2 Rotation
Lorentz bOOStS along Z-dXI18 —Pix+TransIate+pi norm (x170)
0.15

— Do not preserve the pixel
. P P Naive
energies ,
Translation

Image

normalization

— Use py rather than E as pixel 0.1
Intensity

0.05

e Jet mass 1s not invariant =T
under Image normalization 60 70 80 90 100 110




Restricted phase space .
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Deep correlation jet images
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