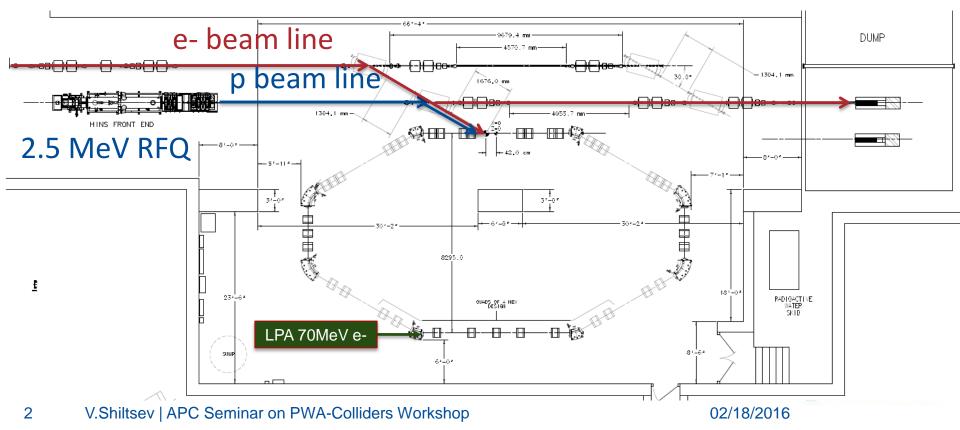
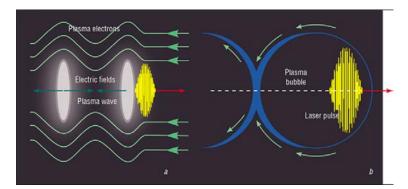


Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Plasma-Based Colliders:


"get practical" – IOTA 70 MeV e- Injector
 stability challenge (one of many)
 rough cost estimates
 on high level roadmap for PWA-LC

Vladimir Shiltsev, Fermilab


APC Seminar 02/18/2016 - Summary of the Workshop on "Plasma-based Accelerator Concepts for Colliders" LBNL, January 6-8, 2016


(Dream of) LPWA e- Injector for p+ IOTA Tune Up

- Given expected sensitivity of the Integrable Optics and Space-Charge Compensation to the lattice imperfections, it is very desirable to have an option of <u>reverse *e*- injection</u> to tuneup IOTA optics for record high tune-shift operation with 70 MeV/c protons
- Need compact 70 MeV electron source e.g., LPWA

Laser Wakefield Acceleration Injector for IOTA ?

Main Specs:

e- Energy	70 MeV		
Bunch charge	(¼ - ½) nC		
Rep.rate	~0.1 Hz		
E spread dE/E	< 0.2%		
Emittance, n-rms	< 100 µm		

Important Considerations:

- Compact (<1 m)
- Injection (matching, on orbit?, kicker?)
- Cost (low)
- Reliability and stability (high)

This would be the first occurrence of the laser wakefield method used as an electron source for injection into an operational accelerator.

rs Workshop

Estimates of emittance dilution and stability in high-energy linear accelerators

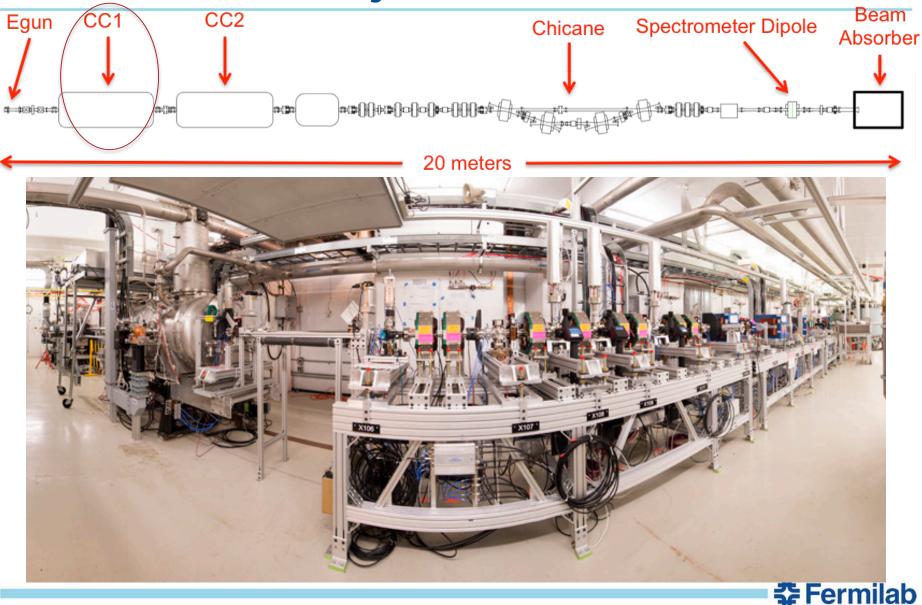
T.O. Raubenheimer

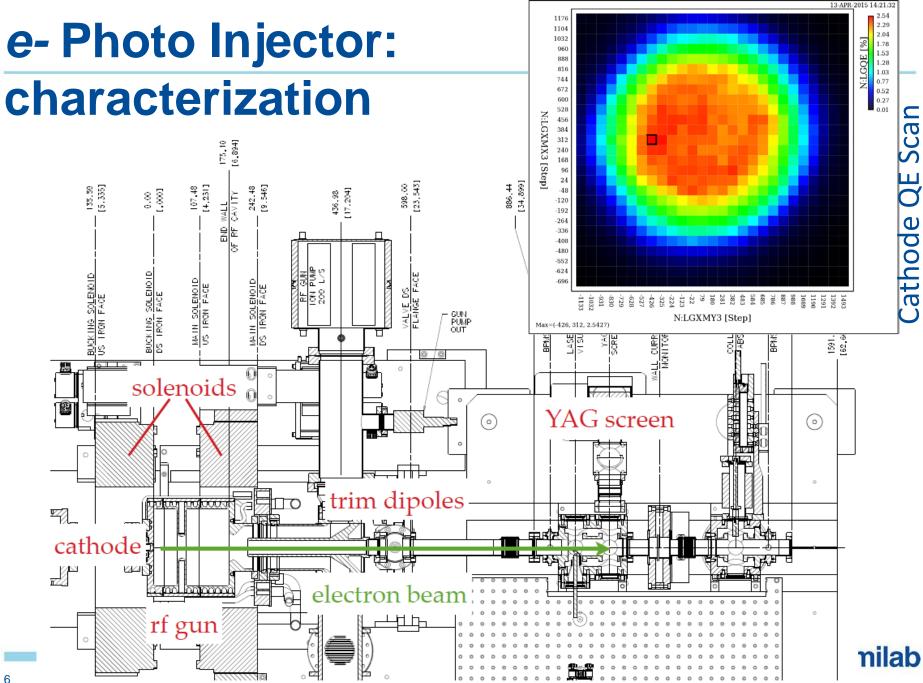
PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 14, 014401 (2011)

Estimation of orbit change and emittance growth due to random misalignment in long linacs

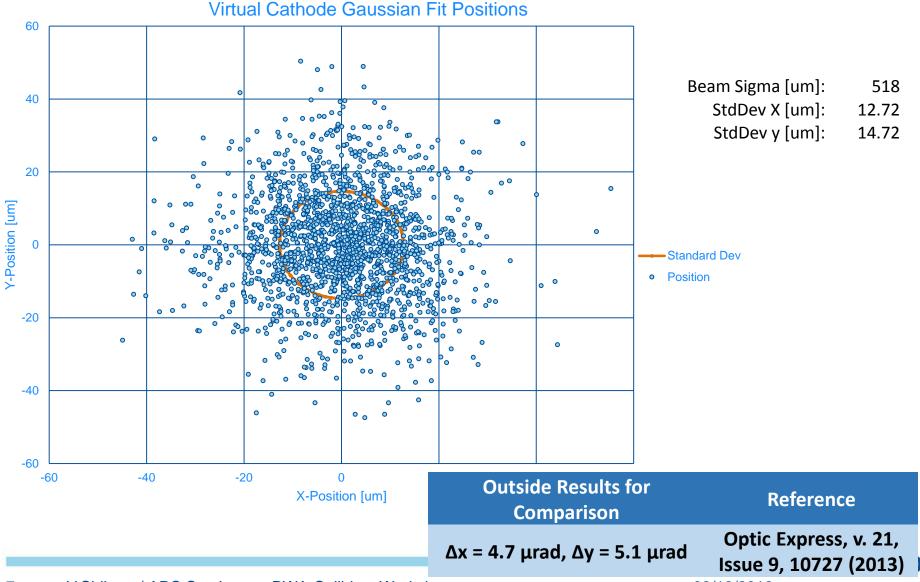
Kiyoshi Kubo

KEK, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan (Received 15 September 2010; published 4 January 2011)


$$\gamma \langle J_f \rangle \approx \frac{eV_c}{8mc^2} \bar{\beta} \log(E_f/E_0) \langle \theta^2 \rangle.$$
 (15)


- ILC V_c=31.5 MeV
- CLIC V c=25 MeV
- LPWA V c=5-10 GeV
- PWFA V_c=25 GeV
- CLIC Y'_accel structure=1.1 urad

PWFA Y'_accel structure=1.1/30 urad


 Tolerance of drive-beam to main-beam angular alignment and rmilab angular jitter is ~30 times more stringent than for CLIC

IOTA Electron Injector @ FAST

Laser Position Stability at Virtual Cathode

7 V.Shiltsev | APC Seminar on PWA-Colliders Workshop

Transverse stability of focusing elements

$$\gamma \langle J_{f,q} \rangle \approx \frac{1}{8mc^2 \Delta_{Eq}} (\beta_F k_F^2 + \beta_D k_D^2) (E_f^2 - E_0^2) \langle a^2 \rangle. \tag{43}$$

- CLIC Δ_eq=100 MeV
- PWFA ∆_eq=25 GeV →
- CLIC jitter a_q=1.6 nm
 - PWFA jitter *a* _q =1.6* sqrt(25) = 8 nm ?
 - (for drive beam)

where α, β, γ – technology dependent constants

- α≈ 2B\$/sqrt(L/10 km)
- β≈ 10B\$/sqrt(E/TeV) for RF
- β≈ 3B\$/sqrt(E/ TeV) for SC magnets

β≈ 1B\$ /sqrt(E/TeV) for NC magnets

– γ≈ 2B\$/sqrt(P/100 MW)

works for 17 large machines

within ±30%

9

V.Shiltsev | APC Semi

Phenomenological cost model shows that geometric footprint is <u>the least important</u> factor , the most important is cost of accelerator per TeV

US accounting TPC in B\$ (from WP sent to P5, 2013)

	Known Est.	αβγ- Model	Comments	L[10km]	E[1TeV]	P [0.1GW]
Super B e+e-	1.0 Eur. Acc	1.3	? 2012 ?	0.05	0.01	0.1
Project X p	1.8	2.2	Est. 2012	0.1	0.008	0.23
DAEDALUS p		3	For 3 MWs cyclotrons		0.001	1
Neutrino Factory p→µ	4.7-6.5	4.6	Accounting not clear	0.6	0.012	1
μ+μ- Higgs Factory		7.7	-2 if PD exists	0.7	0.12	1
Higgs e-e+ site filler		9.5		1.6	0.25	5
ILC-0.25 TeV e+e- HF		10.2	~70% of ILC-0.5	~1.5	0.25	~1.2
TLEP Higgs Factory		11.4		8	0.25	5
μ+μ- Collider 3/6 TeV		13/16	-2+ if Prot. Driver exists	2.0	3/ 6	2.3
VLHC-I 40 TeV p-p	11-14	13.1	2001 est (4.1)x3.5; - inj	23	40	2
ILC-0.5 TeV e+e-	(16.5)	13.6	2013 est = 7.8 Eur Acct	3	0.5	2.3
CLIC-0.5 TeV e+e-	7.4-8.3 E.A.	13.0	Coeff β_{CLIC} must be $>\beta_{ILC}$	2	0.5	2.5
Beam-PWA ee LC 3TeV		19-39	60 MW driver alone >8	1	3	2.8
CLIC-3 TeV e+e-		26.9	No public cost range	6	3	5.6
SHE LHC 100 TeV p-p		40.2	Deduct ~15 of injector	8	100	5
Laser-PWA 1/10 TeV e+e-		29/86.6	scaled today's laser cost	1	1/ 10	1.4
1VLHC APA Britse TexPC Seminar c	on PWA-Colliders V	Vorkshop	C	2/18/3016	175	5 12

On "Beam-Driven"-LCs

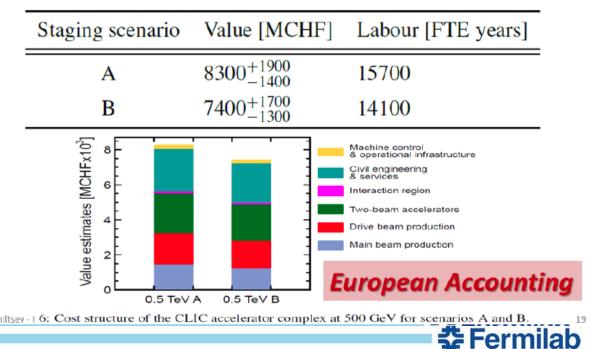
Approach #1 – estimate with $\alpha\beta\gamma$ -model

- 3 TeV machine will be ~10 km long, and mb a factor of 2 more power efficient than CLIC (280 MW vs 560 MW total site power)
- If the <u>cost per TeV</u> will be as in CLIC BPWA: Cost = $2 \cdot 1^{1/2} + 10 \cdot 3^{1/2} + 2 \cdot 2.8^{1/2} = 2 + 17.3 + 3.3 = 22.6 \pm 7$
- If (as unproven technology) the cost per TeV will be 2xCLIC
 BPWA: Cost = 2·1^{1/2} + 20·3^{1/2} + 2·2.8^{1/2} = 2+34.6+3.3=39.9±10

On "Beam-Driven"-LCs (2)

Approach #2 – guesstimate "pieces" (P1, P2...)

 Leave tunneling and power infrastructure as on previous slide P1=2+3.3=5.3B\$


Costs of the main beam production can be taken as in CLIC-0.5 (x2 in US accounting) P2=2.5B\$

"Accelerator proper" 120 stages 25 GeV each (plasma cells+ matching +drive beam injection lines) is not known well, P3=2-4 B\$ (for 3 TeV case)

CLIC-0.5 cost (2012)

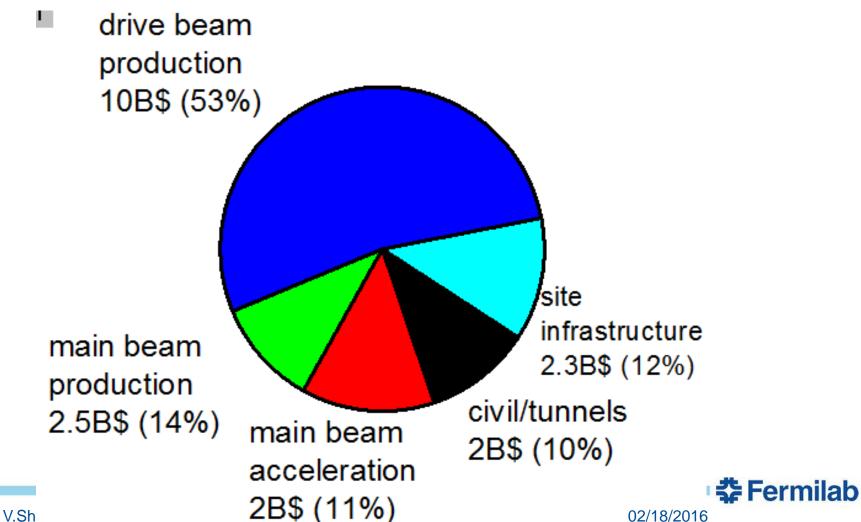
Only for 500 GeV com e+e- (~250 MW)

Table 4: Value and labour estimates of CLIC 500 GeV.

On "Beam-Driven"-LCs (3)

Big Item: Drive beam production P4=10-17 B\$

- 1 TeV LC needs 48MW e- source
- 3TeV needs either 3x such sources or one for 144MW?
- Estimate step 1: Cost of one 48 MW source P4*=6-10B\$
 - Reference: Project X (1.7B\$) 4MW Power and 8 GeV Energy,
 - LCLS-II (1 B\$) 1 MW power and 4 GeV Energy
 - Use sqrt(P)-scaling with power \rightarrow P4=6-7B\$
 - Use sqrt(E) scaling with energy/replicate N \rightarrow P4=9-10 B\$


Estimate step 2: Cost of three x 48 MW sources P4=10-17B\$

– Sqrt(3)

Cost of "Beam-Driven"-PWA LCs (3 TeV cm)

The total cost estimate (FY16\$) P1+P2+P3+P4=5.3+2.5+(2-4)+(10-17)=20-29B\$

Advanced LC concepts vs CLIC (now)

	CLIC	DWA- LC	PWA- LC	LWA- LC
Feasibility of Energy	Gradient & staging de- monstrated, e+ OK	Gradient OK, No staging demo, e+ OK	Gradient OK, No staging demo, e+ questionable	Gradient OK, No staging demo, e+ questionable
Feasibility of Luminosity	Risk ~10-100	Risk now ~10-100	Risk >~10 ³ ?	Risk >~10⁵ ?
Feasibility of Cost	Problems: 560 MW, TPC(US) ~26B\$? 430 MW, TPC(US) ~20B\$? 300 MW, TPC(US) ~20-29B\$? 150 MW, TPC(US) ~30B\$
 Similar to CLIC V.Shiltsev APC Seminar on PWA-Colliders Workshop 		Potential of lower power and lower TPC 01	Potential of lower power and lower TPC, Promise of many applications	

Toward HEP-Relevant Accelerator Facility

- The proposed roadmap may be divided into three stages
 - 2016-2025: Focus on Energy Feasibility
 - Show High gradient (done for blow-up, not for a hollow channel)
 - Staging to get to energy of interest (1-3-10 TeV TBD)
 - Acceleration of Positrons
 - Applications (off-ramps): FELs, ring injectors
 - Challenge: quasi-linear is not needed for applications, wall-plug efficiency is not important
 - 2026-2035: Focus on Performance (Lumi) Feasibility
 - Charge per bunch, emittances, rep. rates ~10 kHz, etc.
 - Final focus system, accelerator-detector interface
 - Integrated Test Facility
 - After 2035: Focus on Cost reduction
 - High efficiency
 - Cost (accelerator, drive sources, power infrastructure, etc)

02/18/2016

Fermilah