Inclusive deuteron-induced reactions

Grégory Potel Aguilar (NSCL/FRIB)
Filomena Nunes (NSCL) Ian Thompson (LLNL)

East Lansing, July 19th 2016

Inclusive (d, p) reaction

let's concentrate in the reaction $A+d \rightarrow B(=A+n)+p$

we are interested in the inclusive cross section, i.e., we will sum over all final states ϕ_{B}^{c}.

Derivation of the differential cross section

the double differential cross section with respect to the proton energy and angle for the population of a specific final ϕ_{B}^{c}

$$
\left.\frac{d^{2} \sigma}{d \Omega_{p} d E_{p}}=\frac{2 \pi}{\hbar v_{d}} \rho\left(E_{p}\right)\left|\left\langle\chi_{p} \phi_{B}^{c}\right| V\right| \Psi^{(+)}\right\rangle\left.\right|^{2} .
$$

Sum over all channels, with the approximation $\Psi^{(+)} \approx \chi_{d} \phi_{d} \phi_{A}$

$$
\begin{aligned}
\frac{d^{2} \sigma}{d \Omega_{p} d E_{p}} & =-\frac{2 \pi}{\hbar v_{d}} \rho\left(E_{p}\right) \\
& \times \sum_{c}\left\langle\chi_{d} \phi_{d} \phi_{A}\right| V\left|\chi_{p} \phi_{B}^{c}\right\rangle \delta\left(E-E_{p}-E_{B}^{c}\right)\left\langle\phi_{B}^{c} \chi_{p}\right| V\left|\phi_{A} \chi_{d} \phi_{d}\right\rangle
\end{aligned}
$$

$\chi_{d} \rightarrow$ deuteron incoming wave, $\phi_{d} \rightarrow$ deuteron wavefunction, $\chi_{p} \rightarrow$ proton outgoing wave $\phi_{A} \rightarrow$ target core ground state.
the imaginary part of the Green's function G is an operator representation of the δ-function,

$$
\begin{gathered}
\pi \delta\left(E-E_{p}-E_{B}^{c}\right)=\lim _{\epsilon \rightarrow 0} \Im \sum_{c} \frac{\left|\phi_{B}^{c}\right\rangle\left\langle\phi_{B}^{c}\right|}{E-E_{p}-H_{B}+i \epsilon}=\Im G \\
\frac{d^{2} \sigma}{d \Omega_{p} d E_{p}}=-\frac{2}{\hbar v_{d}} \rho\left(E_{p}\right) \Im\left\langle\chi_{d} \phi_{d} \phi_{A}\right| V\left|\chi_{p}\right\rangle G\left\langle\chi_{p}\right| V\left|\phi_{A} \chi_{d} \phi_{d}\right\rangle
\end{gathered}
$$

- We got rid of the (infinite) sum over final states,
- but G is an extremely complex object!
- We still need to deal with that.

Optical reduction of G

If the interaction V do not act on ϕ_{A}

$$
\begin{aligned}
\left\langle\chi_{d} \phi_{d} \phi_{A}\right| V\left|\chi_{p}\right\rangle & G\left\langle\chi_{p}\right| V\left|\phi_{A} \chi_{d} \phi_{d}\right\rangle \\
& =\left\langle\chi_{d} \phi_{d}\right| V\left|\chi_{p}\right\rangle\left\langle\phi_{A}\right| G\left|\phi_{A}\right\rangle\left\langle\chi_{p}\right| V\left|\chi_{d} \phi_{d}\right\rangle \\
& =\left\langle\chi_{d} \phi_{d}\right| V\left|\chi_{p}\right\rangle G_{o p t}\left\langle\chi_{p}\right| V\left|\chi_{d} \phi_{d}\right\rangle,
\end{aligned}
$$

where $G_{\text {opt }}$ is the optical reduction of G

$$
G_{o p t}=\lim _{\epsilon \rightarrow 0} \frac{1}{E-E_{p}-T_{n}-U_{A n}\left(r_{A n}\right)+i \epsilon}
$$

now $U_{A n}\left(r_{A n}\right)=V_{A n}\left(r_{A n}\right)+i W_{A n}\left(r_{A n}\right)$ and thus $G_{o p t}$ are single-particle, tractable operators.

The effective neutron-target interaction $U_{A n}\left(r_{A n}\right)$, a.k.a. optical potential, a.k.a. self-energy can be provided by structure calculations

Capture and elastic breakup cross sections

the imaginary part of $G_{o p t}$ splits in two terms

$$
\Im G_{o p t}=\overbrace{-\pi \sum_{k_{n}}\left|\chi_{n}\right\rangle \delta\left(E-E_{p}-\frac{k_{n}^{2}}{2 m_{n}}\right)\left\langle\chi_{n}\right|}^{\text {elastic breakup }}+\overbrace{G_{o p t}^{\dagger} W_{A n} G_{o p t}}^{\text {non elastic breakup }},
$$

we define the neutron wavefunction $\left|\psi_{n}\right\rangle=G_{o p t}\left\langle\chi_{p}\right| V\left|\chi_{d} \phi_{d}\right\rangle$
cross sections for non elastic breakup (NEB) and elastic breakup (EB)

$$
\begin{gathered}
\left.\frac{d^{2} \sigma}{d \Omega_{p} d E_{p}}\right]^{N E B}=-\frac{2}{\hbar v_{d}} \rho\left(E_{p}\right)\left\langle\psi_{n}\right| W_{A n}\left|\psi_{n}\right\rangle, \\
\left.\left.\frac{d^{2} \sigma}{d \Omega_{p} d E_{p}}\right]=-\frac{2}{\hbar v_{d}} \rho\left(E_{p}\right) \rho\left(E_{n}\right)\left|\left\langle\chi_{n} \chi_{p}\right| V\right| \chi_{d} \phi_{d}\right\rangle\left.\right|^{2},
\end{gathered}
$$

neutron wavefunctions

the neutron wavefunctions

$$
\left|\psi_{n}\right\rangle=G_{o p t}\left\langle\chi_{p}\right| V\left|\chi_{d} \phi_{d}\right\rangle
$$

can be computed for ANY neutron energy, positive or negative

transfer to resonant and non-resonant continuum well described

$\left|\psi_{n}\right\rangle$ are the solutions of an inhomogeneous Schrödinger equation $\left(H_{A n}-E_{A n}\right)\left|\psi_{n}\right\rangle=\left\langle\chi_{p}\right| V\left|\chi_{d} \phi_{d}\right\rangle$

Disentangling elastic and non elastic breakup

- We obtain spin-parity distributions for the compound nucleus.
- Contributions from elastic and non elastic breakup disentangled.

Dropping a proton

compound ${ }^{168} \mathrm{Tm}$ formation cross section

We can also transfer charged clusters

neutron transfer limit (isolated-resonance, first-order approximation)

Let's consider the limit $W_{A n} \rightarrow 0$ (single-particle width $\Gamma \rightarrow 0$). For an energy E such that $\left|E-E_{n}\right| \ll D$, (isolated resonance)

$$
G_{o p t} \approx \lim _{W_{A n} \rightarrow 0} \frac{\left|\phi_{n}\right\rangle\left\langle\phi_{n}\right|}{E-E_{p}-E_{n}-i\left\langle\phi_{n}\right| W_{A n}\left|\phi_{n}\right\rangle} ;
$$

with $\left|\phi_{n}\right\rangle$ eigenstate of $H_{A n}=T_{n}+\Re\left(U_{A n}\right)$

$$
\begin{aligned}
\frac{d^{2} \sigma}{d \Omega_{p} d E_{p}} & \sim \lim _{W_{A_{n} \rightarrow 0}}\left\langle\chi_{d} \phi_{d}\right| V\left|\chi_{p}\right\rangle \\
& \times \frac{\left|\phi_{n}\right\rangle\left\langle\phi_{n}\right| W_{A n}\left|\phi_{n}\right\rangle\left\langle\phi_{n}\right|}{\left(E-E_{p}-E_{n}\right)^{2}+\left\langle\phi_{n}\right| W_{A n}\left|\phi_{n}\right\rangle^{2}}\left\langle\chi_{p}\right| V\left|\chi_{d} \phi_{d}\right\rangle
\end{aligned}
$$

we get the direct transfer cross section:

$$
\left.\frac{d^{2} \sigma}{d \Omega_{p} d E_{p}} \sim\left|\left\langle\chi_{p} \phi_{n}\right| V\right| \chi_{d} \phi_{d}\right\rangle\left.\right|^{2} \delta\left(E-E_{p}-E_{n}\right)
$$

For $W_{A n}$ small, we can apply first order perturbation theory,

$$
\left.\left.\frac{d^{2} \sigma}{d \Omega_{p} d E_{p}}(E, \Omega)\right]^{N E B} \approx \frac{1}{\pi} \frac{\left\langle\phi_{n}\right| W_{A n}\left|\phi_{n}\right\rangle}{\left(E_{n}-E\right)^{2}+\left\langle\phi_{n}\right| W_{A n}\left|\phi_{n}\right\rangle^{2}} \frac{d \sigma_{n}}{d \Omega}(\Omega)\right]^{\text {transfer }}
$$

we compare the complete calculation with the isolated-resonance, first-order approximation for $W_{A n}=0.5 \mathrm{MeV}, W_{A n}=3 \mathrm{MeV}$ and $W_{A n}=10 \mathrm{MeV}$

Spectral function and absorption cross section

Austern (post)-Udagawa (prior) formalisms

The interaction V can be taken either in the prior or the post representation,

- Austern (post) $\rightarrow V \equiv V_{\text {post }} \sim V_{p n}\left(r_{p n}\right)$ (recently revived by Moro and Lei, from Sevilla and Carlson from São Paulo)
- Udagawa (prior) $\rightarrow V \equiv V_{\text {prior }} \sim V_{A n}\left(r_{A n}, \xi_{A n}\right)$ (used in calculations showed here)
in the prior representation, V can act on $\phi_{A} \rightarrow$ the optical reduction gives rise to new terms:

$$
\begin{aligned}
\left.\frac{d^{2} \sigma}{d \Omega_{p} d E_{p}}\right]^{\text {post }}= & -\frac{2}{\hbar v_{d}} \rho\left(E_{p}\right)\left[\Im\left\langle\psi_{n}^{\text {prior }}\right| W_{A n}\left|\psi_{n}^{\text {prior }}\right\rangle\right. \\
& \left.+2 \Re\left\langle\psi_{n}^{N O N}\right| W_{A n}\left|\psi_{n}^{\text {prior }}\right\rangle+\left\langle\psi_{n}^{N O N}\right| W_{A n}\left|\psi_{n}^{N O N}\right\rangle\right]
\end{aligned}
$$

where $\psi_{n}^{N O N}=\left\langle\chi_{p} \mid \chi_{d} \phi_{d}\right\rangle$.
The nature of the 2 -step process depends on the representation

- We have presented a reaction formalism for inclusive deuteron-induced reactions.
- Valid for final neutron states from Fermi energy \rightarrow to scattering states
- Disentangles elastic and non elastic breakup contributions to the proton singles.
- Probe of nuclear structure in the continuum.
- Provides spin-parity distributions.
- Useful for surrogate reactions.
- Need for optical potentials.
- Need to address non-locality.
- Can be generalized to other three-body problems.
- Can be extended for (p, d) reactions (hole states).

From H to $H_{3 B}$

$$
\begin{aligned}
& \text { - } H=T_{p}+T_{n}+H_{A}\left(\xi_{A}\right)+V_{p n}\left(r_{p n}\right)+ \\
& V_{A n}\left(r_{A n}, \xi_{A}\right)+V_{A p}\left(r_{A p}, \xi_{A}\right) \\
& \text { - } H_{3 B}=T_{p}+T_{n}+H_{A}\left(\xi_{A}\right)+ \\
& V_{p n}\left(r_{p n}\right)+U_{A n}\left(r_{A n}\right)+U_{A p}\left(r_{A p}\right)
\end{aligned}
$$

Observables: angular differential cross sections (neutron bound states)

- capture at resonant energies compared with
- direct transfer (FRESCO) calculations,
- capture cross sections rescaled by a factor $\left\langle\phi_{n}\right| W_{A_{n}}\left|\phi_{n}\right\rangle \pi$.

double proton differential cross section

$$
\frac{d^{2} \sigma}{d \Omega_{p} d E_{p}}=\frac{2 \pi}{\hbar v_{d}} \rho\left(E_{p}\right) \sum_{l, m, I_{p}} \int\left|\varphi I_{m I_{p}}\left(r_{B n} ; k_{p}\right) Y_{-m}^{I_{p}}\left(\theta_{p}\right)\right|^{2} W\left(r_{A n}\right) d r_{B n}
$$

elastic breakup and capture cross sections as a function of the proton energy. The Koning-Delaroche global optical potential has been used as the $U_{A n}$ interaction (Koning and Delaroche, Nucl. Phys. A 713 (2003) 231).

Non-orthogonality term

Obtaining spin distributions

spin distribution of compound nucleus

$$
\frac{d \sigma_{I}}{d E_{p}}=\frac{2 \pi}{\hbar v_{d}} \rho\left(E_{p}\right) \sum_{l_{p}, m} \int\left|\varphi_{I m I_{p}}\left(r_{B n} ; k_{p}\right)\right|^{2} W\left(r_{A n}\right) d r_{B n}
$$

Getting rid of Weisskopf-Ewing approximation

Younes and Britt, PRC 68(2003)034610

- Weisskopf-Ewing approximation:

$$
P(d, n x)=\sigma(E) G(E, x)
$$

- inaccurate for $x=\gamma$ and for $x=f$ in the low-energy regime
- can be replaced by $P(d, n x)=$ $\sum_{J, \pi} \sigma(E, J, \pi) G(E, J, \pi, x)$ if $\sigma(E, J, \pi)$ can be predicted.

Introduction

We present a formalism for inclusive deuteron-induced reactions. We thus want to describe within the same framework:

- Direct neutron transfer: should be compatible with existing theories.
- Elastic deuteron breakup: "transfer" to continuum states.
- Non elastic breakup (direct transfer, inelastic excitation and compound nucleus formation): absorption above and below neutron emission threshold.
- Important application in surrogate reactions: obtain spin-parity distributions, get rid of Weisskopf-Ewing approximation.
breakup-fusion reactions

Britt and Quinton, Phys. Rev. 124 (1961) 877
protons and α yields bombarding ${ }^{209} \mathrm{Bi}$ with ${ }^{12} \mathrm{C}$ and ${ }^{16} \mathrm{O}$

- Kerman and McVoy, Ann. Phys. 122 (1979)197
- Austern and Vincent, Phys. Rev. C23 (1981) 1847
- Udagawa and Tamura, Phys. Rev. C24(1981) 1348
- Last paper: Mastroleo, Udagawa, Mustafa Phys. Rev. C42 (1990) 683
- Controversy between Udagawa and Austern formalism left somehow unresolved.

2-step process (post representation)

step2

propagation of \boldsymbol{n} in the field of \mathbf{A}

Application to surrogate reactions

Surrogate for neutron capture

* The surrogate method consists in producing the same compound nucleus B^{*} by bombarding a deuteron target with a radio active beam of the nuclear species A.

* A theoretical reaction formalism that describes the production of all open channels B^{*} is needed.

$$
\left.\sigma_{\alpha \chi}\left(E_{a}\right)=\sum_{J, \pi} \sigma_{\alpha}^{\mathrm{CN}}\left(E_{\mathrm{ex}}, J, \pi\right) G_{X}^{\mathrm{CN}}\left(E_{\mathrm{ex}}, J, \pi\right) \xrightarrow{\text { W-E approximation }} \sigma_{\alpha \chi}^{\mathrm{WE}}\left(E_{a}\right)=\sigma_{\alpha}^{\mathrm{CN}}\left(E_{\mathrm{ex}}\right)\right)_{\chi}^{\mathrm{CN}}\left(E_{\mathrm{ex}}\right)
$$

Weisskopf-Ewing is inaccurate for (n, γ)

We need theory to predict J, π distributions

