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Splendors and Miseries of Feedbacks 
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A∝ exp(−iωt);
δω =|ω1 −ω 2 | .

   

!A1 + iω1A1 = −g( A1 + A2 );
!A2 + iω 2 A2 = −g( A1 + A2 );

With a higher gain, one of the modes is damped less! 



Nested Head-Tail Basis  
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Starting Equation, single bunch  

•  In the air-bag single bunch approximation, beam equations of motion 
can be presented as in Ref [A. Chao, Eq. 6.183]: 

      where       is a vector of the HT mode amplitudes,   

       
        
        Time is in units of the angular synchrotron frequency.    
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Damper  

•  Damper is assumed to see a bunch center of mass and then to kick 
this bunch as a whole, i.e. it is a space-wise flat response.  

•  The damper matrix is added to the RHS of the dynamic equation as a 
special impedance: 

       

       is the damper gain in units of the damping rate. 
 
Damper changes modes structure, blocking their centroids. 
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   !X = Ŝ ⋅ X + Ẑ ⋅ X + D̂ ⋅ X

  

(Ŝ + Ẑ )lmαβ = −ilδ lmδαβ − il−m κ
nr

dωZ(ω )Jl (ωτα − χα )
−∞

∞

∫ Jm(ωτβ − χβ )

Zdamper (ω ) ∝δ (ω ) ⇒ D̂lmαβ = −im−l g
nr

Jl (χα )Jm(χβ )

 g
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Coupled Equidistant Bunches  
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Unless high-frequency high-Q HOM, wake field of preceding bunches can be 
taken as flat within the bunch length.  
 
The only difference between the bunches is CB mode phase advance, 
otherwise they are all identical.  
 
Thus, the CB kick felt by any bunch is proportional to its own offset, so the 
CB matrix          has the same structure as the damper matrix       : 

   

!X = Ŝ ⋅ X + Ẑ ⋅ X + D̂ ⋅ X + Ĉ ⋅ X ;

D̂lmαβ = −im−l
dµ

nr

Jl (χα )Jm(χβ ); Ĉ = 2π iκW (ϕµ )D̂ / gµ ;

W (ϕµ ) = W (−ks0 )exp(−ikϕµ )
k=1

∞

∑ ; ϕµ =
2π (µ +{Qx})

Mb

; 0 ≤ µ ≤ Mb −1.

D̂Ĉ

Wake and impedance are determined according to A. Chao book.  
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Example: Argonne APS  
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Toy impedance model: broadband resonance with 
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Tune shifts at various gain and chroma 
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tune shifts 
chroma=5 
 
gain=0 
gain=1 

AB

tune shifts 
chroma=10 
 
gain=0 
gain=1 

tune shifts 
chroma=0 
 
gain=0 
gain=1 

Note the opposite 
asymmetries at  
gain=0 and gain=1.    
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Most unstable mode (MUM) growth rate  
vs gain and chroma 
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Gain dependence is very weak except some special regions. 



Growth rate vs intensity and chroma, no gain 
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AB   ImpF ≡ Nb / 4E11 Note TMCI 

Gain=0 
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Same, with gain=1 

Note a stable area at slightly negative chromaticity 

Gain=1 
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Gain=1 

  
Gain=0 

Note increase  of the 
TMCI threshold at 
chroma = -1, -2. 

Growth rate vs 
intensity for various 
chromaticity, without 
gain (top) and with it 
(bottom).  



  
Stability diagram (SD) is defined as a map of real axes        on the complex plane:   
 
 
 
  
 
To be stable, all the coherent tune shifts       have to be below the SD.  
 
 
 
 
 
 
 

Example matrix        
was provided by Vadim 
Sajaev.  

Transverse-to-Transverse (TT) Stability Diagrams   
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Since normally              , the TT diagrams are very asymmetric. The same happens 

when the signs of          are identical. 
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Longitudinal-to-Transverse (LT) Landau Damping 
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Stability diagram can be estimated as modified maps 
 
 
 
  
 
In the RF bucket,               , so the diagram is shifted to the left for positive     and 
inversely. 
 
 
With potential well distortion, the effect  could be stronger and of the opposite 
sign, but still asymmetric and proportional to    .  
 
Thus, bucket nonlinearity does not seem to help much: some modes could be 
even destabilized with or without the bucket distortion.   
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How to repair Landau damping?  

With that asymmetry of SD, what can be suggested for the 
stabilization? 

•  Octupoles at high       (sign matters!)  

•  With the damper ON, make the nonlinear tune shifts > 0 

•  High second-order chromaticity          with the proper sign 

and sufficient spread                          

   (octupoles and skew-octupoles at high-dispersion area).   
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Summary 

•  Dampers can increase TMCI threshold , factor of 2 or so, with a slightly 
negative chromaticity (above transition). 

•  At positive chromaticity (i.e. conventional one), damper enhances 
presence of unstable modes with positive coherent tune shifts, reducing 
those with negative tune shift.  

•  Due to relatively low vertical emittance, the TT stability diagram is 
normally very asymmetric, which may dramatically reduce LD 

•  To repair LD, several measures can be applied: 
–  High	  beta_y	  octupole;	  
–  Posi>ve-‐side	  SD	  with	  the	  damper	  ON;	  
–  Q’’	  of	  the	  proper	  sign.	  
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Many thanks!



Backup slides  
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E-Cloud in Positron Rings  

•  E-cloud introduces both impedance and frequency spread, so by itself  
it both stabilizes and destabilizes, fighting with itself, see my 
estimations on the both factors at “Three-beam instability in the 
LHC” (2012).   

•  Those not very reliable estimations tell that by itself e-cloud cannot 
drive weak head-tail instability: its frequency spread wins over its 
impedance.  

•  Independently of that, e-cloud can lead to the weak HT when its 
nonlinearity cancels one of the octupoles. Then the stability diagram 
collapses, and even a low wake could drive the instability, see “Three 
beam…” 

•  Thus, simulation with e-cloud must take into account machine 
nonlinearity. With e-cloud, it can surprisingly destabilize the beam. 
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Benchmarking: NHT vs BeamBeam3D (S.White) 
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BeamBeam3D (SW) 
NHT  (AB) 

Threshold chromaticity vs gain for  
 
two single-bunch LR-colliding beams,  
end of the squeeze parameters,  
no octupoles.  
 
BeamBeam3D data – ICE mtg, 07/11/2012. 

Highest growth rates for  
 
single beam, single bunch,  
maximal gain and nominal impedance 
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BeamBeam3D (SW) 
NHT  (AB) 



Couple Bunch Factor: LO+, bbb ADT, 2Imp  
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50ns beam 
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Beam-Beam-Beam Effect in LHC  
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LO=200A – computed threshold 
 
(Pacman) BB only, LO=0 
 
BB and LO=500A 
 
BB, LO=500A, dQe0=6.0E-4 
 
BB, LO=500A, dQe0=8.0E-4 
 
BB, LO=500A, dQe0=1.0E-3 
 
Markers – MUMs, colors 
correspond 
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Instability is driven by e-cloud attracted by 2 beams 
in the high-beta area of IR1&5.  
 
It happens due to a right-collapse of the SD + low-
frequency e-wake with positive coherent tune 
shifts.  

Electron wake: 
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Analysis of solutions  
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1.  For every given gain and chromaticity, the eigensystem is found for the 
provided impedance tables or functions.  

2.  The complex tune shifts are found from the eigenvalues                             

3.  The stabilizing octupole current is found from the stability diagram for every 
mode, then max is taken.       

l l lα αΔΩ =Ω −

Stability diagram at +200 A of octupoles  LHC Horizontal Impedances (N. Mounet) 
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Gaussian,  
transverse only 
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Old damper gain 
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Old narrow-band  ADT gain profile  (W. Hofle, D. Valuch) .  
At 10 MHz it drops 10 times. The new damper is bbb for 50ns beam. 
 
Below gain is measured in omega_s units, max gain=1.4 is equivalent to 50 
turns of the damping time.     

( )g ω
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CB Mode Damping Rate   
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With             as the frequency response function of the previous plot, the time-
domain damper’s “wake” is 
 
 
 
 
assuming  this response to be even function of time (no causality for the damper!). 
 
From here (equidistant bunches!): 
 
 
 
 
 
 
 
where          is the rate provided for low-frequency CB zero-head-tail modes at 
zero chromaticity.  
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CB Wake and Gain Factors for the Old ADT   
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