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Neutrino interaction model that covers 
whole kinematical space available to 
our experiments (T2K, MicroBooNE, 
Nova, etc.)

ARE YOU COMING TO BED?

I CAN'T. THIS IS 
IMPORTANT.

WHAT?

A NEUTRINO 
INTERACTION  
MODEL.

Image modified From xkcd



T2K

μBooNE
Nova

What neutrino brings: Eν

Cross section (integrated over full phase-space)
in terms of incoming neutrino energy Eν.   



T2K

μBooNE
Nova

What nucleus cares: ω

i.e. how much energy is 
transferred to the nucleus (ω).

For a given Eν, it depends on
other factors, such as on
lepton scattering angle.  

GR: Giant Resonance

ω = 50 MeV

What neutrino brings: Eν

Cross section (integrated over full phase-space)
in terms of incoming neutrino energy Eν.   



GR: Giant Resonance

ω = 50 MeV

What nucleus cares: ω

i.e. how much is transferred to
the nucleus (ω).

For a given Eν, it depends on
other factors, such as on
lepton scattering angle.  

What is missed in the translation.
                                 

Does it matter in the kinematics of our interest?
                                 



Low  Eν : cross section is dominated by
low-energy excitations.

Eν at the peak of T2K flux, forward 
scattering receive contribution from 
low-energy excitations.

 ω (MeV)

ω = 50 MeV

VP, N. Jachowicz et al, PRC 92, 024606 (2015)



 ω (MeV)

The forward we go in scattering angle,  
longitudinal contribution starts 
competing with the transverse one (at 
intermediate energy).

At low-energies and forward scattering, 
longitudinal response dominates over 
transverse one.

Low  Eν : cross section is dominated by
low-energy excitations.

Eν at the peak of T2K flux, forward 
scattering receive contribution from 
low-energy excitations.

VP, N. Jachowicz et al, PRC 92, 024606 (2015)



GR: Giant Resonance

ω = 50 MeV

Does it affect the flux-folded cross section?
And how much?



GR: Giant Resonance

ω = 50 MeV

~ 50% of the flux folded cross 
section in this forward bin 
emerges from low-energy 
nuclear excitations.

VP, N. Jachowicz, arXiv:1607.01216 [nucl-th] 

http://arxiv.org/abs/arXiv:1607.01216


CRPA 
RgFG

  Example from 12C (e,e')  

How does RgFG model describes low-energy excitations – it does not! 

VP, PhD thesis (2016)



The effect of low-energy nuclear excitations on ν
e 
vs

   
ν

μ 
cross section 

PRC 94, 015501 (2016) 



cosθ cosθ

The effect of low-energy nuclear excitations on ν
e 
vs

   
ν

μ 
cross section 

Low-energy nuclear excitations are vital
  - At low Eν 
  - At intermediate Eν and forward scattering
  - Differentiating between ν

e 
and

   
ν

μ 
cross section (at low Eν ) 

PRC 94, 015501 (2016) 



Martini, Ericson et al. (Saclay/Lyon) Model

➢ The nuclear ground state is a Fermi gas of non-interacting nucleons characterized
   by a Fermi momentum fixed according to the local density of protons and neutrons (local
   Fermi gas model). 
➢ The RPA correlations are introduced through pion exchange, rho exchange, and contact 

Landau-Migdal parameters.

 First one to reproduce MiniBooNE CCQE
   cross section (with MA~1 GeV) with the 
   inclusion of np-nh channel.

References: 
PRC 80, 065501 (2009); PRC 81, 045502 (2010); 
PRC 84, 055502 (2011); PRD 85, 093012 (2012); 
PRD 87, 013009 (2013); PRC 87, 065501 (2013); 
PRC 90, 025501 (2014); PRC 91, 035501 (2015); 
arXiv:1602.00230 [nucl-th], etc. 
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References:
PRC 83, 045501 (2011); PLB 707, 72 (2012);
PRD 85, 113008 (2012); PLB 721, 90 (2013);
PRD 88, 113007 (2013), etc.

Full Model
Full QE (with RPA)
Multinucleon

ν
μ 

ν
μ 

Nieves et al. (Valencia) Model

➢ The nuclear ground state is a Fermi gas of non-interacting nucleons characterized
    by a Fermi momentum fixed according to the local density of protons and neutrons (local
    Fermi gas model). 
➢ The RPA correlations are introduced through pion exchange, rho exchange, and contact 

Landau-Migdal parameters.

 MiniBooNE data rescaled by a factor 0.9.
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μ
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Super-Scaling Approach [SuSA] (Granada/MIT/Sevilla/Torino) 

References:
PLB 696, 151 (2011); PRD 84, 033004 (2011); 
PRL 108, 152501 (2012);  PLB725, 170 (2013);
PLB727, 265 (2013); PRD89, 093002 (2014);
PRD 90, 033012 (2014); PRD 90, 053010 (2014); 
PRC90, 035501 (2014); PRD 91, 073004 (2015);
JPG 43, 045101 (2016), etc.
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(preliminary) Megias Talk (Saclay-ESNT workshop)
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➢ The basic procedure consists of dividing the experimental (e, e′ ) data by an appropriate
    single-nucleon cross section to obtain the scaling function. 

➢ The Super-scaling behavior of (e, e′ ) scattering is extended to neutrino scatterings. 



References:
PRC 89, 024601 (2014); PRC 92, 024606 (2015); 
PRC 94, 015501 (2016); arXiv:1606.00273 [nucl-th]; 
arXiv:1607.01216 [nucl-th] 

<
 d

2
σ

/d
T

μ
d

co
sθ

μ
 >

 (
10

-4
2 cm

2 M
eV

-1
)

<
 d

2
σ

/d
T

μ
d

co
sθ

μ
 >

 (
10

-4
2 cm

2 M
eV

-1
)

ν
μ 

ν
μ 

Pandey, Jachowicz et al. (Ghent) Model

➢ The model takes the mean-field (MF) approach as the starting point, and solves Hartree-Fock
(HF) equations using a Skyrme (SkE2) nucleon-nucleon interaction.

➢ Long-range nuclear correlations are taken into account by means of the continuum
random-phase approximation (CRPA) framework.

➢ FSI is taken into account.

➢ Describes nuclear response from giant 
resonances to QE channel.

HF
CRPA



➢ Compared with (e,e') data for 12C, 16O, 40Ca

12C 12C

12C12C

16O

40Ca

 VP, N. Jachowicz, PRC 92, 024606 (2015)

ω (MeV) ω (MeV) ω (MeV)

HF
CRPA

Pandey, Jachowicz et al. (Ghent) Model



➢ Same ν code, in few simple steps, can be adapted to e- code (no tuning, etc. involved) 

Pandey, Jachowicz et al. (Ghent) Model



Relativistic Green's Function Model (Meucci, Giusti et al.)

PRL 107, 172501 (2011): PRD 84, 113003 (2011); 
PRD 85, 093002 (2012); PRD 88, 013006 (2013);
PRD 89, 057302 (2014); PRD 89, 117301 (2014);
PRD 91, 093004 (2015), etc.

Spectral Function Formalism (Benhar et al.)

PRL 105, 132301 (2010); PRD 82, 013002 (2010); 
PRD 91 033005, (2015); Phys. Rev. C 92, 024602 (2015);
PRL 116, 192501 (2016), etc.

Green’s Function Monte Carlo Approach (ANL/ LANL/ Jlab)

PRL 112, 182502 (2014); PRC 91, 062501 (2015), etc.



Comparing RPA-based models

RPA polarization propagator:



Comparing RPA-based models

➢ Significant RPA quenching in both approaches.
➢ Genuine QE bare (RlFG) and RPA very similar

in both approaches.

RPA polarization propagator:

Bare Propagatoor 
(RlFG) 

π exchnage, ρ exchnage, 
contact Landau-Migdal 
parametrs

[Martini et al. and  Nieves et al.]

Martini et al. Nieves et al.Nieves et al.



Comparing RPA-based models

➢ At low ω, RPA (long-range correlations) describes the collective behavior of the nucleus 
(low-energy excitations). 

➢ At high ω, RPA effects are smaller. 
➢ Approach compares well with the (e,e') cross section.

RPA polarization propagator:

HF Skyrme (SkE2)[Pandey, Jachowicz et al.]

HF
CRPA

ω (MeV)
VP, N. Jachowicz, PRC 92, 024606 (2015)



Comparing RPA-based models

For more details: M. Martini, N. Jachowicz, M. Ericson, and VP et al., PRC 94, 015501 (2016) 

 LRFG, RPA: Martini, Ericson et al.

 HF, CRPA: Pandey, Jachowicz et al.

➢ Important differences
at both ends of the spectrum

→ Low-energy  excitations 
     at low ω
→ High ω tail



   Model                 Shell Effects  Low-energy          RPA                Starting                N-N 
                                                   excitations            effect               point                interaction
                                                    & Giant                                           
                                                    Resonance     

Martini,                    
Ericson et al.

Nieves et al.

Pandey,
Jachowicz et al. 

No

No

Yes

No

No

Yes

Significant 
suppression
(LLEE effect)

Describe low  
ω physics, 
not much 
effects at 
higher ω

Local
Fermi Gas

Local
Fermi Gas

Hartree-Fock

Meson
-exhange
(π,ρ,g')

Meson
-exhange
(π,ρ,g')

Skyrme

Comparing RPA-based models

Significant 
suppression
(LLEE effect)

➢ Significant differences between RPA and CRPA approach,  at both ends of the (one-body) 
ω spectrum.



➢ Different model describe one-body part differently, they use different ingredients 
   and approximations. 

➢ These ingredients and approximations have different range of validity – should be 
assessed may be against electron scattering data. [Extrapolation is dangerous!]

➢ In principle, any code predicting neutrino scattering can be very easily converted 
into electron scattering code.

➢ If generators could be adapted to electron scattering – would be great!

Final Remarks 
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