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Introduction
I MC tuning is a necessary evil – data description is needed, and

models aren’t as predictive as we’d like.
I Data and models also aren’t as perfect/complete as we’d like: we

need pragmatic best-fits and estimates of systematics.
I Hope that somewhere along the way we also gain better physical

understanding. . .

In this talk I’ll focus on:

I The Professor numerical machinery developed for LHC MC
tuning, and now widely used (including beyond tuning)

I Several rounds of LHC tuning, including ATLAS’ tuning
programme

I Fit statistics and systematics
I Some general lessons learned

Disclaimer: I don’t know anything about neutrino MC! Please set me
straight. . .
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Professor
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The Professor method
I No magic, just a numerical assistant to take

the grind out of tuning.
Physics insight is crucial to pick base
config, best params, and keep it physical.

I MC is slow: ∼ 1 day per run⇒ can’t
use in serial optimisation e.g. MCMC.

I Trivially parallelise MC runs through
“reasonable” subset of param space, and
use sampled points to parametrise each
bin’s behaviour (for O(15) params).

I Use SVD polynomial fits for generality –
values must vary in a polynomial fashion
or be transformed to do so. Experimental
“machine learning” fits in Prof v2.

I Minimisation or other applications of
analytic interpolations are easy. Much
strength is in the “system” features
around the core machinery.
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Professors 1 vs. 2

Professor v1
I Python, using scipy and pyminuit.

Heavy/awkward code framework –
historical baggage from early dev.

I O(20) scripts. . . not all well
maintained! Lots of “advanced”
features: correlations, sensitivities,
GUI, etc.

I Still max functionality, but hit
“maximum entropy” point of
development!
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Professors 1 vs. 2

Professor v2
I Redesign from scratch: lean, mean &

flexible again. Thanks to
Holger Schulz

I Core code now in C++; independent
of concepts like “bins”. Very generic

I Wrapped into Python, and used as
core of a library for data I/O⇒
lessons learned from v1

I Now fewer scripts – and they are just
UI wrappers around library
functionality: use them as
examples/templates PT0REF
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Testing the parameterisation

Can’t just assume that parameterisation is working. . . but this is often
done / inferred much later. New prof2-residuals tests explicitly.

I Loop over runs and histogram
absolute & relative residuals between
ipol and MC, e.g. (f (pi)−MCi)/MCi

I Breakdown by observable, and value
/ error. Easily extended.

I For better testing, train interpolation
on one run subset and test on the
remainder
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Measuring goodness-of-fit
I Historically used a simple pseudo-χ2:

χ2(~p) =
∑

b

wb
( fb(~p)− ref b)

2

∆ref 2
b + ∆f 2

b + ε2

I Several limitations: no stat/syst
separation, weight has√ of intuitive
effect, ∆f 2

b = median(∆MC) i.e.
const!

I Expt correlations available in Prof 1.4;
coming soon in v2

I v2 uses linearised weights. Also more
natural entry in correlations via covij

I Prof 2 allows error parameterisation:
greatly improves residuals.

Denom is of equal importance in χ2!
Needs to be regularised in fit.
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Tuning systematics

Hard to get a handle on the uncertainties of an MC tune. Conflates
several issues:

I Incompleteness of the model
I Discrete variations in models
I Param space sampling & parameterisation issues
I Statistical limitations and tensions in data

Sanity checks can be useful, e.g. assessing observable sensitivity to
params: d ln yb/d ln pi

Stability of fits can be assessed by making many replica optimisations
on parameterisations made from random subsets of sampled param
points

Variations should be derivable from the shape of the goodness-of-fit
around the optimum, cf. PDF fits. Right?
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Eigentunes and coverage
Eigentunes have gained acceptance as a “robust” way to create
systematic variation tunes.

I Motivation cf. PDF Hessian errors.
I Directions are robust: physics in the

components of principle directions
I But distance along vectors not

well-defined. If true χ2, expect
∆ ∼ num params; actually more like
num bins for coverage

I Effect of large correlated systematics?
Not experimental. . . but in model??

I Can we define a statistically robust
∆χ2 for tunes? Perhaps instead aim
for iterated minimal data coverage.

I More robust dimensional reduction
wanted / needed? cf. ATLAS A14
procedure – see later
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Aside: Prof4BSM – life beyond tuning

I Much recent development/use hasn’t
been for tuning at all. . .

I Fast parameterisation also finds use
in BSM physics, e.g. arXiv:1506.08845,
arXiv:1511.05170, arXiv:1512.03360

I Use parameterisation of observables
in Wilson coefficient space to build
confidence limit contours

I Speed important for marginalising
limits in many dimensions for
projections

I Now being worked on via GPGPU
hyper-parallel polynomial evaluation
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Pre-LHC tuning
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Early hadron collider tunings

I Circa 2006, only established tuning activity was
from Rick Field, on PYTHIA6 vs. Tevatron data.

I Like playing whack-a-mole:
Tune A describes pp̄ underlying event well. . .
. . . but destroys Z p⊥⇒ Tune AW; . . .
. . . which in turn fails on dijet decorrelation!⇒
Tune DW. Etc.

I Full observable coverage essential
and certainly Ndf ∼ Nbins � Nparams

I We also get itchy feet about messing too much
with perturbative physics: there’s meant to be
predictivity in there
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Original Professor tunings

Professor development started also with
PYTHIA6:

I Divide and conquer strategy: tune to LEP
first (hadronisation, FSR), then hadron
colliders (ISR, MPI)

Often a good approach. Isolate parameters
as far as possible, assume hadronisation
universality. Here allows O(30) params to
be used in 3–4 ∼orthogonal stages.
All input analysis done using Rivet
(developed in parallel) – still main tuning
data source

I More philosophy: do as much as possible by
perturbative means, only tune to fill in gaps

I Resulting paper and PY6 Prof-Q2/pT tunes:
arXiv:0907.2973
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Current ATLAS tunes
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ATLAS AZ/AZNLO EW boson production tunes
ATL-PHYS-PUB-2013-017

New 7 TeV Z boson transverse momentum measurement
[arXiv:1406.3660] used to develop a tune for W mass measurement: use
modelling for unfolding, systematics reduction, etc.

Finite Z (and W) pT wholly generated by recoil against QCD emissions
and intrinsic parton pT in the incoming protons.
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Significant disagreements w.r.t. fixed-order FEWZ, DYNNLO.

15/30

https://cds.cern.ch/record/1629317


ATLAS AZ/AZNLO EW boson production tunes
ATL-PHYS-PUB-2013-017

ATLAS (POWHEG+)Pythia8 AZ tunes give few-% description:

POWHEG+Pythia8 Pythia8
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Tuning of primordial kT, ISR αs and ISR cutoff cutoff variables.

Less freedom at NLO: good!! But perturbative setup details important.
Similar studies now performed for t̄t/ttH, etc.

Cautionary tale: operationally useful, but minimal physics content.
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ATLAS A14 global tunes

I General purpose tuning: need for close data
modelling to be used in unfolding & where
control regions can’t be defined.
“Data-driven” often just means normalization.

I A14 is a set of Pythia 8 combined ISR, FSR, and
MPI tunes: 500 points of 3M events in ten
parameter hypercube; interpolate; iterate. . .
Start from ‘Monash’ tune.

I Equivalent tunes to four LO PDFs: CTEQ6L1,
MSTW2008LO, NNPDF23LO and
HERAPDF15LO. Consistency check /
optimisation

I Aimed at covering LO BSM samples at high-p⊥–
but has since become ATLAS standard tune for
∼everything! Hmm. Replacement for 2017?
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A14 tune observables: all ATLAS Run 1 data
Observable Weight

Z pT: ATLAS 2011 S9131140
Z pT (< 50 GeV) (20 distributions) 10

Track jet properties: ATLAS 2011 I919017
Charged jet multiplicity, z, prel

T , ρch(r) (200 distributions) 10
Jet shapes: ATLAS 2011 S8924791
Jet shape ρ in jet events (59 distributions) 10
Dijet decorr: ATLAS 2011 S8971293
Decorrelation ∆φ (> 0.75) (9 distributions) 20
Multijets: ATLAS 2011 S9128077
3-to-2 jet ratios (8 distributions) 100
Substructure: ATLAS 2012 I1094564
Jet mass,

√
d12,

√
d23, τ21, τ23 (36 distributions) 5

Track-jet UE: ATLAS 2012 I1125575
Transverse region Nch, mean pT profiles (8 distributions) 10
Jet UE: ATLAS 2014 I1298811
Transverse, trans-max, trans-min sum incl. profiles (8 distributions) 20
Transverse sum ET/sum pT ratio profiles (2 distributions) 5
Transverse mean pT incl. profiles (2 distributions) 10
Transverse, trans-max, trans-min incl. distributions (30 distributions) 1

t̄t gap: ATLAS 2012 I1094568
Gap fraction vs Q0, different |y| (4 distributions) 100, 80, 40, 10
t̄t jet shapes: ATLAS 2013 I1243871
Jet shapes ρ(r), ψ(r) (20 distributions) 5
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A14 tunes NB. just to give a feel for procedure. . .

Sampled param ranges and fitted values:

Param Min Max CTEQ MSTW NNPDF HERA

SigmaProcess:alphaSvalue 0.12 0.15 0.144 0.140 0.140 0.141

BeamRemnants:primordialKThard 1.5 2.0 1.72 1.82 1.88 1.83
SpaceShower:pT0Ref 0.75 2.5 1.30 1.62 1.56 1.61
SpaceShower:pTmaxFudge 0.5 1.5 0.95 0.92 0.91 0.95
SpaceShower:pTdampFudge 1.0 1.5 1.21 1.14 1.05 1.10
SpaceShower:alphaSvalue 0.10 0.15 0.125 0.129 0.127 0.128
TimeShower:alphaSvalue 0.10 0.15 0.126 0.129 0.127 0.130

MultipartonInteractions:pT0Ref 1.5 3.0 1.98 2.22 2.09 2.14
MultipartonInteractions:alphaSvalue 0.10 0.15 0.118 0.127 0.126 0.123
BeamRemnants:reconnectRange 1.0 10.0 2.08 1.87 1.71 1.78

Remarkable consistency, particularly between ISR and FSR αs! Also
indicates tune stability. Shower αs → quite low; hard process αs →
quite high.

Colour reconnection also quite robust: similar to Monash = 1.80, a little
bigger than 4C = 1.5. Important for e.g. t̄t/exotic colour flow studies.
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Comparisons
t̄t gap fractions

Fraction of t̄t events with a |y| gap not disrupted by a jet of pT ≥ Q0
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“Damped shower key to improvement, otherwise in horrible tension
with other ISR observables incl. Z pT” – physics insight!
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Comparisons
3/2 jet ratios (3rd jet from shower)

New tunes improve 3rd jet data description except at low scale.
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Focus of these tunes is where no NLO/multileg simulation available,
e.g. BSM processes at high scales
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Comparisons
Jet underlying event

transverse
60°<|Δϕ|<120°
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Undershoots in lowest-plead
T bins – not the intended application area.

Note difficulty of tuning to observables in which model components
are highly coupled
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Comparisons
Jet underlying event
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Comparisons
Forward energy flow (ATLAS vs CMS)
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Slight ATLAS/CMS tension (just ∼ 1σ systematic level)
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Eigentune constructions for A14
If tuning for model-based unfolding or extrapolationA
also need an estimate of model/tune uncertainty
I Eigentunes: systematic variations on the

parameters of the A14-NNPDF tune, using the
principle directions of the covariance matrix
around the tune minimum and making
excursions to find a fixed ∆χ2.

I Tune χ2 = 3.44× 105 for Ndf = 80315⇒
χ2/Ndf = 4.29. NB. Systematics correlations
not included. Used ∆χ2 = Ndf/2⇒ obtain
correlated ∼ 1σ variation bands. Ad hoc!

I Combined FSR, ISR + MPI tune has ten
parameters⇒ 20 eigentunes

No-one would use them!
I Manually reduced to a tractable covering set

of 5× 2 variations covering mainly UE, jet
structure, and 3× extra jet effects. Can be
reduced depending on analysis.
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Eigentune bands
Underlying event
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Eigentune bands
Jet structure
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Eigentune bands
Extra jets and recoils
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Minimum bias / diffraction tuning
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Charged multiplicities at different
√
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Sometimes there’s no good model available. Tuning can be the only
way to find that out for sure
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Diffraction and total σinelastic
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Sometimes there’s no good model available. Tuning can be the only
way to find that out for sure

Still need to get something imperfect but usable! e.g. total σ not
that important for LHC operational purposes (i.e. pile-up MC)
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Conclusions
I Obviously this is incomplete! Hope I gave some idea of the (still

developing) methodology, areas of application, and
issues/concerns

I Many good tunes, e.g. Perugia, Monash, without Professor. But
they required more effort, and don’t cover so systematically:
machinery is not all, but it helps. Brains still useful.

I Statistically hard to define exactly what’s wanted:
Some distributions more important (per bin). Maybe the tails are
what’s important. . .
But how much more important? Weights⇒ subjectivity
Importance of correlations, given subjectivity & heuristics
elsewhere?
And what about uncertainty coverage when the “truth” does not lie
in the model space?
The point is usually not statistical fairness or model testing, but
finding a imperfect-but-useful operating point

I And what about uncertainty coverage when the “truth” does
not lie in the model space?

The point is usually not statistical fairness or model testing, but
finding a imperfect-but-useful operating point
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