

FAIR Ion Catcher

Timo Dickel

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Germany

- Challenges and concepts for the Ion Catcher @ FAIR
- FRS Ion Catcher:
 - PID by mass measurements
 - Gas Degrader
 - Measurements with isomers
- Next generation CSC for FAIR

Challenge of Thermalizing Relativistic Ions

Range straggeling:

At the LEB of the Super-FRS ~ $200x100mm^2$

Novel Concepts of the Cryogenic Stopping Cell

Cryogenic temperature

- Gas cell acts as cryogenic pump
- Ultra-pure helium (freezing-out of contaminants)
 - Ideal for ion survival
 - No formation of molecules/adducts

P. Dendooven et al., NIM A 558 (2006) 580 S. Purushothaman et al., NIM B 266 (2008) 4488

High stopping gas density and high DC-fileds

M. Wada et al., NIM B 204 (2003) 570 M. Ranjan et al., Europhys. Lett. 96 (2011) 52001

Prototype of the Stopping Cell for the LEB

Why TOF Mass Spectrometry in Nuclear Physics?

Enables high performance

- Fast \rightarrow access to very short-lived ions (T_{1/2} ~ ms)
- Sensitive, broadband, non-scanning \rightarrow efficient, access to rare ions
- Mass resolving power and accuracy almost mass-independent

Conventional TOF-MS achieve medium mass resolving power only \rightarrow Solution to achieve high mass resolving power and accuracy: Multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS)

Applications in nuclear physics

- Direct mass measurements of exotic nuclei C. Scheidenberger et al., Hyperfine Interact. 132 (2001) 531
- High-resolution isobar separator

W.R. Plaß et al., NIM B 266 (2008) 4560

• Diagnostics measurements: Monitor production, separation and low-energy beam preparation of exotic nuclei W.R. Plaß et al., Int. J. Mass Spectrom. 394 (2013) 134

MR-TOF-MS: Mass Resolving Power

World-wide unique combination of performance characteristics!

¹³³Cs⁺, Ion kinetic energy 1.3 keV

W.R. Plaß et al., Phys. Scr. T166 (2015) 014069 T. Dickel et al., NIM A 777 (2015) 172 - 188

FRS Ion Catcher at GSI

Setup at the FRS Ion Catcher at GSI

T. Dickel, FAIR Ion Catcher, Fragment Separator Expert Meeting, Grand Rapids, MI, USA, August 30, 2016 to September 1, 2016

Characterization of the CSC

- Higher differential pumping
 - \rightarrow Higher areal density \rightarrow Higher stopping efficiency

2012: 3.1 mg / cm²

2014: 6.3 mg / cm²

→ Improved total efficiency up to 30%

P. Reiter, PhD 2015

• Extraction time: 25 ms

Purushothaman S. et al, EPL 104 (2013) 42001

2013

2014

2011

2012

CSC + MR-TOF-MS as Mass Tagger

Particle ID by MS only

Problem:

Particle ID at low energies and high Z is challenging

Solution:

ID of thermalized isotopes by broadband and high-resolution MS \rightarrow Fast and universal ID of several isotopes at a time

Results from the recent beamtime (June 2016): 300MeV/u ²³⁸U on a 0.4g/cm² Be target

Particle ID for Z=70 @ 300MeV/u primary beam

E. Haettner et al.

Gas Degrader

At the LEB very homogenous, large and thin degraders are necessary

Novel degrader concept:

- vacuum chamber (1.5m length) with pressure between 0 and 0.9 bar
- Thin Kapton windows, carbon coated
- corresponding to a areal density of ~(40 200) mg/cm²
- replace 1.5 m air (180 mg/cm²)

S. Purushothaman et al.

Mass Measurement: Uranium Projectile Fragments

Measurement and Separation of Isomers

- Identification of ^{211g}Po and ^{211m}Po by using PID detectors in the FRS, by alpha decay on Si detector and by mass spectrometry
- Measurement of excitation energy: (1472 \pm 120) keV Lit.: (1462 \pm 5) keV

Measurement using the TOF detector

T. Dickel et al., Phys. Lett. B 744 (2015) 137

Measurement and Separation of Isomers

First spatial separation of ground state and isomeric state in an MR-TOF-MS Proof-of-principle: production of isomerically clean beams by MR-TOF-MS

T. Dickel et al., Phys. Lett. B 744 (2015) 137

Isomer Measurement with MR-TOF-MS

Requirements for system for isomere search:

- Fast: ~ms
- Sensitive: Non-Scaning
- High resolving Power: >>10⁵
- High Dynamic Range: > 10:1

Isomer Measurement with MR-TOF-MS

Requirements for system for isomere search:

- Fast: ~ms
- Sensitive: Non-Scaning
- High resolving Power: >>10⁵
- High Dynamic Range: > 10:1

Results from the recent beamtime (June 2016): 600MeV/u ¹²⁴Xe on a 1.6g/cm² Be target

MR-TOF-MS is a powerful tool for the measurement of isomers: Identification, discover, excitation energies, isomeric ratios and isomeric beams

The FAIR Ion Catcher

The FAIR Ion Catcher

	Prototype CSC	Design Goals FAIR CSC
Areal density (He)	6 mg/cm ²	2040 mg/cm ²
Extraction time	25 ms	510 ms
Rate capability	10 ⁴ /s	10 ⁷ /s

T. Dickel et al., NIMB 376 (2015) 216

Test of the novel concepts of the FAIR CSC

	Prototype CSC	Design Goals FAIR CSC
Density (He)	~50 µg/cm ³ : limited by differential pumping	~150 µg/cm ³ : limited by repelling field of RF carpet
Extraction time	dominated by movement in the DC cage	dominated by movement along the RF carpet and at the nozzle
DC fields	~10V/cm: Voltage-limited by discharge	~100V/cm: limited by repelling field of RF carpet?

- •Test with Neon as stopping gas
 - \rightarrow Density limited by repelling field of RF carpet
- Tests with shorter DC electrode cage
 - \rightarrow higher field strengths and extraction times dominated by RF carpet

Test Measurements for the next CSC

Test with Neon as stopping gas RF Carpet is working at 150µg/cm³ He \rightarrow ~ 30mg/cm² will be possible for FAIR CSC

Measurement of ²¹⁵Po ($T_{1/2} = 1.781$ ms) with MR-TOF-MS at 400 Hz

Mass measurement

Mass accuracy: ~150 keV Deviation from AME2012: 30 keV

Mass-selected decay spectroscopy

Decay slope ∠15P0

1000

1500

2000

2500 Time [µs]

Half-life measurement:

Conclusions and Outlook

(Prototype)Stopping cell for the Super-FRS and the FRS Ion Catcher

- Cryogenic, high density operation, suitable for exotic nuclei produced at relativistic energies
- Unprecedented efficiencies for relativistic ions Access to short life times (extraction time ~ 25 ms)

High-performance multiple-reflection time-of-flight mass spectrometer

- High-accuracy mass measurements at m/ Δ m up to ~ 450,000
- Powerful tool for the measurement of isomers: Identification, excitation energies, isomeric ratios
- High-resolution mass separator for isobars and isomers
- Diagnostics tool: identification and quantification
 - Mass tagger
 - Particle ID by MS only

Developments and tests for the FAIR CSC

- Gas degrader
- Higher areal densities (tests with Neon)
- Shorter extraction times (mass and half-life meas. of ²¹⁵Po)
- Higher rate capabilities

Acknowledgements

FRS Ion Catcher / S411 Collaboration

F. Amjad², S. Ayet², B. Soumya², J. Bergmann¹, P. Constantin⁷, P. Dendooven³, T. Dickel^{1,2}, M. Diwisch¹, J. Ebert¹, A. Estrade², F. Farinon², A. Finley⁸, H. Geissel^{1,2}, F. Greiner¹, E. Haettner², F.Heiße², C.Hornung¹. C. Jesch¹, N. Kalantar-Navestanaki³, R. Knoebel², J. Kurcewicz², J. Lang¹, W.Lippert¹, I. Mardor⁹, B. Mei⁷, I. Miskun², I. Moore⁴, I. Mukha², C. Nociforo², J.H. Otto1, M. Petrick¹, M. Pfuetzner², S. Pietri², A. Pikhtelev⁵, W.R. Plaß^{1,2}, I. Pohjalainen⁴, A. Prochazka², S. Purushothaman², M. Ranjan³, C. Rappold², M.P. Reiter¹, A.-K. Rink¹, S. Rinta-Antila⁴, C. Scheidenberger², M. Takechi², Y. Tanaka², H. Weick², J.S. Winfield², X.Xu^{1,2}, M.I. Yavor⁶ ¹ II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen, Germany ² GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany ³ KVI-CART, University of Groningen, The Netherlands ⁴ University of Jyväskylä, Jyväskylä, Finland ⁵ Institute for Energy Problems of Chemical Physics, RAS, Chernogolovka, Russia ⁶ Institute for Analytical Instrumentation, RAS, St. Petersburg, Russia ⁷ ELI-NP, Bucharest, Romania ⁸ TRIUMF, Vancouver, Canada ⁹ Soreq NRC, Yavne, Israel

IONAS Group at JLU Gießen

S. Ayet, J. Bergmann, A. Buers, U. Czok, T. Dickel, M. Diwisch, J. Ebert, H. Geissel, F. Greiner, E. Haettner, C. Hornung, C. Jesch, R. Knöbel, J. Lang, W. Lippert, A. Pikhtelev, W.R. Plaß, M.P. Reiter, A.-K. Rink, C. Scheidenberger, M. Yavor

Funding:

BMBF (05P12RGFN8), **State of Hesse** (HMWK) (LOEWE focus AmbiProbe, LOEWE Center HICforFAIR), **HGS-HIRe**, **JLU Giessen** and **GSI** (JLU-GSI strategic Helmholtz partnership agreement)

Federal Ministry of Education and Research

ry HESSEN

Hessisches Ministerium für Wissenschaft und Kunst **XUERT LOEWE** – Landes-Offensive zur Entwicklung Wissenschaftlichökonomischer Exzellenz

HELMHOLTZ

HGS-HIRe for FAIR Helmholtz Graduate School for Hadron and Ion Research