Ion Optics for the High Rigidity Spectrometer HRS Status Report

Georg Berg University of Notre Dame

Presented at the 2016 Fragment Separator Expert Meeting

OUTLINE

- HRS facility to meet science program
- Several Spectrometer Modes needed to meet experimental program
- First-order ion-optics and Layout consistent with all Modes
- First order magnet design parameters for magnet field calculations
- Full dispersion matching (b₁₆, b₂₆) determined for beam line
- Started higher-order corrections
- Path forward

Office of Science

Bi-weekly HRS Zoom meeting

- Th. Baumann, MSU
- D. Bazin, MSU
- G. Berg, Notre Dame
- G. Bollen, MSU
- J. Brown, Wabash
- Sh. Chouhan, MSU
- J. Cizewski, Rutgers
- M. Couder, Notre Dame
- A. Couture, LANL
- H. Crawford, MSU
- A. Estrade Vaz, CMU
- A. Gade, MSU
- R. Grzywacz, UT

- M. Hausmann, MSU
- C. Hoffman, ANL
- R. Janssens, ANL
- K. Jones, UT
- D. Lawton, MSU
- W. Mittig, MSU
- S. Mosby, LANL
- S. Noji, MSU
- S. Pain, ORNL
- M. Portillo, MSU
- G. Rogachev, Texas A&M
- B. Sherrill, MSU
- O. Tarasov, MSU
- R. Zegers, MSU

Optimizing the scientific opportunities at FRIB

FRIB will produce the most exotic isotopes at unprecedented intensities by fast fragmentation of heavy-ion beams

To minimize losses, experiments with the most exotic species are best performed at the energy at which maximum production rate is achieved

Available spectrometers at NSCL lack necessary bending power – the proposed HRS overcomes this serious limitation

Luminosity gains with the HRS exceed a factor of 10 for experiments with neutronrich rare isotopes for which the potential for scientific discovery is highest

- Beams produced at energy for which yield is maximum
- Reduce beam losses in beam line
- Use thick reactions targets
- Reduce charge state production

Endorsements

FRIB Scientific Advisory Committee (SAC): "The HRS is necessary to conduct the scientific mission of FRIB."

In the resolution of the 2014 APS Division of Nuclear Physics Town Meeting on Nuclear Structure, timely construction of the HRS as a state-ofthe-art instrument for FRIB was recommended.

In the resolution of the 2014 APS Division of Nuclear Physics Town Meeting on Nuclear Astrophysics, the HRS was listed as a critical piece of equipment, and the development and implementation was recommended.

2015 NSAC Long Range Plan: "In addition to (...) facilities, the community has developed exciting ideas for new equipment key to the future research effort. Not all can be realized immediately, but a targeted suite to address the highest priority research programs is needed. Instruments such as GRETA, HRS, and SECAR (a recoil spectrometer for nuclear astrophysics research) will be essential to realize the scientific reach of FRIB"... "Another key addition to FRIB is the proposed High-Rigidity Spectrometer (HRS), which would enable in-flight reaction experiments with the most neutron-rich nuclei available from FRIB."

HRS to meet the requirements of Science Program

Five guiding types of experiment were chosen to constrain the ionoptical and magnet feasibility studies.

- I. Invariant mass spectroscopy detection of fast neutrons at forward angles with MoNA-LISA
- 2. In-beam γ -ray spectroscopy far from stability using GRETA
- 3. Spectroscopy with heavy nuclei momentum resolution and (partially) dispersion-matched modes, particle ID
- 4. Time-of-flight mass measurements timing, mass, and momentum resolutions, particle ID
- 5. In-flight fission studies particle ID, large acceptance
 - Goal: Develop an optimized Ion-optical and Magnet Design Concept for the HRS system that meets all Technical Requirements needed for the Science Program.

HRS has to match Science Program

Presentations of HRS Science Program at LECM 2016, Notre Dame

- GRETA, Heather Crawford (LNBL)
- MoNA LISA, Jim Brown (Wabash Univ.)
 - Knock-out, Daniel Bazin (NSCL/MSU)
 - Fission, Shea Mosby (LANL)

•

٠

• Mass measurem., Alfredo Estrade-Vaz (Central Michigan Univ.)

Scope of HRS

- I.A high-rigidity, large-acceptance beam line to transport the rare isotopes with minimal losses from the FRIB fragment separator to the HRS spectrometer
- 2.A sweeper dipole behind the reaction target for diverting charged particles
- 3.A focusing beam line that transports the diverted particles from the sweeper dipole to two spectrometer dipoles for analysis
- 4. Two spectrometer dipoles for identifying and analyzing charged particles
- 5. Charge-particle detectors that are i) placed in the beam lines for tracking rare-isotopes that are impinged on the reaction target, and ii) placed in the focusing beam line and final focal plane to analyze the particles emerging from reactions in the target
- 6. Civil infrastructure to house the HRS

Possible layout from White Paper, Dec 2014

High Rigidity Spectrometer (DQQQ) Pre-conceptual (first order) ion-optical design from White Paper

Spectrometer

Magnetic bending power: up to 8 Tm (superconducting magnets) Large momentum (10% dp/p) and angular acceptances (80x80 mrad) Particle identification capabilities extending to heavy masses (~200) Momentum resolution 5000; intermediate image after sweeper Dispersion: 7cm/%

Invariant mass spectroscopy: $\pm 6^\circ$ opening in sweeper dipole for neutrons Beam Line

Dispersion-matching capability

Beam line from fragment separator designed to optimize transmission to HRS

Overview HRS Layout & Optics

HRS Alternative layout

Explored inverted layout, it fits building but difficult to achieve dispersion matching conditions

HRS Modes (needed to meet requirements of experiments

- Ion-optical calculations show initially envisioned DQQQ is needed for the MoNA LISA experiments, but is not able to meet several other experimental requirements (e.g. acceptances, resolving power). Therefore we are also pursuing
- **QQD+QQQDD**, including second part
- Possible additional modes with one Q in front considered
- QDQ, first part, plus second part
- QDQQQ, first part, plus second part

Note: QDQ and QDQQQ modes may not be needed in addition to the QQD modes with 2 quads in front of the sweeper dipoles, depending of experiments

The following criteria were implemented in the 1st order HRS design

- All magnets identical for all modes
- Rearrangement of Q0A and Q1A in front of Sweeper Magnet (SM)
- Quad strengths < 2.5 T poletip, adjusted lengths (iron, superconducting coils)
- Dipole fields < 2.1 T in GFR, (iron, superconducting coils)
- Quad-radius = warm-bore + 0.10 m to accommodate Hexapoles and Octupoles in all quadrupoles
- Greta (1.38 m radius) at target FP1 (optional FP2 location)
- Neutron cone clearance about 6 deg (dependent on Q2A design and target location), Sweeper dipole with 35 deg bending angle
- Drift lengths between magnets adjusted for large 1st order acceptances and sufficient space for detectors, pumps and diagnostics
- Building not yet designed, but constraints by existing buildings

DQQQ mode – invariant mass spectroscopy MoNA LISA

QQD mode – higher resolution

HRS Layout, QQD Mode

Compatible with all Modes (1st order)

Element	Note	Element properties	Radius/	Warm bore (m)	
Technical Name	Description	Effect. Length(m)	Half gap (m)	Dipole half gap	
		Angle			
	Drift	1 25			
DEIT	Drift	1.25			n
Q0A	Quad+Hex+Oct	1.1	0.3	0.2	
DL15	Drift	0.55			hi
QIA	Quad+Hex+Oct	0.95	0.55	0.45	
DLI6	Drift	0.65			
B1/SM	Dipole	35 deg	3.8197	0.35	
DLI7	Drift	1.35			
Q2A	Quad+Hex+Oct	1.3	0.65	0.55	
DL18	Drift	0.75			
Q2B	Quad+Hex+Oct	1.5	0.53	0.43	
DL19	Drift	0.75			
Q2C	Quad+Hex+Oct	0.95	0.45	0.35	
DL20	Drift	1.4366			FP2
DL21	Drift	1.2			
Q3A	Quad+Hex+Oct	1.25	0.5	0.4	
DL22	Drift	0.3			
O P	Quadthast	1.4	0.35	0.25	
QJD		1.4	0.55	0.25	
DL23	Drift	0.3			
Q3C	Quad+Hex+Oct	1.25	0.6	0.5	
DL24	Drift	1.25			
B2	Dipole	30 deg	3.819719	0.14	
DL25	Drift	1			
B2	Dipole	30 deg	3.819719	0.1	
DL26	Drift	2.6	2		FP3

Preliminary HRS Lattice may slightly change with higher order optimization

Gives basic input Parameters for the layout, field calculations and magnet design

HRS Dipole Parameters

HRS	Dipoles			
	Units	BI(SM)	B2	B3
Bending radius	m	3.82	3.82	3.82
Maximum rigidity	Tm	8	8	8
Max. magnetic field B	т	2.1	2.1	2.1
Bending angle, + <u>to right</u> - to left	deg	35	-30	-30
Central ray, arc length	m	2.334	2.000	2.000
Vertical gap, full size	m	0.70	0.28	0.20
GFR, dB/B <+/-<0.1%	cm	50	65	65
Pole width	m	tbd	tbd	tbd
Entrance s ₁₁	0	0	0	0
Exit s ₁₂	0	0	0	0
Maximum DC Power	k₩	tbd	tbd	tbd
Weight, approx.	kg	tbd	tbd	tbd

HRS Quadrupoles Parameters (for magnet design)

Parameter	HRS Quadrupole Magnets									
		Q0A	QIA	Q2A	Q2B	Q2C	Q3A	Q3B	Q3C	
Overall length	m	1.30	1.15	1.50	1.70	1.15	1.45	1.60	1.45	
Focusing strength	т	-9.17	-4.32	5.00	7.08	2.75	6.25	-8.00	3.75	
Eff. field length	m	1.10	0.95	1.30	1.50	0.95	1.25	1.40	1.25	
Gradient	T/m	-8.33	-4.55	3.85	4.72	2.89	5.00	-5.71	3.00	
Good field, radius	-	0.20	0.45	0.55	0.42	0.25	0.40	0.25	0.50	
Warm bore	111	0.20	0.45	0.55	0.45	0.35	0.40	0.25	0.50	
Quad bore, radius	m	0.30	0.55	0.65	0.53	0.45	0.50	0.35	0.60	
Max. pole tip strength	т	-2.5	-2.5	2.5	2.5	[-0.5, 1.3]	2.5	-2	1.8	
Maximum DC	1.)	4h d	4h d	4h d	4h d					
Power	KVV	ισα	ισα	ισα	ισα	ισα	ισα	ισα	lDa	
Maximum		0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	
Inhomogeneity		0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	0.20%	
Iron weight (approx.)	'kg	tbd	tbd	tbd	tbd	tbd	tbd	tbd	tbd	
Notes:										

I Q2C requires a maximum pole tip strength of I.3 T in the DQQQ Mode, and -0.5 T in the QDQQQ Mode 2All quadrupoles include hexapoles and octupoles

3 The inhomogeneity refers to the integrated field within the Good-Field-Region

4The quad bore is typically 10 cm larger than the worm-bore to provide space for the hex and oct coils

5 If the Overall Length is exceeded in the design, double check that there is no mechanical interference

6 The first quad Q2A after SM has to be cut at the beam left side to allow for max. neutron scattering angle

7All parameters are preliminary, based on 1st order ion-optical calculations and are subject to modifications

DQQQ Mode, Ist order

Increased Q3B radius to 0.44 m

Horizontal and vertical foci, F3

DA = 80 mrad (Hor. Accept. Angle) DB = $\frac{20}{25}$ 25 mrad (Vert.Accept.Angle) dE/E = 10% (Energy Acceptance) M11 = $\frac{1.861}{1.791}$ (Hor. Magnif.) M16 = $\frac{-4.114}{-4.054}$ (Energy Disp.) M21 = $\frac{0.0761}{0.1217}$ 0.1217 M26 = $\frac{-0.351}{-0.382}$ For x_0 = 1 mm, E-Resolv. Power $\frac{1100}{1130}$ M33 = $\frac{1.084}{1.111}$

Q3B, Radius = 0.44m, B2 Half- gap = 0.18 m

Q2A:= 2.40302; Q2B:= -2.34849; Q2C:= 1.191394; Q3A:= 2.1021708; Q3B := -1.93525; \rightarrow -2.51687 Q3C := 1.70997; \rightarrow 1.782110 File: HRS_DQQQ_35_Q3B.fox²⁰

DQQQ Mode, Ist order Increase Q3B radius to 0.44 m and BI, B2 gap to 0.23 m, 0.16 m Horizontal and vertical foci, F3

DA = 80 mrad (Hor. Accept. Angle) DB = 20 25 35 mrad (Vert. Accept. Angle) dE/E = +/-10% (Energy Acceptance) MII = 1.861 1.791 (Hor. Magnif.) MI6 = -4.114 -4.054 (Energy Disp.) M2I = 0.0761 - 0.1217 M26 = -0.351 -0.382 For x_0 = 1 mm, E-Resolv. Power 1100 - 1130 M33 = 1.084 - 1.111

Alternative: If E-Resolv. Power about 410 at F2 is sufficient for experiment, DB = 35 mrad is possible without increasing size of Q3B, B1 and B2

File: HRS_DQQQ_35_Q3B.fox²

Optimizing DQQQ mode for invariant mass spectroscopy – detection of fast neutrons at forward angles with MoNA-LISA

Requirements

- Larger vertical acceptance needed
- Lower momentum resolution acceptable (dE/E ~ 400)

Solutions

- Use only Part I of HRS, Focal plane F2
- Short distance of target to SM EFB
- GRETA used with front detector rings removed

DQQQ Mode, Ist order DLI = 1.03 m

Increased Q2B radius from 53 cm to 63 cm Increased EFL from 1.5 m to 1.7 m, Decreased DL20 (F2 from 1.4366 m to 1.35 m

Horizontal and vertical foci, F2

DA = 90 mrad (Hor. Accept. Angle) DB = 42 mrad (Vert.Accept.Angle) dE/E = 10% (Energy Acceptance) M11 = -2.47 (Hor. Magnif.) M16 = 1.81 (Energy Disp.) M21 = -0.2756 M26 = 0.06876 For x_0 = 1 mm, E-Resolv. Power 366 M33 =-0.301

Q2A:= 2.48821; Q2B:= -2.5000; Q2C:= 1.16142;

File: HRS_DQQQ_F2_103_order1.fox 23

DOOQ Mode, 2nd order DLI = 1.03 m

Increased Q2B radius from 53 cm to 63 cm And EFL from 1.5 m to 1.7 m

Horizontal and vertical foci, F2

DA = 90 mrad (Hor. Accept. Angle) DB = 30 mrad (Vert.Accept.Angle) dE/E = 4 % (Energy Acceptance) MII = -2.47 (Hor. Magnif.) M16 = 1.81 (Energy Disp.) M21 = -0.2756M26 = 0.06876For x = 1 mm, E-Resolv. Power 366 M33 = -0.301Q2A:= 2.48821;

Q2B:= -2.5000;Q2C:= 1.16142;

File: HRS DQQQ F2 103 order2.fox 24

Comparison DQQQ Mode with different target to magnet drifts

Comparison		DQQQ	Different DLI		
			(Target to E	FB(SM))	
DLI/m	1.03	1.16	1.3		
lst Order					
DA/mrad	90		80		
DB/mrad	42		40		
E_Resolv.Power	366		410		
2nd Order					
DA/mrad	90		80		
DB/mrad	30		30		

Increased Q2B radius from 53 cm to 63 cm Increased EFL from 1.5 m to 1.7 m, Decreased DL20 (F2 from 1.4366 m to 1.35 m)

QQD Mode, Ist order DLI = 1.38 m

Increased Q2B radius from 53 cm to 63 cm Increased EFL from 1.5 m to 1.7 m, Decreased DL20 (F2) from 1.4366 m to 1.35 m

Horizontal and vertical foci, F2

DA = 60 mrad (Hor. Accept. Angle) DB = 140 mrad (Vert. Accept. Angle) dE/E = 10% (Energy Acceptance) M11 = -1.12 (Hor. Magnif.) M16 = 3.02 (Energy Disp.) M21 = -0.465 M26 = 0.329 For $x_0 = 1$ mm, E-Resolv. Power(E) = 1350 M33 =-12.6

Q0A:= -2.31353; Q1A:= 2.32624; Q2A=Q2B=Q2C = 0

File: HRS_QQD_F2_138_order1.fox 26

QQD Mode, 6th order DLI = 1.38 m

Increased Q2B radius from 53 cm to 63 cm and EFL from 1.5 m to 1.7 m, DL20 = 1.35 m Horizontal and vertical foci, F2 DA = 60 mrad (Hor. Accept. Angle) DB = 60 mrad (Vert.Accept.Angle) dE/E = 6% (Energy Acceptance) MII = -1.12 (Hor. Magnif.) MI6 = 3.02 (Energy Disp.) M21 = -0.465M26 = 0.329For x = 1 mm, E-Resolv. Power(E) = 1350 M33 = -12.6Q0A:= -2.31353; QIA:= 2.32624;

Q2A=Q2B=Q2C=0

H0A=HIA=H2A,B,C=0

File: HRS_QQD_F2_138_order6.fox 27

QQD Mode, 6th order DLI = 1.38 m

Increased Q2B radius from 53 cm to 63 cm and EFL from 1.5 m to 1.7 m, DL20 = 1.35 m Gap D2 = D3 = 0.15 m

Horizontal and vertical foci, F3

DA = 60 mrad (Hor. Accept. Angle) DB = 60 mrad (Vert. Accept. Angle) dE/E = 5% (Energy Acceptance) MII = -1.06 (Hor. Magnif.) MI6 = 5.44 (Energy Disp.) M2I = 0.277 M26 = -0.235 For $x_0 = 1$ mm, E-Resolv. Power(E) = -2566 M33 = 42.2

File: HRS_QQD_F3_138_order6.fox 28

Requirements for Beam Line (lon-optics)

- Achromatic mode
- Dispersive mode, dispersion matching, lateral b_{16} and angular b_{26}
- Variable target location in front of Sweeper magnet
- Oriented so that HRS and MoNA LISA fits into available space
- Space for detectors, diagnostics, pumps etc.

Dispersion Matching

following solutions are obtained [12] for the beamline parameters b_{16} and b_{26} to realize lateral dispersion matching and angular dispersion matching, respectively.

$$b_{16} = -\frac{s_{16}}{s_{11}} (1 + s_{11}s_{26}K - s_{21}s_{16}K) \frac{C}{T}$$
(7)

and

$$b_{26} = (s_{21}s_{16} - s_{11}s_{26})C. \tag{8}$$

See e.g. H. Fujita, NIM A484 (2002) 17

b = beam line I^{st} order matrix elements s = spectrometer I^{st} order matrix elements Assumptions: K = 0 at 0 deg Scatt. Angle T = 1 at 0 deg and perpend. Target

C = (p_in/p_out)/(dp_out/dp_in) C = I for elastic scattering

Matching conditions:

 $b_{16} = - s_{16}/s_{11}$ $b_{26} = s_{21}s_{16} - s_{11}s_{26}$

HRS Mode	Focal Plane F2							Test Rays		
COSY file	COSY file with					[m]	[rad]	DE =		
	Disp.Matching (DM)	sll	s16	s21	s26	b16	b26		x/m	DA/rad
HRS_QQD_35_0_0.fox	HRS_QQD_35_DM_F2.fox	-1.151	3.044	-0.483	0.3291	2.645	-1.091	0.050	0.132	-0.055
HRS_DQQQ_35.fox	HRS_DQQQ_35_DM_F2.fox	-2.238	1.841	-0.2505	0.0589	0.823	-0.329	0.100	0.082	-0.033
HRS_QDQ_35_0_0.fox	HRS_QDQ_35_DM_F2.fox	-0.465	1.248	-0.8926	0.0266	2.684	-1.102	0.050	0.134	-0.055
HRS_QDQQQ_35_0_0.fox	HRS_QDQQQ_35_DM_F2.fox	-1.162	2.802	-0.5906	0.617	2.411	-0.938	0.050	0.121	-0.047

HRS, 35 deg bend, 0 deg edges angles QQD, Dispersion Matched, FP2

- Blue: Achromatic beam
- Green: Lateral Dispersion matched, only
- Red: Fully Dispersion matched, incl. angular

			Test Rays		
[m]		[rad]	DE =		
b16		b26		x/m	DA/rad
	2.645	-1.091	0.050	0.132	-0.055

File: HRS_QQD_35_DM_F2.fox

HRS, 35 deg bend, 0 deg edges angles QQD, Dispersion Matched, FP3

Blue:	Achromatic beam
Green:	Lateral Dispersion matched, only
Red:	Fully Dispersion matched, incl. angular

				Test Ra	ays	
[m]		[rad]		DE =		0.050
b16		b26		x/m		DA/rad
	5.008		-1.329	(0.250	-0.066

File: HRS_QQD_35_DM.fox

Preliminary Beam Line, By Shumpei Noji

 $\frac{3}{3}/8$

Summary

Overview — current layout/floor plan •

- Further optimize the transport modes ٠
- Estimate the higher-order aberrations, finalize a pre-conceptual design ٠

Next steps

- Finalize the present modes to meet requirements of all(?) proposed experiments
- Final Beam Line configuration to meet all requirements
- Update lattice file
- Update dispersion matching conditions (after recent changes)
- Update magnet design parameter list
- Continue magnet field calculations (Shailendra Chouhan), evaluate effect on ionoptics. Feedback.
- Minimize S₁₂₆ to reduce fp tilt angle in focal planes F2, F3.
- Finalize magnet design compatible with ion-optics (sufficient drift space)?
- Chromatic aberrations seem insensitive to Hex/Oct in Quads, keep only those that helpful.
- Analyze F2, F3 parameters to define detector specifications
- Circular instead of rectangular acceptances
- M33 (vert. magnif.) large in QQD mode, use QQDQQQ quads to reduce M33.
- Optics for DLI = 0.4 m for largest possible neutron acceptance angle
- Other issues?

Thank you