Dispersion-Matched Spectrometers for High-Resolution Experiments

Hans Geissel

GSI and Justus Liebig University Giessen

- *Introduction "International Expert-Meeting, Quo Vadis?"
- *****Projectile Fragment Separators coupled to / used as Spectrometers
- *** Dispersive Spectrometers**
- * Energy-Loss (dispersion-matched) Spectrometers (R₁₆=R₂₆=0)
- *New Features of the Ion-Optical Code MIRKO

International Expert Meeting, Quo Vadis?

Participation: By invitation only World Experts in the field **and** Newcomers

Present Goals of the Fragment Separator International Experts Meetings:

- stimulate collaboration in design, construction and operation of in-flight fragment separators
- solve technical and scientific challenges
- have open and frank discussion, exchange new ideas

Possible Future Orientation under the conditions that the different new facilities have quite different construction times:

- a **young generation** of experts have to be recruited and trained
- together we should avoid duplication of existing or already planned facilities our experts are capable of finding unique properties and experiments for each facility
- form a network for separator / spectrometer operation and experiments
- ... please find more ideas!

The Super-FRS Facility

Report 2014 - 4 September

*The group designing and constructing the facility should have its scientific share and run the most demanding experiments

Super-FRS Collaboration

551

Scientific Program of the Super-FRS Collaboration: Report of the collaboration to the FAIR management

DOI:10.15120/GR-2014-4

In-Flight Separator coupled to a Spectrometer

Examples: Big-RIPS -- Zero-Degree Spectrometer--- SHARAQ--- SAMURAI A1900 – S800 FRS – ESR --- Ion-Catcher --- ALADIN ARIS + Beamline + HRS Super-FRS – E-Buncher – GLAD -- HRS

A versatile system is advantageous to explore new operation modes and unique experiments

Super-FRS is a Powerful Separator and a High Resolution Spectrometer

Energy-Buncher of Super-FRS is a Powerful High Resolution Spectrometer

Which Ion-optical Resolution yields the required A- and Z-Resolution?

H.G. et al. Nucl. Instr. Meth. A 282 (1989) 247

FRS : ε = 20 π mm mr and 2 % dp/p transmission

FRS and Detector Setup August 2014

Experiment to study the contribution of tensor interaction via the ¹⁶O(p,d) reaction at 400-1200 MeV/u

High-Resolution Momentum Measurements with a Dispersive FRS Mode at all Focal Planes

High-Resolution Momentum Measurements with a Dispersive FRS Mode at all Focal Planes

Limitation of Energy Spread of the Protons from the Accelerator

Limitation of Target Thickness

Deuteron spectra (high performance of FRS)

POM Target (CH₂O)_n

¹⁶O(p,d)¹⁵O

F. Farinon

Limitations for High-Resolution Spectrometer Experiments with Exotic Heavy lons

Challenges due to:

- * Phase-Space of Primary Beams (see (p,d) reaction @ FRS)
- *****Large Phase of Exotic Nuclei
- ***** Atomic Interaction in Targets, Degraders and Detectors
- **Required High Spectrometer Resolving Power**

Principle of an Energy-Loss Spectrometer

Point - to - point image condition: $(R_{12} = (x, x') = 0)$

$$x_{1} = {}^{1}R_{11}x_{0} + {}^{1}R_{16}\left(\frac{p - p_{0}}{p_{0}}\right)$$

$$x_{2} = {}^{2}R_{11}x_{1} + {}^{2}R_{16}\left(\delta - \frac{\Delta p_{2}}{p_{0}}\right)$$

$$x_{2} = {}^{2}R_{11}{}^{1}R_{11}x_{0} + \left(\underbrace{{}^{2}R_{11}{}^{1}R_{16} + {}^{2}R_{16}}_{=0}\right)\delta - {}^{2}R_{16}\frac{\Delta p_{2}}{p_{0}}$$

Image size of the final focus is independent of the incident momentum spread if

$${}^{2}R_{16} = -{}^{2}R_{11}{}^{1}R_{16}$$

Analogous one can find conditions for the angular distribution generated in the secondary target.

The Stages of an In-Flight Separator coupled to a Spectrometer

Pre-Separator

Main-Separator

Beamline Spectrometer

Low-Energy Branch of the Super-FRS

Dispersion-Matched: Main Separator—Energy Buncher

E-Loss Spectrometer Super-FRS LEB-S-EB-Dispersion-Matched

Super-FRS Dispersion-Matched -with HRS (H.G. R3B Meeting 2014)

Length / m

 $R_{16} = R_{26} = R_{21} = 0$ H. Geissel et al. NIM B 2013

Active Target in the Dispersion-Matched Spectrometer

FRS--CSC-MR-ToF-MS

S. Purushothaman et al., EPL 2013

See Talk Timo Dickel

Investigation of the Layout of the E-Buncher

Novel Method of Energy Bunching and Position Compression

OEDA Project : S. Shimoura et al. RIKEN

New Features of MIRKO

B. Franczak, H. Geissel to be published in NIM

The calculated optical design can be directly converted in a geometrical layout of a new facility

New Features of MIRKO

B. Franczak, H. Geissel to be published in NIM

HIAF Factory for Exotic- and Hyper-Nuclei

- 2. Factory for Exoticand Hypernuclei
- 3. 4-Stage Spectrometer

New Features of MIRKO

B. Franczak, H. Geissel to be published in NIM

MIRKO & Degraders Overall Dispersive vs. Dispersion-Matched B. Franczak, H. Geissel

NUSTAR

FRS:

Dispersion-

dispersive

MIRKO & Degraders Overall Dispersive vs. Dispersion-Matched B. Franczak, H. Geissel

Initial spread σ 66=4e-4, "Degrader": E-loss dE/E=2/800, straggling δ p/p=4e-4

New Features of MIRKO

Transmission Optimization (Pion Dipole Magnet at FRS F2)

Fit conditions at different positions

Factor of 5 Improvement

New Features of MIRKO

Isochronous Mode of the ESR, Limitations

Summary

- Our Int. Expert Meeting has a good future, new challenges are on the horizon
- Recent in-flight separator / spectrometer experiments provide excellent scientific results, e.g. : totally dispersive (FRS, the role of tensor force) mesic atoms / nuclei (BigRIPS, FRS) delta-excitation with exotic nuclei (FRS)
- The coupling of in-flight separators with high-resolution systems has unique scientific potential:
 e.g. dispersion-matched spectrometers (A1900-S800, BigRIPS-Sharaque)
 storage rings (FRS-ESR)
 ion-catcher traps (MR-ToF, Penning)
 (A1900-LEBIT, FRS-Ion-Catcher, BigRIPS-SLOWRI)

