Ion Optics Development at BigRIPS 1
 --- High resolution mode ---

2016 / 8 / 30
BigRIPS team, RIKEN Nishina Center

SUZUKI Hiroshi

N. Fukuda, H. Takeda, Y. Shimizu, D.S. Ahn, T. Sumikama,
D. Kameda, H. Sato, N. Inabe, and T. Kubo

Outline

- My talk (Suzuki)
- High-resolution mode
- Introduction of the high-resolution modes
- D-double mode
- M-half mode
- Momentum and angular acceptances
- Comparison with spreads of secondary beams
- Experiments
- ${ }^{136}$ Sn test experiment (F3-F5-F7: 2 ${ }^{\text {nd }}$ stage)
- ${ }^{136}$ Sn test experiment (F3-F5-F11: ${ }^{\text {nd }}$ stage + ZeroDegree)
- ${ }^{87} \mathrm{Zn}$ mass measurement experiment
- High-Z $\left({ }^{208}{ }_{88} \mathrm{Rn}^{86+}\right)$ test experiment
- Summary
- Takeda -san's talk (just after my talk)
- Additive and subtractive modes
- Sumikama-san's talk (9/1 morning)
- Energy-degraded RI beams (Momentum compression mode)

Ion Optics of the BigRIPS

(A) Achromatic foci
(D) Dispersive foci

Best value of
A / Q resolution: 0.034\%

Development of High-resolution modes

- Purpose: To improve the momentum resolution at the $2^{\text {nd }}$ stage
- Mass-measurement experiment
- Separation of mid-heavy very-neutron-rich nuclei
- A / Q values of fully-stripped ${ }^{A} Z^{Z+}$ nuclide and hydrogen-like ${ }^{A-3} Z^{(Z-1)+}$ contaminants are close, where A / Z value is close to 3 .
- High- Z region $(Z \sim 70,80, \ldots)$
- Many charge states (full, H-like, He-like, Li-like, ...) are produced.

Resolution: $R \propto \frac{D}{M \cdot \Delta x}$ (D: dispersion, M: magnification)
\rightarrow To increase the D / M value.
\rightarrow In the high-resolution modes, the D / M values are doubled.

$$
(P / \Delta P=3420 \rightarrow 6840)
$$

Ex) Separation of ${ }^{A} Z^{Z+}$ and ${ }^{A-3} Z^{(Z-1)+}$

High-resolution D-double mode

- $\mathrm{M}_{35}=(x \mid x)_{35}$ remains.
- $\mathrm{D}_{35}=(x \mid \delta)_{35}$ is doubled.

$$
\begin{aligned}
& x:+/-5 \mathrm{~mm} \\
& a:+/-18.4 \mathrm{mrad} \\
& \delta:+/-3 \%(+3 \%, 0 \%,-3 \%)
\end{aligned}
$$

$\rightarrow D_{35} / M_{35}$ is doubled from the Standard mode.

(x direction)
Standard mode
High-resolution D-double mode

M_{35}	Standard		
$\left(\begin{array}{ccc}\frac{(x \mid x)}{} & (x \mid a) & \frac{(x \mid \delta)}{c} \\ (a \mid x) & (a \mid a) & (a \mid \delta) \\ (\delta \mid x) & (\delta \mid a) & (\delta \mid \delta)\end{array}\right)_{35}$			

1.0863 \& 0

0 \& 0 \& 1\end{array}\right)\left($$
\begin{array}{ccc}\frac{0.9206}{} & 0 & \frac{63.374}{0.0388} \\
1.0863 & 0 \\
0 & 0 & 1\end{array}
$$\right)\)

High-resolution M-half mode

- $\mathrm{M}_{35}=(x \mid x)_{35}$ is halved.

Standard mode

Acceptance of each mode (calculation)

- Standard mode (blue data)
- $\delta:+/-3 \%, a:+/-40 \mathrm{mrad}$
- $+/-0^{\sim} 3 \%$: angular acceptance is cut in the $1^{\text {st }}$ stage
- $+/-3^{\sim} 4 \%$: cut in the $2^{\text {nd }}$ stage
- D-double mode (magenta data)
- $\delta:+/-1.5 \%, a:+/-25 \mathrm{mrad}$
- Dispersion is doubled. \rightarrow Momentum acceptance is halved.
- M-half mode (green data)
- $\delta:+/-2.5 \%, a:+/-20 \mathrm{mrad}$
- The angular magnification is doubled. \rightarrow Angular acceptance becomes small.

Spreads of secondary beams

Comparison between the acceptances and the spreads of secondary beams
Projectile energy: $345 \mathrm{MeV} / \mathrm{u}$

- ${ }^{238} \mathrm{U} \rightarrow{ }^{132}{ }_{50} \mathrm{Sn}(4-\mathrm{mm} \mathrm{Be})$ fission

- ${ }^{238} \mathrm{U} \rightarrow{ }^{208}{ }_{88} \mathrm{Ra}(3-\mathrm{mm} \mathrm{Be})$ frag. (+fission)

- ${ }^{238} \mathrm{U} \rightarrow{ }^{171}{ }_{66} \mathrm{Dy}(5-\mathrm{mm}$ Be) fission

- ${ }^{124} \mathrm{Xe} \rightarrow{ }^{100}{ }_{50} \mathrm{Sn}^{50+}$ (4-mm Be) fragmentation

Experiments

- Case 1. ${ }^{136}$ Sn test experiment (F3-F5-F7: $2^{\text {nd }}$ stage)
- Standard, D-double, M-half
- Achieved A / Q resolution
- Momentum and angular acceptance
- Case 2. ${ }^{136}$ Sn test experiment (F3-F5-F11: $2^{\text {nd }}$ stage + ZD)
- D-double mode
- Flight path length of F3-F11 is double of the $2^{\text {nd }}$ stage (F3-F7)
- Case $3 .{ }^{87} \mathrm{Zn}$ mass measurement experiment
- The first physics experiment with high-resolution mode (Ddouble mode)
- Case 4. High-Z $\left({ }^{208}{ }_{88} \mathrm{Rn}^{86+}\right)$ test experiment

Case 1. ${ }^{136}$ Sn test experiment (F3-F5-F7)

- Settings
- Central particle: ${ }^{136} \mathrm{Sn}^{49+, 50+, \ldots}$
- Target: 2 mm , F1deg: 2 mm , F5deg: none
- B $\rho 01: 8.004$ Tm, B $\rho 12: 7.463$ Tm, B $\rho 35: 7.435 \mathrm{Tm}, \mathrm{B} \rho 57: 7.424 \mathrm{Tm}$
- F1: $-2 /+3 \%$, F2: $+/-2 \mathrm{~mm}$, F5: fully opened, $\mathrm{F} 7:+/-18 \mathrm{~mm} \rightarrow \delta:+/-1 \%$ cut by analysis

Standard

D-double

M-half

Gated on F3Pla and F7Pla's analogues
to remove the slewing effect

The A / Q distribution of $S n$ isotopes are shown in the next page.

A / Q resolution of each optics mode
 Standard

D-double

M-half

- Resolution of the D-double mode improved from the standard mode. However, it was not halved.
- In the M-half mode, the resolution was not improved.
$\rightarrow A / Q$ resolution is affected by $B \rho$ resolution and β (TOF) resolution.
$\rightarrow B \rho$ resolution is affected by the position resolution at F3 and F5.

$$
\left\{\begin{array}{rl}
A / Q=\frac{B \rho}{\beta \gamma} \frac{c}{m_{u}} \\
T O F=\frac{L}{\beta c}
\end{array} \longrightarrow\left(\frac{\Delta A / Q}{A / Q}\right)=\sqrt{\left(\frac{\Delta B \rho}{B \rho}\right)^{2}+\left(\gamma^{2} \frac{\Delta \beta}{\beta}\right)^{2}}\right.
$$

A / Q reso. estimated from detectors

- Position resolution (PPAC)
${ }^{\sim} 0.8 \mathrm{~mm}$
- Position resolution (F3, F5)
$\sim 0.6 \mathrm{~mm}$ (F3)
$\sim^{\sim} 0.4 \mathrm{~mm}$ (F5)

- $B \rho$ resolution $(=\Delta \delta)$		
$\Delta \delta=\sqrt{\left(\frac{\Delta x_{5}}{D}\right)^{2}+\left(\frac{M \Delta x_{3}}{D}\right)^{2}}$		
	Sta.	D-d.
	M-h.	
$\mathrm{D}[\mathrm{mm} / \%]$	31.7	63.4
M	0.92	31.7
Resolution	0.021%	0.92

Consistent!

- TOF resolution
TOF: ~235 ns

$$
\Delta \mathrm{TOF}: ~ \sim 35 \mathrm{ps}
$$

- β resolution

$$
\frac{\Delta \beta}{\beta}=\frac{\Delta T O F}{T O F}
$$

$$
\gamma^{2} \frac{\Delta \beta}{\beta} \approx 0.027 \%
$$

- A / Q resolution

$$
\left(\frac{\Delta A / Q}{A / Q}\right)^{2}=\left(\frac{\Delta B \rho}{B \rho}\right)^{2}+\left(\gamma^{2} \frac{\Delta \beta}{\beta}\right)^{2}
$$

Standard D-double M-half

$B \rho$ resolution	0.021%	0.010%	0.015%
β resolution $\left(x \gamma^{2}\right)$	0.027%	0.027%	0.027%
A / Q reso. (est.)	0.034%	0.029%	0.031%
A / Q reso. (exp.)	0.035%	0.028%	0.034%

Matrices (experiment \& design value)

- Experiment

- Design

Standard
D-double
M-half
$M_{35}=\left(\begin{array}{ccc}0.9206 & 0 & 31.687 \\ -0.0243 & 1.0863 & 0 \\ 0 & 0 & 1\end{array}\right) \quad M_{35}=\left(\begin{array}{ccc}0.9206 & 0 & 63.374 \\ 0.0388 & 1.0863 & 0 \\ 0 & 0 & 1\end{array}\right) \quad M_{35}=\left(\begin{array}{ccc}0.4603 & 0 & 31.687 \\ -0.0137 & 2.1725 & 0 \\ 0 & 0 & 1\end{array}\right)$
(Reference)

- COSY calculation (folded method for Enge function, FR5 for fringe mode)

Standard	D-double			M-half
M_{35}	$=\left(\begin{array}{ccc}0.8189 & -0.3434 & 31.34 \\ 0.0180 & 1.213 & -0.296 \\ 0 & 0 & 1\end{array}\right)$			

0.0185 \& 1.112 \& -0.400

0 \& 0 \& 1\end{array}\right) \quad M_{35}=\left($$
\begin{array}{ccc}0.4233 & 0.165 & 30.95 \\
0.0421 & 2.378 & -0.325 \\
0 & 0 & 1\end{array}
$$\right)\)

Momentum and angular acceptance

- Beam spreads are cut by the acceptances of each mode ($Z=48$ - 54 nuclei)

D-double

M-half

- Consistent with the calculation.
- Standard mode
- Both momentum and angular acceptances are wide.
- D-double mode
- Both acceptances are cut.
- M-half mode
- Angular acceptance is small. Momentum acceptance is relatively wide.

Case 2. ${ }^{136}$ Sn test experiment (F3-F5-F11)

$$
\left(\frac{\Delta A / Q}{A / Q}\right)^{2}=\left(\frac{\Delta B \rho}{B \rho}\right)^{2}+\left(\gamma^{2} \frac{\Delta \beta}{\beta}\right)^{2}
$$

	Case 1	Case 1	Case 2
	Standard F3-F5-F7	D-double F3-F5-F7	D-double F3-F7-F11
$B \rho$ resolution	0.021\%	0.010\%	0.010\%
β resolution (x^{2})	0.027\%	0.027\%	0.013\%
A / Q reso. (est.)	0.034\%	0.029\%	0.017\%
A / Q reso. (exp.)	0.035\%	0.028\%	???

- D-double mode was used.
- The flight-path for the PID was F3 to F11. \rightarrow The TOF resolution is doubled.
- The transfer matrix from F7 to F11 is identity matrix.
- The BigRIPS settings were the same with the case 1 except the F7 slit (+/-18 $\rightarrow+/-50 \mathrm{~mm})$.

PID and A / Q resolution

Sn isotopes (gated on Pla Q)

	Standard (F3-F5-F7)	D-double (F3-F5-F7)	D-double (F3-F5-F11)
A/Q resolution	0.035%	0.028%	0.020%

- The A / Q resolution of the D-double mode in F3-F11 was 0.020%.
- Potentially, the resolution of this mode should be about 0.017% which is the half of the one of the standard mode in F3-F7.
- Higher terms of the transfer matrices may affect to the resolution.

Case $3 .{ }^{87} \mathrm{Zn}$ exp. for mass measurement

- Physics motivation of the experiment (proposed by A. Estrade)
- Mass (and beta-decay spectroscopy) of Zn to Kr isotopes, around $N=56$.
- This region corresponds to ther-process flows through mass $A \sim 90$.
- Settings
- Central particle: ${ }^{87} \mathrm{Zn}^{30+}$
- B $\rho 01: 7.880$ Tm, B $12: 7.777$ Tm, B $\rho 35: 7.757$ Tm, B $\rho 57: 7.749$ Tm
- F1deg: 1 mm , F5deg: none
- Target: 2 mm
- F1: $-0.61 /+1.54 \%$, F2: $+/-7 \mathrm{~mm}$,
F5: -0.48/+1.44\%, F7: +/-12 mm

For reference setting (stable side)

- Target: 4 mm
- F1: $-0.23 /+0.42 \%$, F2: $+/-7 \mathrm{~mm}$, F5: $-0.19 /+0.36 \%$, F7: $+/-12 \mathrm{~mm}$
For neutron-rich setting

Case 4. High-Z test experiment

- Settings

- Center particle: ${ }^{208}{ }_{86} \mathrm{Rn}^{84+, 86+, 84+, 84+}$
- Target: 3 mm , F1deg: 2 mm , F5deg: 1 mm
- B $\rho 01: 6.475$ Tm, B $\rho 12: 5.571$ Tm, B $\rho 35: 5.634$ Tm, B $\rho 57: 5.083$ Tm
- F1: $+/-0.70 \%$, F2: $+/-10 \mathrm{~mm}$, F5: $+/-0.63 \%$, F7: $+/-30 \mathrm{~mm}$

T. Sumikama et al., Accel. Prog. Rep. 49 (in printing)
- Many charge states are observed. The D-double mode helps the separation of nuclei.

Rn isotope

Summary

- Two high -resolution modes were made.
- High-resolution D-double mode : M_{35} remains, D_{35} is doubled.
- High-resolution M -half mode $: \mathrm{D}_{35}$ remains, M_{35} is halved.
- Mass measurement, Separation of isotopes around $A / Q=3$, high- Z region, etc...
- Momentum and angular acceptances of the high-resolution modes are smaller than the ones of the standard mode.
- Standard mode : +/-3\%, +/-40 mrad
- D-double mode : +/-1.5\%, +/-25 mrad
- M-half mode : +/-2.5\%, +/-20 mrad
- Experiments
- ${ }^{136}$ Sn test experiment in F3 to F7 (Standard, D-double, M-half)
- ${ }^{136}$ Sn test experiment in F3 to F11 (D-double)
- ${ }^{87} \mathrm{Zn}$ experiment for mass measurement in F3 to F11 (D-double)
- High-Z ($\left.{ }^{208}{ }_{88} \mathrm{Ra}^{86+}\right)$ test experiment in F3 to F7
- Achieved A / Q resolutions (experiment) are
- 0.035% for the Standard mode (F3-F5-F7).
- 0.028\% for the D-double mode (F3-F5-F7).
- 0.020% for the D-double mode (F3-F5-F11).
- D-double mode is suitable for heavy-nuclei $(Z>70)$ secondary beam from ${ }^{238} \mathrm{U}$, because the beam has small spreads in momentum and angle.

