Online Separator Optimization

Matthew Amthor

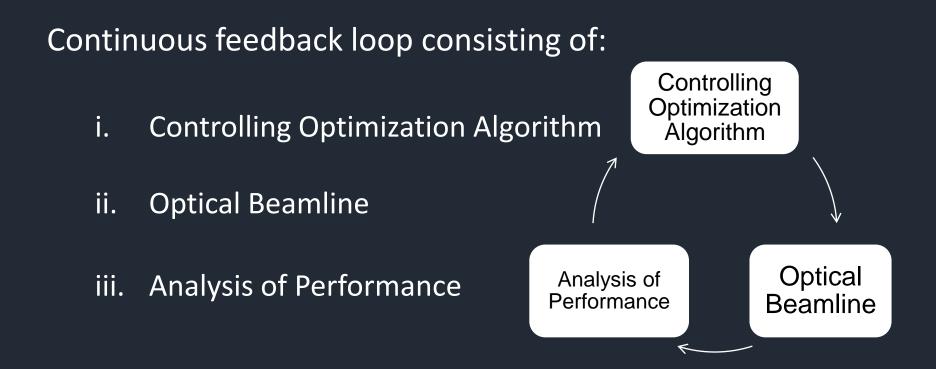
Department of Physics and Astronomy, Bucknell University

Fragment Separator Expert Meeting Grand Rapids, MI 30 August – 1 September 2016

Typical Separator Tuning Approach: Model-based with manual tweaks

Process:

- · Create a detailed computer model of the fragment separator
- Optimize model to find ideal setting (challenging, esp. in higher orders)
- Adjust beamline to match this setting (frustrated by inconsistencies)
- Manually tweak elements until the system operates as desired
- Or, iterate the model, or model-based perturbative tuning

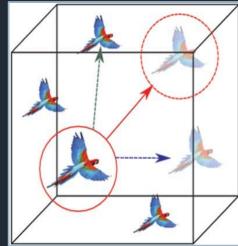

Downsides of this approach:

- Requires months of intensive work
 - Model development, improvement, application: man hours, facility time, and computing resources
 - Tune development in system: man hours and beam time
- Results in sub-optimal tune (model discrepancies)

Online optics optimization goals

- Develop an automated, on-line optimization approach
 - Largely model independent \rightarrow little effort to make ion optical models
 - Less time spent tuning \rightarrow more time available for physics
 - Improve optical tunes \rightarrow more physics per unit time
 - Make it feasible to develop more specialized tunes
 → different physics possible or more physics per unit time
- Has been done elsewhere before, but not with highresolution separators.
- Develop to prepare tunes for recent & new largeacceptance, high-resolution systems
- Drawbacks:
 - Optimization must run on the system itself (no cluster/parallel)
 - Limited number of trial solutions possible (reliability is key)

On-line Optimization Approach

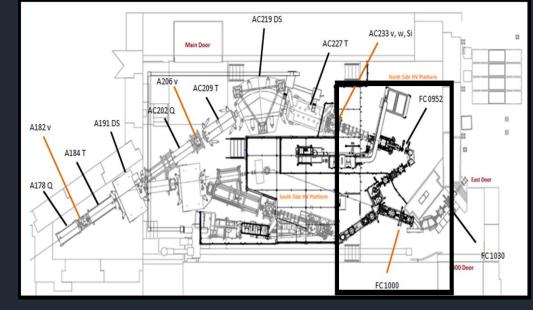


Particle Swarm Optimizer

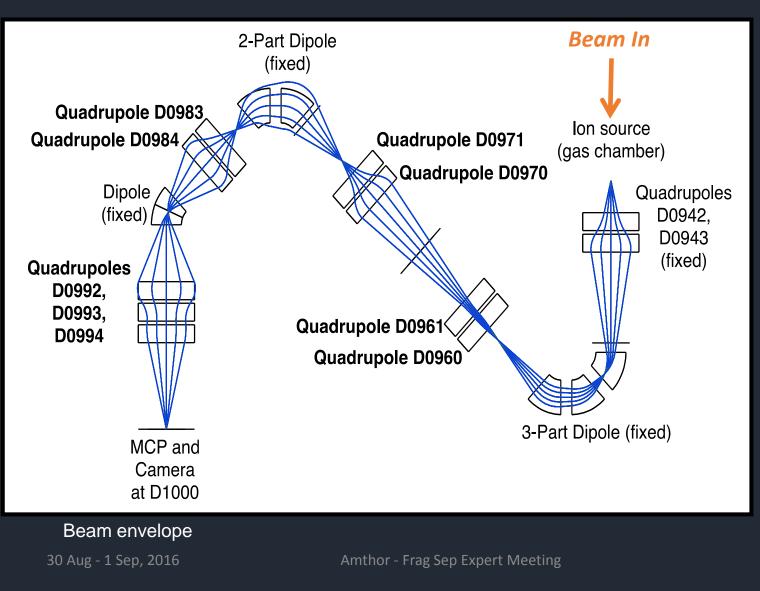
- The optimizer used for higher order tunes of S³ and ARIS
- Based on swarm intelligence of animals and insects
- Initialize swarm of "particles" in parameter space with random position and velocity distribution

particle position vector = optical tune $\langle Q_1, Q_2, ..., Q_N, S_1, ..., S_N, O_1, ..., O_N \rangle$

- Particles 'remember' and accelerate toward the location of:
 - The particle's own personal best
 - The swarm's global best


Kennedy, J.; Eberhart, R. (1995). "Particle Swarm Optimization". Proceedings of IEEE International Conference on Neural Networks IV. pp. 1942–1948.

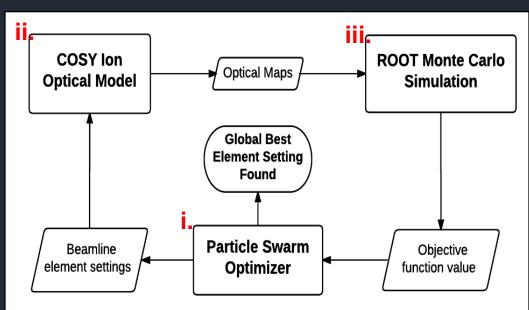
Our Initial Test: NSCL D-line, July 2015


Ideal for a first test

- Relatively low cost of operation
- Relatively simple optical system
- Rapidly tunable electrostatic elements (full range <1 second)

Incoming beam line from transfer hall with the D-Line boxed

D-Line Optical System

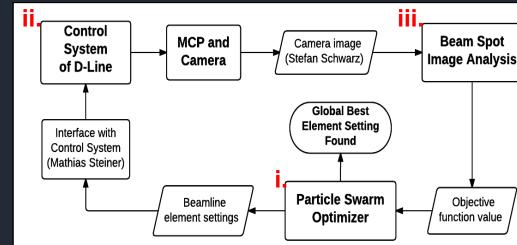

COSY Infinity Version 9.1: K. Makino, M. Berz, Nuclear Instruments and Methods A558 (2005) 346-350.

Portillo, M. Report on recalculation of Low-E beam lines, NSCL (2015). 7

Computer Simulations Test of the Experimental Approach

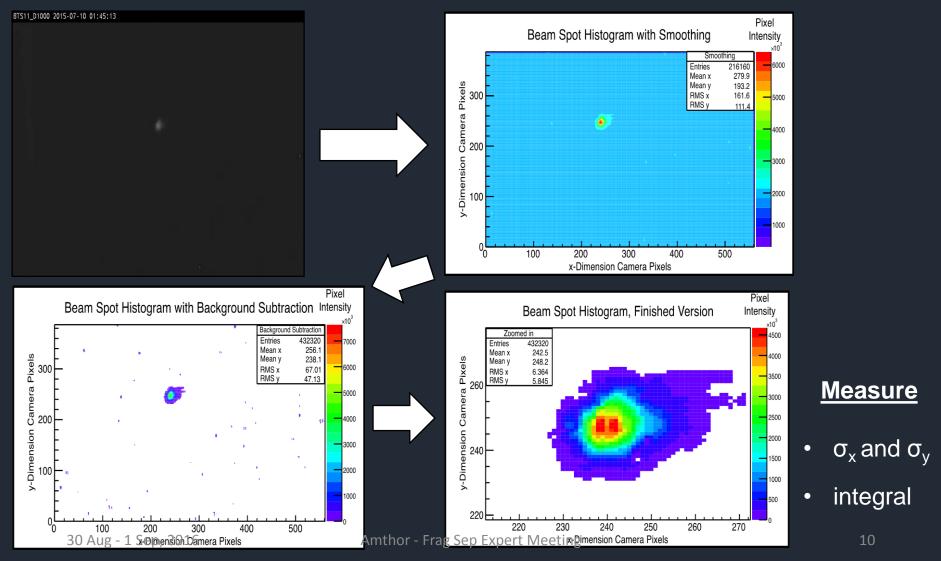
Continuous feedback loop consisting of:

- i. Controlling optimization algorithm
- ii. COSY model of beamline
- iii. Monte Carlo simulation



Test Experiment on NSCL D-Line (Summer 2015)

Goal: Test on-line optimization approach; reduce spot size (waist) while preserving transmission


Continuous feedback loop consisting of:

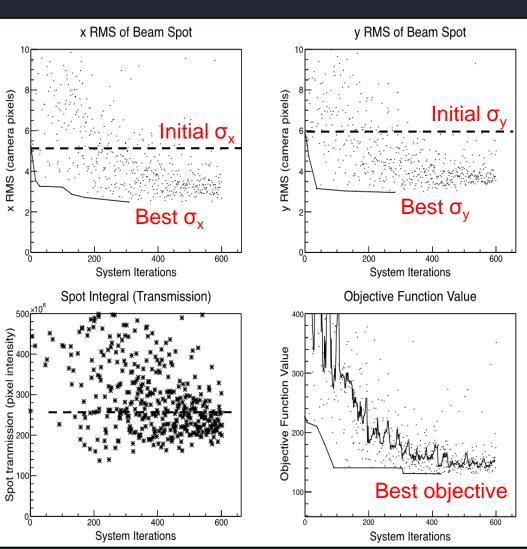
- i. Controlling optimization algorithm
- ii. Electrostatic D-Line

iii. Image analysis of beam spot after MCP/Camera

Automated Beam Spot Analysis MCP \rightarrow Phosphor Plate \rightarrow Camera

Objective Function Definition

$$Obj = 20\sigma_x + 20\sigma_y + |\sigma_x - \sigma_y|$$


Objective function definition (quality measure) used in experimental runs (smaller is better)

 If transmission drops significantly (transmission threshold), objective function value is penalized (increased)

$$Obj_{new} = Obj_{old} \left(\frac{T_{Threshold}}{T_{Actual}}\right)$$

Results of Experiment (Run 12)

- Significant decreases in σ_x and σ_y over two hour period
 - Initial $\sigma_x = 5.2$ pixels
 - Best Tune $\sigma_x = 2.8 \text{ p}$
 - Initial $\sigma_v = 5.9 \text{ p}$
 - Best Tune $\sigma_y = 3.4 \text{ p}$
- Transmission preserved, up to 90% of initial intensity (integrated pixel intensity)

Amthor - Frag Sep Expert Meetin $@bj = 20\sigma_x + 20\sigma_y + \left|\sigma_x - \sigma_y\right|$ 12

Experimental Runs of Optimizer

- Several experimental optimization runs (~2 hours each)
- Tuning nine quadrupoles with transmission requirement

Run	Run Time (min)	Total Trial Tunes	Plot Colors	Swarm Solutions	Field Start Width (+/-)	Velocity Start Width (+/-)	Accel. and Inertia †	Trans. Thresh.	Random Gen. Seed	σ _x spot change %-diff	σ _y spot change %-diff
9	112	526	Red	15	25V Gaus	25V Unif	1.4, 0.8	0.60	1	-43%	34%
10	78	385	LtGreen	15	40V Gaus	40V Unif	1.6, 0.6	0.75	1	-36%	29%
11	103	494	Blue	15	40V Gaus	40V Unif	1.5, 0.7	0.90	1	-23%	29%
12	123	602	Pink	30	80V Gaus	80V Unif	1.5, 0.7	0.90	1	-47%	42%
13	115	421	Cyan	30	80V Gaus	80V Unif	1.5, 0.7	0.90	20000	-23%	38%
14	165	561	Green	30	300V Unif	100V Unif	1.5, 0.7	0.90	1	-26%	30%

Table: Production run details.

†Trelea, I.C. (2003). "The Particle Swarm Optimization Algorithm: convergence analysis and parameter selection". Information Processing Letters 85 (6): 317–325.

Experimental Runs of OptimizerRun 12Run 13

BTS11_D1000 2015-07-10 03:35:27

BTS11_D1000 2015-07-10 01:13:45

Identical optimizer parameters, different random seed (for random number generation) for run 13

30 Aug - 1 Sep, 2016

Amthor - Frag Sep Expert Meeting

Visualizing the swarm:

Element setting plots of nine quadrupoles over different runs (dashed = initial setting)

<u>Key</u>: Run 9

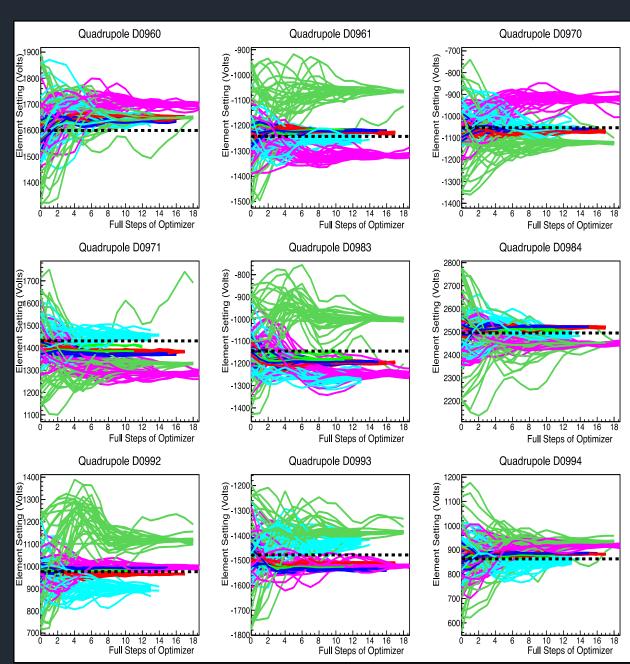
small region, slow convergence **Run 10**:

faster convergence

Run 11

mid-convergence rate

Run 12:


larger start region, more swarm particles

Run 13:

same as run 12 with different random numbers

Run 14:

large start region (quasi-global)

Amthor - Frag Sep Expert Meeting

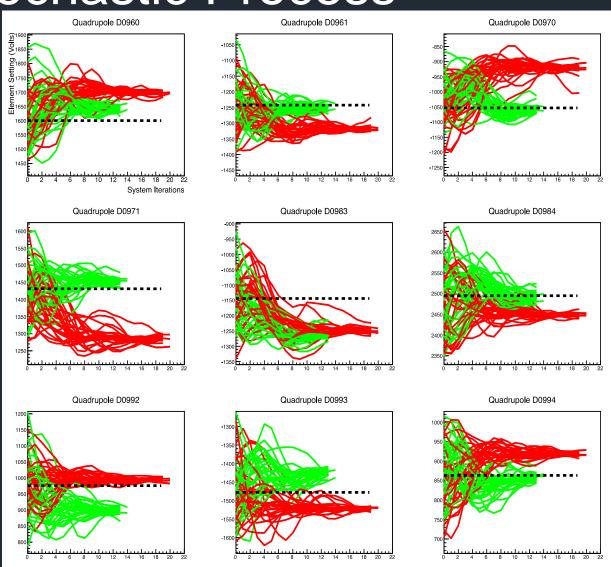
D-Line Experiment: Summary

- Over several runs the experimental optimizer succeeded:
 - Significantly decreased beam spot size,
 - Roughly x2 in both dimensions, thus x4 in spot area.
 - Preserved transmission
 - Found new, unique tunes away from the initial tune
 - Successful in local (small) and quasi-global (large initialization ranges)

Large separators will be more challenging... How do we "ensure" success?

A Stochastic Process

Tune evolution for Run 12 and Run 13.


> Run 12 Run 13

Same optimization but different random initialization (and beam fluctuations)

Different results

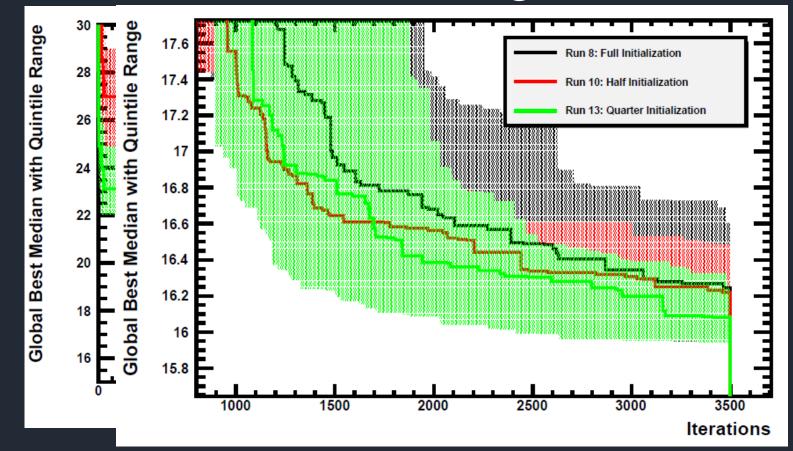
Different performance

30 Aug - 1 Sep, 2016

Amthor - Frag Sep Expert Meeting

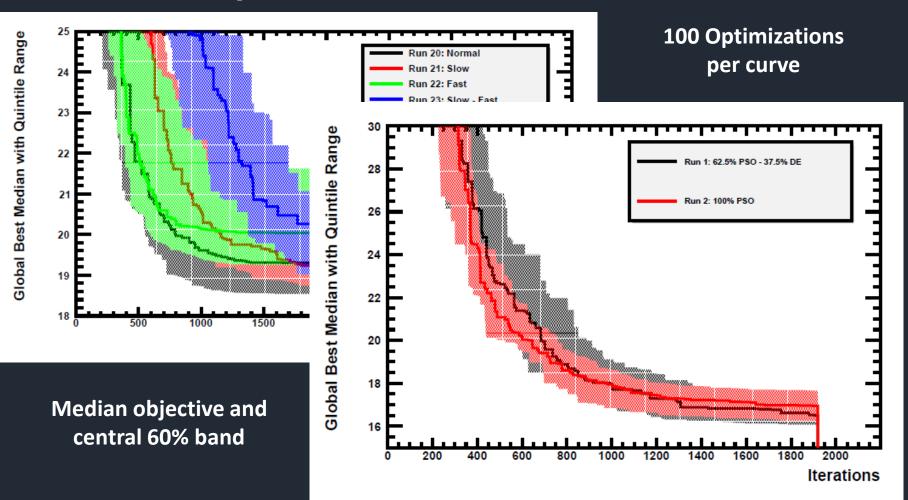
Hybrid Algorithm

Goal: Improve the performance of the optimizer

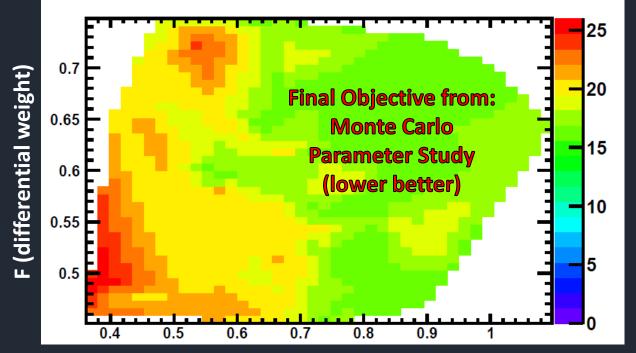

- Define Performance:
 - Production of good tunes
 - RELIABLE production of good tunes (unlikely to fail)
- Hybrid Particle Swarm & Differential Evolution
 - Both act by evolving a population of solutions

Differential Evolution

For some swarm solution \vec{x} , replace the components, x_i , (with probability C_r) with new values $a_i + F(b_i - c_i)$, where \vec{a} , \vec{b} , and \vec{c} are other solutions (randomly selected) from the swarm.


Develop based on <u>A1900 3rd order optimizations</u> (quad + sext)

Performance & Reliability Initialization Range



Best not to initialize multipoles over full available strength.

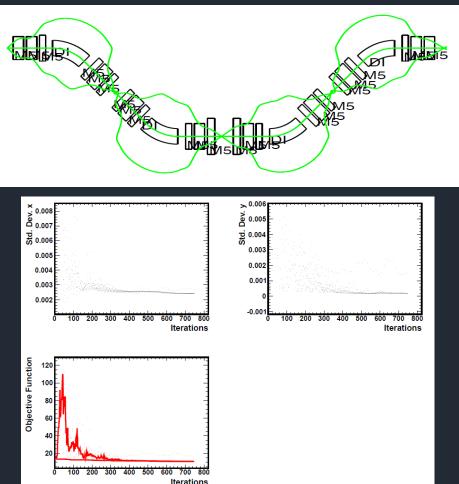
Performance & Reliability Optimizer Parameters

Performance & Reliability Coupled Parameter Analysis

Inertia

Hybrid optimizer has more internal parameters:

2 – Particle Swarm Acceleration, Inertia


- 2 Differential Evolution
- Diff. weight, Cross. Prob.

1 – Coupling Steps per A/B

Summary & Outlook

- First experimental test was a success.
- For slower-tuning magnetic systems. (e.g. A1900, quadrupoles ~10 seconds, sext & oct faster) analyze histograms rather than images.
- Simulations are underway to study the case of the A1900 in higher order optimizations.
 - Take data while retuning and analyze all intermediate tunes
 - Hybrid algorithm development to reduce failure rate. (optimize the parameters)
- Preliminary conclusion: Higher order optimization of modern, large separators is feasible with a good chance for success in runs on the timescale of 8 hours.
 - First order tunes would be faster
 - Local optimizations would be faster

Early A1900 simulated 1st order optimization

Acknowledgments

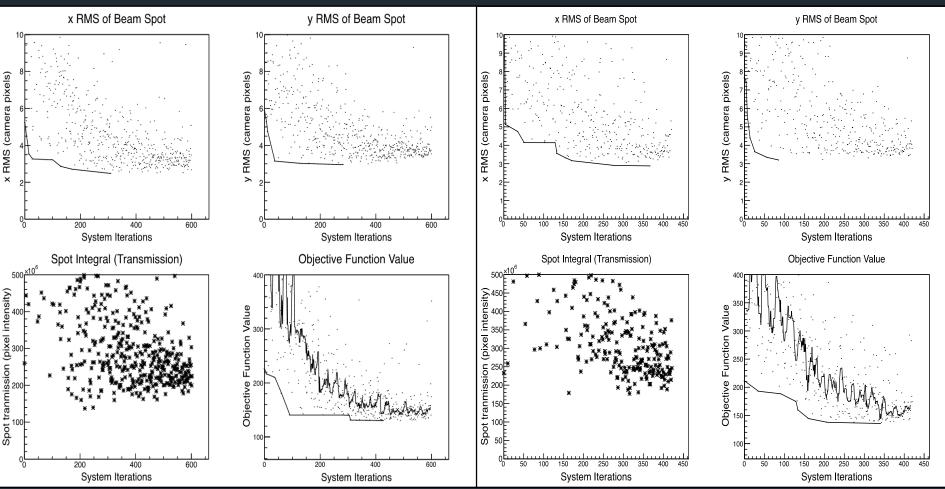
Collaborators:

Zach Schillaci¹, Dave Morrissey², Mauricio Portillo³, Stefan Schwarz², Mathias Steiner², Antonio Villari², Chandana Sumithrarachchi²

²National Superconducting Cyclotron Laboratory, East Lansing, MI, USA ³Facility for Rare Isotope Beams, East Lansing, MI, USA

Funding:

NSF REU Grant #PHY-1156964, Department of Physics and Astronomy at Bucknell University NSF Grant #PHY-1102511, National Superconducting Cyclotron Laboratory at Michigan State University.

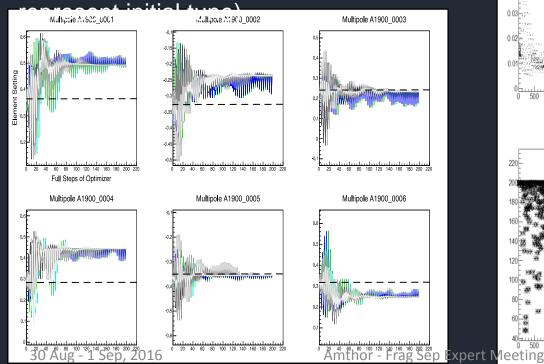

With particular thanks to Zach Schillaci for the slides.

Issues with measuring Transmission

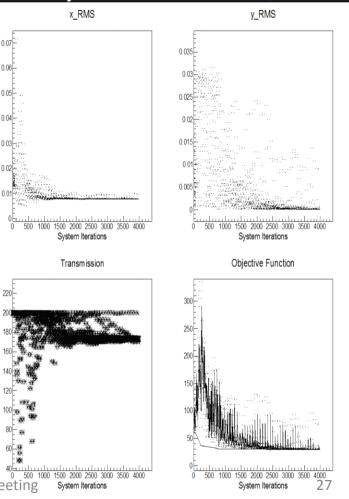
- Beam spot image has tendency to dim even though transmission is not lost
 - Camera may automatically adjust based upon saturation as beamline is focused
 - Focusing beam spot wears out MCP (micro-channel plate)
- MCP and camera not ideal detectors for measuring transmission

Run 12 and Run 13 Comparison Run 13

Run 12



Amthor - Frag Sep Expert Meeting


A1900 Computer Simulation Results

Results of a successful optimization run on model of A1900

Beam element settings plots of six optimized quadrupoles (dashed lines

Plots of σ_x and σ_y , transmission, and objective function value

Particle Swarm Optimizer

Equations of motion for swarm particles

$$v_{i,n} = av_{i,n} + b\left(rand()(x_{i,n} - pbest_{i,n}) + rand()(x_{i,n} - gbest_n)\right)$$

$$X_{i,n} = X_{i,n} + V_{i,n}$$

b = Acceleration coefficient

- Inertia drives in direction of current velocity
- Acceleration drives towards personal and global best

Objective Function Definition

Transmission Penalty

 $Objective \ Function \ = \ Objective \ Function \times \left(Transmission \ Fraction \times \frac{Initial \ Transmission}{Current \ Transmission} \right)$

If transmission drops below set fraction of initial transmission, objective function value is penalized by the ratio