

End-to-end rare isotope beam and particle ID simulations for FRIB

Mauricio Portillo

Fragment Separator Expert Workshop

Grand Rapids, Michigan

August 30 - September 1, 2016

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

Introduction

- End-to-end simulations to predict transmission and purity
 - Field analysis techniques are being applied to determine the best parameters to use in the beam physics code
 - Description of optics and some examples of difficult cases
- Particle identification (PID) techniques are needed for positive identification of desired product(s)
- Simulations tools adopted for FRIB
 - LISE/COSY model: **ARIS and HEBT** (high energy beam transport lines)
 - Monte Carlo methods to simulate PID

» Deduce detector requirements needed for difficult cases

Simulations start at target of ARIS separator

- Up to three stage fragment separator
 - vertical preseparator consists of new magnet designs
 - C-bend layout of existing A1900 magnets

Simulations needed up through HEBT up to end stations

- Beams are distributed to various devices
 - The baseline layout uses all of the existing NSCL beam lines » Examples to stopping station (N4S) and S800 object will be shown
 - · Considering future additions or upgrades

Optics through preseparator section: Order 1

- Designed to have momentum compression in standard operational mode
 - Compression factor k=3.5 requires wedge d/R~0.2
 - Using special version of COSY 9.1 with ATIMA to emulate degrader effects

Preseparator higher order optics with corrections

- Simulated field parameters have been included into COSY model
 - All preseparator magnets are new designs for FRIB project » Most focusing magnets have nested sextupole and octupole excitation coils
 - Field analysis used to extract magnet parameters from TOSCA field simulations
 - Parameters include up to 5th order terms

Induced *n*=6 terms from quadrupole included in simulations, Portillo NIMB 376 (2016) 150.

Postseparator optics

- Preseparator (or C-Bend) can operate in single- or two-stage separation modes
 - Two-stage provides full acceptance from preseparator (with compression)
 - Single-stage (illustrated below) has higher resolving power at reduced acceptance

Example of Monte Carlo End-to-end Simulation in Higher Order:

LISE++ Monte Carlo simulation using 5th order maps from COSY

۲ [mm]

X [mm]

Using two-stage C-Bend mode for fragment with large phase space

Challenging cases for FRIB: Large phase space products

End-to-end simulations show good transmission through fragment separator but some transmission losses in existing beam lines

Challenging cases for FRIB: Charge exchange losses

- Unavoidable losses from charge exchange limit the achievable transmission for high-Z fragments at FRIB energies
 - Optimizing degrader thicknesses can help reduce losses in some cases

Example: 202 AMeV ²³⁸U -> d/R=0.25 carbon target -> ²⁰⁰W -> d/R=0.2 wedge1 -> d/R=0.34 wedge2 -> S800obj

Challenging cases for FRIB: ²³⁸U fission products

- Fission products from ²³⁸U offer a special challenge
 - Phase space of all products are large
 - Selecting optimum Brho setting requires extra considerations

Simply using peak method of optimum Brho

In-Flight PID for FRIB Fundamentals

- Event based tagging at detectors is needed
 - *TOF-Bp-\Delta E* method

$$B\rho = \frac{A}{Q} \frac{uc^2}{ec} \beta \gamma$$

$$\beta = \frac{S}{t \cdot c}$$

S = path length t = time of flight (TOF) $\gamma^2 = 1/(1 - \beta^2)$

- Momentum tagging is necessary
 - Large $\Delta p/p$ acceptances ARIS $\pm 5\%$ BigRIPS $\pm 3\%$ SuperFRS $\pm 2.5\%$

 $B\rho$ determined from position measurement at large dispersive plane

 $\frac{A}{a}$ is solved for, then A, Z, Q need to be resolved

• ΔE needed for determination of Z

Useful current example in literature

PID case considered here

- Similar to BigRIPS method. Apply to ARIS separator layout
 - Have used a fragmentation case to demonstrate resolving of overlapping of products due to charge-exchange effects

218 MeV/u ¹⁶⁰Gd -> 1.8 mm C (d/R=0.23)

-> ¹⁵²Ce₅₈₊ 5.38 T-m 4.5% dp/p -> 4.90 T-m **CB-4000** -> 1.2 mm Al wedge -> 4.35 T-m

Adopted method for Bp determination

- Use 1st order approximation for $B\rho$ determination
 - Assuming negligible spot size at object position

$$B\rho_1 \approx B\rho_{r,1} \left(1 + \frac{x_1}{(x|\delta)_1} \right)$$

» $B\rho_{r,1}$ is the set spectrometer rigidity before wedge » $(x|\delta)_1$ is momentum dispersion at wedge position

- Validity of this approximation
 - Poor resolution results if higher order effects are not well corrected
 - Otherwise, trajectory reconstruction methods are needed to compensate for aberration effects
 » Demonstrated by Fukuda et al.

Adopted method for Z determination

 Use Z extraction from ΔE prescribed by Fukuda et al. using the Bethe form of energy loss

$$\frac{dE}{dw} = \frac{4\pi e^4 Z^2}{m_e c^2 \beta^2} N z L_B$$

$$L_B = \ln \frac{2m_e c^2 \beta^2}{I} - \ln(1 - \beta^2) - \beta^2$$

S. Ahlen, Rev. Mod. Phys., vol. 52, p. 121, 1980.

• In the approximation that change in β is small over the thickness w

$$Z = k_c D \beta \sqrt{\frac{\Delta E}{L_B \Delta w}}$$

- *I* =mean ionization potential; adopted values from ATIMA at β =0.5
- k_c is a correction factor
- Δw is material thickness
- $1/D^2 = N \times 5.131 \times 10^{-19}$ [*eV* · *cm*] in CGI units
- N = electron density in material

Q state identification method

Total kinetic energy K can help deduce A and Q

$$A = \frac{K}{uc^{2}(\gamma - 1)} \qquad Q = \frac{A}{B\rho} \frac{uc^{2}}{ec} \beta \gamma$$

- Requires stopping of products in E-loss detectors and
- Careful calibration of each detector layer (e.g. each layer from Si telescope)
- Here, we assume *K* is unknown and instead,
 - Rely on accurate *TOF* (i.e. β) measurement(s)
 - Use high resolving power to enhance A/Q (i.e. $B\rho$) resolution
 - Untangle A and Q without depending on K measurement

$$\Lambda = \frac{A}{Q} = \frac{B\rho}{\beta\gamma} \frac{ec}{uc^2}$$

Situation when accurate Bp is not known

"World without Bp correction"

- Assuming perfect ∆E and TOF detectors
- Positive identification is difficult at higher Z
 - Example of setting with ¹⁵²Ce₅₈₊ (Z=Q) centered
 - ${}^{148}Ce_{57+}$ (Z=Q-1 at target)

PID based on determined $B\rho$ and β

- Simulations with the adopted PID method shows that good Q-state separation is possible
 - Ideal simulation is based on time-of-flight (*TOF*) and Δ*E* detectors with perfect resolution (i.e. zero sigma uncertainty)
 - Assuming perfect position resolution of **tracking** detectors at degrader and focalplane positions to determine $B\rho_1$ and $B\rho_2$

Effect of TOF resolution [1]

- Simulated A/Q histograms for three different detector intrinsic TOF resolution values (sigma)
 - products at Z=58
 - Adopt figure of merit as separation between ¹⁴⁸Cs₅₇₊ and ¹⁵¹Cs₅₈₊

Effect of TOF resolution [2]

Trend of Z and A/Q resolution versus TOF resolution

σ _t (ps)	σ_Z/Z	σ_{Λ}/Λ
0	0.185%	0.054%
20	0.185%	0.055%
40	0.186%	0.060%
50	0.187%	0.064%
60	0.187%	0.068%
80	0.189%	0.077%
100	0.191%	0.087%
150	0.197%	0.117%
200	0.206%	0.148%

Portillo, Slide 21

Effect of ΔE resolution [1]

- Simulated Z histograms for three different *intrinsic* ΔE detector resolution values (sigma)
 - For figure of merit, include all products for FP slits at ± 25 mm

Effect of ΔE resolution [2]

• Trend of Z determination versus ΔE detector resolution

Effect of position resolution

 Trend of Z and A/Q determination versus x resolution at wedge and FP positions

σ_{x} (mm)	σ_Z/Z	σ_{Λ}/Λ
0	0.185%	0.054%
0.5	0.185%	0.055%
1	0.185%	0.059%
1.5	0.186%	0.064%
2	0.187%	0.072%
3	0.188%	0.089%

Tracking detectors $S_f = 1.000$ m, DP detectors $S_f = 0.431$ m, FP detectors

Summary of effects

- σ_E has by far the strongest effect on Z resolution
 - The next strongest effect is σ_t
 - Conclusion:

dE resolution effect

0.55%

0.50%

0.45%

0.40%

0.35%

0.30%

σZ/Z

Limit

» σ_E is critical to Z resolution and having $\frac{\sigma_E}{E} < 0.5\%$ is important

• σ_t has the strongest effect on A/Q resolution

(Relative to $\sigma_x \sim 1$ mm and $\sigma_t \sim 50$ ps)

- Conclusions:
 - » Timing resolution is critical to mass resolution
 - » Relying on higher order tracking may impose more dependence on position resolution

A/Q affects Q identification the most

Conclusions

- End-to-end simulations are ongoing for FRIB
 - using the latest field parameters for all (existing and future) magnets
- Have simulated the performance of diagnostics in separators
 - Relies on postseparator (C-bend) for TOF-Bp- ΔE method
 - Demonstrated that adequate Q-state resolution is feasible
- Adopted an in-flight PID scheme that can be used by experimenters
- Have determined resolution specifications for the detectors
 - Based on difficult PID cases expected at high Z
 - Specifications are challenging but have been shown to be achievable
- More accurate trajectory reconstruction methods can be considered to improve PID resolution
 - Example: Tracking detectors at preseparator focal plane position

