

Super-FRS detectors (with emphasis on silicon)

Oleg Kiselev GSI Darmstadt

Requirements to the PID detectors

Clean full PID on event-by-event basis

- \rightarrow momentum tagging $\Delta x \sim 1$ mm
- \rightarrow ToF measurements Δ ToF \sim 100ps (FWHM)
- \rightarrow charge resolution $\Delta Z \sim 0.2e$

Monte Carlo simulations (MOCADI)

Yields not scaled

Increasing intensity of produced radioactive beams requires detecting system with high-rate capability

C. Nociforo, NUSTAR Week 2015

Particle detectors for Super-FRS

Segmented plastic scintillator (ToF) Partner: IFJ Krakow

Twin GEM-TPC (x, y) Partner: Helsinki IP

Silicon (ToF, ΔE) Partner: **IOFFE PTI St.** Petersburg

 $Z \leftarrow -dE / dx = f(Z, \beta)$ atomic number

 $A / Q = \frac{B \rho}{\gamma \beta m_u}$ $Z \neq Q$ charge state

 $B\rho - ToF - \Delta E$ method

Triple MUSIC

 (ΔE) Partners: CEA, Helsinki IP

Other diagnostics (ToF, intensity, x, y)

C. Nociforo, NUSTAR Week 2015

Mounting and handling of the detectors at Super-FRS

- In preseparator only robot handling
- In main separator only standard ports and connections

Twin GEM-TPC

Coordinate Measurement Size 200x70x30 mm Ar/CO₂ gas, 1 bar

GEMEX readout for the coordinates, position resolution – 100-150 μ m

Twin GEM-TPC

MUSIC for energy loss measurement

Comparison of TUM vs TEGIC prototype

March 2014

- anodes: 30° tilted and 'segmented'
- P10 gas at 1 atm
- readout FEBEX3a (ADC pipeline)

 Z resolution comparison in the Sn region at 700 MeV/u

 $\Delta Z_{\text{TUM}} \sim 0.8 \; \Delta Z_{\text{TEGIC}}$

S. Maurus, R. Gernhäuser et al., GSI report (2014)

C. Nociforo, NUSTAR Week 2015

TOF measurement at Super-FRS

- TOF stations FMF2, FLF2, FHF1, FRF3
- Ion rate up to 50 kHz per cm²
- Time resolution 20-35 ps (σ)

TOF scintillator detector

- 51 strips, 4.4 mm wide
- BC420 scintillator
- PMT Hamamatsu R9880U-01
- Time resolution ~70 ps
- Development on the basis of existing detectors at FRS
- Higher segmentation to reduce an occupancy
- Faster electronics
- Detector for a Low Energy Branch (HISPEC/DESPEC)

TOF scintillator detector

First tests at GSI with Xe @ 600 MeV Data analysis in progress

Motivation: Cherenkov Radiation

Cherenkov radiation (ChR) – is an electromagnetic radiation emitted when a charged particle passes through a medium at a velocity greater than the phase velocity of light in that medium: v > c/ is emitted at a specific angle \mathcal{P}_c with respect to the strait-line trajectory (or to velocity direction).

Cherenkov angle: $\theta_c = \arccos \frac{c}{nv} = \arccos \frac{1}{\beta n}$

The number of Cherenkov photons created at threshold velocity $\beta = \frac{1}{n}$

$$\Delta N_{Ch.p} = \frac{2\pi}{137} z^2 \int_{\lambda_1}^{\lambda_2} (1 - \frac{1}{n(\lambda)^2 \beta_0^2}) \frac{d\lambda}{\lambda^2} \Delta x$$

(including energy loss in the radiator)

Altapova V.R., Bogdanov O.V., Pivovarov Yu.L., NIM B 256 (2009) pp.109-113

Cherenkov light is a prompt event and therefore ideal for timing

At Super FRS @ FAIR:

heavy ions at E=100 MeV/u÷1.5 GeV/u $\rightarrow \beta$ =0.4295 ÷ 0.9237

Required material with high reftactive index n!

Material for Cherenkov Radiator: Solid, Liquid or Gas?

Pro

1000

0

1.5

2.0

Refractive index, n

Solid:

n (Ar)

- Manufacture with difference dimensions
- High transmission of Cherenkov photons: (> 90% for SiO₂) in UV range

Liquid:

- High number of Cherenkov photons
- easy to refresh via circulation to prevent degradation of the performance
- operation under room temperature
 - low cost

Gas:

- High number of Cherenkov photons
- easy to refresh via circulation to prevent degradation of the performance
- Small energy loss

Contra

Solid:

Particle rate resistance, Cooling system required

Liquid:

With > n increases toxicity, presence of color centers and viscosity

Gas:

- very low refractive index: n_{tvn} =1.0003 (β ≈0.99)

• Pressure dependency of n Projectile Fragment Experts' Workshop, 30.08-01.09.2016, MSU, USA

3.0

— index n

2.5

Prototype Design

TOF Measurements with ¹²⁴Xe ions

Diamond detectors for TOF

February 2014

First test of (E6) pcCVD-DD samples at ACCULINNA separator with 40.5 MeV/u ⁴⁰Ar beam

- 4 Al contacts, ΔE ~20-600 MeV (DBA amp, V_{in} < 50 mV)
- total rate 10¹¹ ions/cm² , test with α particles

August 2014 First ToF measurements at FRS with 900 MeV/u ¹⁹⁷Au beam with (E6) pcCVD-DD 20x20x0.3 mm³

- 16-strip design: (1x18) mm² each (0.15 mm gap), C = 4.3 pF/strip
- metallization: 50nm/100nm (Cr/Au) by photolithography (GSI-DL)
- PADI7, gain ~250, 4x4chs

C. Nociforo, NUSTAR Week 2015

Diamond detectors for TOF

Measured PADI/VFTX intrinsic time resolution: 15 ps (σ)

C. Nociforo, NUSTAR Week 2015

Si detectors in High Energy Physics

- FNAL. D0 & CDF
- BNL. STAR & PHENIX
- LHC. CMS, ATLAS, LHCb, ALICE
- AMS + other astrophysical experiments

Driving force of almost all Si detector developments

"Special" applications of Si detectors in nuclear physics

- Typically less precise position measurement 0.1 1 mm instead of 10 50 μm
- Precise energy loss measurement up to 0.5%
- Much higher dynamic range up to 1000 MIPs
- Less event rate
- Time measurement

Beam tests of Si TOF detectors at JINR

- Test of time resolution with fast electronics
- Check performance change under heavy irradiation
- Compare Si detectors with different topology

Experimental setup at JINR

- ACCULINA fragment separator after U400 cyclotron
- Scattering chamber/final focal place F4
- Trigger scintillator + MWPC (beam tracking)
- Full-size (40 cm²) Si detector tested
- Accumulated dose up 6*10¹² ions/cm²

Si detectors made in St. Petersburg, Russia

Experimental setup at GSI

- •S4 focal area of FRS
- 197Au @ 1 GeV/u beam
- DAQ 1: Fast current amplifiers/discriminators + FPGA TDC
- DAQ 2: Waveform digitizers (3.2 Gs/s and 5 Gs/s)

Example of the signal shapes

- Signals from U, Au ions can be digitized without amplification
- Digitized signals hold all information amplitude, charge, timing
- Sampling should be very fast 3-10 Gs/s due to a fast rise time (0.3 – 1 ns) Projectile Fragment Experts' Workshop, 30.08-01.09.2016, MSU, USA

Time resolution with the fast digitizers

- CAEN 5742, DRS4 chips inside, 12 bit ADCs
- CAEN 5743, SAMLONG chips inside, 12 bit ADCs
- Digitised waveforms ΔE , pile-up rejection possible
- Spline fitting, CFD method for time determination
- $\Delta T (TOF) = 13 \text{ ps} (\sigma)$ Projectile Fragment Experts' Workshop, 30.08-01.09.2016, MSU, USA O. Kiselev at al., GSI Scientific Report 2014 (2015) 137 Structure Structur

25

Event rate < 5 kHz

Time resolution with PADI/VFTX2

U beam @ 1 GeV GSI, FRS, Aug. 2014

- PADI current amplifier/discriminator (10-15 ps internal resolution)
- VFTX2 FPGA TDC 28 channels, 7 ps resolution, up to 1 MHz/channel
- Leading edge method with ToT measurement
- ΔT (TOF) = 18-20 ps (σ)
- Only possible method for high event rates

Time resolution with PADI/VFTX2

Xe beam @ 600 MeV GSI, Cave C, June 2016

Time resolution for Ar, Xe, Au, U beams down to 17 ps ToT useful for walk correction Energy measurement in addition to MUSIC²⁰⁰ Position resolution ~1 mm (strip size)

Projectile Fragment Experts' Workshop, 30.08-01.09.2016, MSU, USA

qdc_ToT_SSDA#8

Current generation in Si P-i-N detector at 300K, irradiated by Ar

Calculation of the signal amplitude Rising edge of

Simulated current pulses at different trapping time

Rising edge of current pulses ¹⁹⁷Au, E = 920 MeV/u Detector thickness -

Amplitude of the peak current I_p After 2.2*10¹¹ ions/cm² I_p at 1e¹² ions/cm² = 1 - Tr/Ttr = 1 -10% degradation -1ns/5ns = 0.8 (1ns - time of reaching
Projectile Fragment Experts' Workshop, 30.08-01.09.2016, MSU, USAreasonable agreement29

Si microstrip detectors for tracking of the fast ions and protons

- DSSDs, area 28 cm², 300 μm, 100 μm strip pitch
- Energy resolution ~ 1%
- Dynamic range from p to Fe
- Very low energy dissipation of FE electronics (VAHDR9 ASICs, IDEAS) work in vacuum without active cooling
- 1024 channels, multiplexed readout (event rate up to 10 kHz per detector)
- Position resolution ~40 μm for protons, ~15 μm for ions

Precise tracking + spectroscopy

S271, S388 experiments at FRS, tracking of ions + protons I. Mukha et al., PRL 99, 182501 (2007) I. Mukha et al., PRL 115, 202501 (2015)

- Si RICH correllation (AMS data)
- C, P, Ne + p tracking and identification
- Key to success of 2p-radioactivity and QFS experiments

Tracking and spectroscopy for the storage ring experiments

R&D and first experiments within EXL@FAIR project
Successfully used in 56Ni(p,p), 58Ni(α,α') experiment at GSI

Si detectors in UHV

First experiment worldwide having Si DSSDs as a window between UHV (10-10 – 10-11 mbar) and auxiliary vacuum (10-7 mbar)

Active cooling of the Si(Li) detectors during backing of the storage ring and the experiment itself

Many other technical challenges - step motors inside UHV, power-fail protected power system

DSSDs with 192 strips, very thin (60 nm) entrance window, made in St. Petersburg, Russia

Energy resolution – 25 keV (for 5.5 MeV \alpha-particles)

O. Kiselev, Physica Scripta, T166 (2015)014004

Tagging detector in UHV

- Forward detector before the first dipole, detection of beam like reaction products in coincidence with recoils.
- 6 PIN diodes (1 x 1 cm²) on AIN PCB, directly in the UHV
- Small dead edge, could be very close to the beam
- Baked at 250° C

PM Tube gas-jet target H₂ PM Tube PM Tube PM Recoil Detector Si-strip detector

M. Mutterer, Physica Scripta, T166 (2015)014053

Elastic cross section measured with a help of Si detectors

Preliminary results: ⁵⁶Ni(p,p)⁵⁶Ni at 400 MeV/u Cross section fitted with Glauber multiple-scattering theory

Inelastic cross section measured with a help of Si detectors

⁵⁸Ni(α, α') at 100 MeV/u, feasibility study for ISGMR J.C. Zamora, TUD

Double-differential cross section

Reference	m_1/m_0 [MeV]	$\sqrt{m_3/m_1}$ [MeV]	Width _{rms} [MeV]	EWSR [%]
this work ¹	21.1(5)	21.6(6)	3.0(5)	53(8)
this work ²	$21.4^{+0.5}_{-0.6}$	$21.9^{+0.8}_{-1.1}$	$3.4^{+0.5}_{-0.6}$	79^{+12}_{-11}
this work ³	$21.5^{+0.8}_{-0.9}$	22.3(1.0)	3.5(6)	106(12)
RPA	20.04	21.20	3.24	109
[119]	$20.30^{+1.69}_{-0.14}$	$21.48^{+3.01}_{-0.32}$	$4.25^{+0.69}_{-0.23}$	74^{+22}_{-12}
[65]	$19.20^{+0.44}_{-0.19}$	$20.81^{+0.90}_{-0.28}$	$4.89^{+1.05}_{-0.31}$	85^{+13}_{-10}
[4]	$19.9^{+0.7}_{-0.8}$	-	-	92 ₋₃ +4

Fraction of the EWSR for the monopole contribution. Histogram are the Coefficients of the energy bins fit. RPA calculation with the Skyrme interaction Sko'.

Conclusions

- Super-FRS diagnostics and experiments require precise position, energy and time measurements at high rates
- Detectors for all kind of diagnostics are on the way; feasibility tests are successful
- Si detectors are especially interesting as they are kind of universal devices delivering all information needed – energy loss, position and timing
- Detector development for Super-FRS/FAIR might be useful for other RIB facilities – at MSU, JINR, RIKEN, Ganil

Energy resolution for heavy ions

- Contribution of beam itself ~0.5%
- Si detectors can be used for charge ID of heavy and light ions
- But under heavy irradiation the energy resolution degrades

Energy loss via Time-over-Threshold

- Indirect energy measurement, non-linear
- Direct use for a "time walk" correction
- Resolution 3-10%