Status of PID detectors at BigRIPS

H. Sato, Detector team, RNC
PID detectors at BigRIPS

Particle identification → TOF-$B\rho$-ΔE method with track reconstruction

TOF, $B\rho$, ΔE → Z, A/Q

TOF: Time of flight
$B\rho$: Magnetic rigidity
ΔE: Energy loss

$B\rho$ with track reconstruction

ΔE: MUSIC, Si
Isomer tagging: Ge

Trayectories at focuses are measured for track reconstruction by using two double PPACs to improve A/Q resolution.
PPAC

Parallel Plate Avalanche Counter : PPAC

- **isobutane** (C_4H_{10}), 10 Torr
- **$\sim 150\text{V/mm electric field}$**
- **Electron avalanche**

- **Delay-Line read-out**

2D position sensitive detector

- **4.3 mm**
- **Bias voltage**
- **Cathode** (X)
- **Anode**
- **Cathode** (Y)
- **240x150 double PPAC**

Delay line (X)

Delay line (Y)

A-side AX AY B-side BY BX

high efficiency

Double PPAC

Particle
Today’s items

Recent topics on the PPAC

1. Discharge problem
 ✓ Change of the material of the electrode
 ✓ Development of the anti-discharge unit

2. Endurance test with high-rate beams
 ✓ Efficiency
 ✓ Position resolution

3. Fabrication of the electrodes
 ✓ Clear strip gap
 ✓ Damage problem
1. Discharge problem
1. Damage due to discharge

Electrical discharge sometimes occur with several tens of kHz of beams.

Trip of H.V. modules frequently happens.

Damage on the cathode electrodes can be seen.

The occurrence of the damage must be avoided.
Change the electrode materials

The occurrence of the discharge depends on the material of electrodes.

Au, Al, Cu → Ag

Empirically, silver electrode is more tolerant to the discharge than the others.

- Small electrical resistivity: Al > Au > Cu > Ag
- Large thermal conductivity: Al < Au < Cu < Ag

<table>
<thead>
<tr>
<th></th>
<th>Resistivity [μΩ cm]</th>
<th>Thermal conductivity [W m⁻¹ K⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0°C</td>
<td>100°C</td>
</tr>
<tr>
<td>Al</td>
<td>2.5</td>
<td>3.55</td>
</tr>
<tr>
<td>Au</td>
<td>2.05</td>
<td>2.88</td>
</tr>
<tr>
<td>Cu</td>
<td>1.55</td>
<td>2.23</td>
</tr>
<tr>
<td>Ag</td>
<td>1.47</td>
<td>2.08</td>
</tr>
</tbody>
</table>
Anti-discharge unit

Anti-discharge unit (ADU) is being developed by Kumagai-san.

H.V. is forced to become 0V to stop the discharge before ions hit the cathode electrode.

without anti-discharge unit

with anti-discharge unit
Function of the ADU

No discharge

- H.V. Power supply
- Signal separator
- Preamp.
- +12 V

Anti-discharge unit
- Power MOSFET
- 20 μs Uni-vibrator

PPAC
- 10 MΩ
- 220 pF

Anode
- Gas: C₄H₁₀ 10 torr

Cathode
- 10 kΩ
Function of the ADU

Discharge occurs

Large anode signal due to a discharge drives the power MOSFET.
Function of the ADU

H.V. becomes 0V

H.V. becomes 0V within ~30 ns after the discharge.
This prevents ions from hitting the cathode.
Reduce the damage on the cathode electrodes.

(H.V. recovers in ~5 ms.)
Test of the ADU

Discharge was induced using 241Am-alpha by applying the too large bias voltage, intentionally.

The anode voltage (H.V.) was forcibly 0V by the anti-discharge unit.

Prevent damages on the cathode electrodes
2. endurance test with high-rate beams
2. Test with high-rate beams

- Ag electrodes
 - First test with RI-beams for Ag electrode
 - 2012: ~160 kHz of Ni (Z=28) ions for 1 hour
 - 2014: ~50 kHz of Cs (Z=55) ions for ~2.5 days.
 - ~70 kHz of Z~60-70 ions for ~5 hours.
 - Apr. 2015: ~400 kHz of Sn (Z=50) ions for ~40 min.

- Anti-discharge unit

 An endurance test of the PPAC against high-rate beams (Z~50) was carried out in Nov. 2015.

No damage
Location of the PPACs

Two double-PPACs having anti-discharge units were located at F3.
RI beams

Z~50 beams were used.

132Sn (Z=50) purity: 6%
133Sb (Z=51) purity: 20%
134Te (Z=52) purity: 31%
135I (Z=53) purity: 12%

E~220 MeV/u @F3

Beam spot (σ)

@F3-1

@F3-2
Bias voltage adjustment

Before irradiating the PPACs with intense beams, the HV dependence of detection efficiency for each cathode was measured with a 1kHz beam.

The bias voltage was adjusted for all cathodes so as to realize the efficiency of ~95% in order to reduce unnecessary voltage.

![Graph of bias voltage adjustment for F3-1 and F3-2]

F3-1 A-side: 700V
B-side: 720V

F3-2 A-side: 720V
B-side: 730V
Beam rate

Rate of the beams @F3 was increased step by step as follows:

1.3 kcps (5min)
↓
49 kcps (10min)
↓
100 kcps (10min)
↓
200 kcps (10min)
↓
400 kcps (10min)
↓
600 kcps (70min)
↓
1 kcps (5min)
↓
1000 kcps (60min)
↓
1 kcps (5min)
Results: Endurance

- 600kcps 70min → No trip of HV modules for both PPACs

 ![Graph showing endurances for 600kcps](image1)

- 1Mcps 60min → No trip of the HV modules for both PPACs

 ![Graph showing endurances for 1Mcps](image2)
Results: Efficiency

Tendency of the total efficiency was measured.

\[E_{\text{Eff, total}} = \{1 - (1 - E_{\text{Eff,F3-1A,X}})(1 - E_{\text{Eff,F3-1B,X}})\}\{1 - (1 - E_{\text{Eff,F3-2A,X}})(1 - E_{\text{Eff,F3-2B,X}})\} \]

- Total efficiency
- Efficiency of each cathode

<table>
<thead>
<tr>
<th>Order of the measurements</th>
<th>rate [kcps]</th>
<th>X Total [%]</th>
<th>Y Total [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3</td>
<td>99.86</td>
<td>99.92</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>99.70</td>
<td>99.83</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>99.74</td>
<td>99.80</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>99.57</td>
<td>99.72</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>98.89</td>
<td>99.30</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>97.70</td>
<td>98.51</td>
<td></td>
</tr>
<tr>
<td>1 (*)</td>
<td>99.95</td>
<td>99.96</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>91.92</td>
<td>93.93</td>
<td></td>
</tr>
<tr>
<td>1 (***)</td>
<td>99.94</td>
<td>99.95</td>
<td></td>
</tr>
</tbody>
</table>

The efficiency obtained with 1k(*) and 1k(**) just after high-rate beams reproduce the values obtained with the 1.3k (first run).

The tendency of the efficiency change can be explained by the dead time of the PPAC: delay time is 192 ns for X and 118 ns for Y.

Electrodes were not damaged with 1Mcps beams for 60 minutes.
The position resolution is deduced for the layer of interest with respect to the trajectory that was obtained by fitting the measured positions using the rest of layers.
Results: action of the ADU

We increased the bias voltage of F3-2A up to 750V @1MHz beam, and a discharge happened on F3-2A.

Signal from X cathodes

The anti-discharge unit was operated.

Bias voltage was shutdown and recover.
Unresolved discharge problems

Damage on the anode appears because the lifetime of the cathode becomes longer by using the anti-discharge unit.

- The ADU cannot stop the electrons which are running to the anode.
- We prepared the anodes which have thicker Ag layer (50nm → 100nm).
- We will test them on the beamline.

Discharge happens with high-rate light beams because higher bias voltage should be applied for enough efficiency.
3. Fabrication of the electrodes
3. Fabrication of the electrodes

Ag electrodes are fabricated by using vacuum evaporation.

Side view

mask for cathode electrode (240mm x 150mm)

after Ag deposition

mylar film with the frame

mask

frame of the mylar film

mylar film
Non-clear strip gaps

Sometimes, non-clear strip gaps are seen after depositing Ag.

Microscopic view

Clear gap (0.15mm)

Ag strip (2.4mm)

Non-clear gap ← thin Ag layer

Each strips are connected!
→
Such electrode cannot be used!
Non-clear strip gaps comes from the imperfect contact between the mylar film and the mask wire.

- Add the spring to apply more tension to the mask wire.
- Silicon rubber is put on the mylar film.

Production yield: \(~50\% \rightarrow 100\%\)!
Damage on the Ag films

After depositing Ag on the mylar film, sometimes damages (colored area of the Ag) has been seen.

Examples

- Sometimes, they appear immediately after finishing the deposition.
- Sometimes, they appear several days after.

![Examples of Ag damage](image-url)
Component analysis with EPMA

There are no contaminants in the damaged area. We consider that the reason of the damage is due to the wet on the film.
Summary

Development of the PPAC is reported.

1. Material of the electrodes was changed (Au, Cu, Al → Ag).

2. Anti-discharge unit is being developed by Kumagai-san.

3. PPAC worked with 1MHz beams (Z~50) for 60min.

4. There are unresolved problems: one is the damage on the anode and another is the discharge with high-rate light beams.

5. Fabrication technique for Ag electrodes has been modified. Investigation of the damage on the Ag films is continued. (We got a new air conditioner in this summer !!)