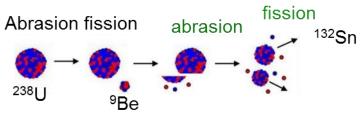


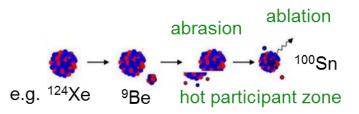
Production yields and cross sections at the BigRIPS separator

Y. Shimizu BigRIPS team

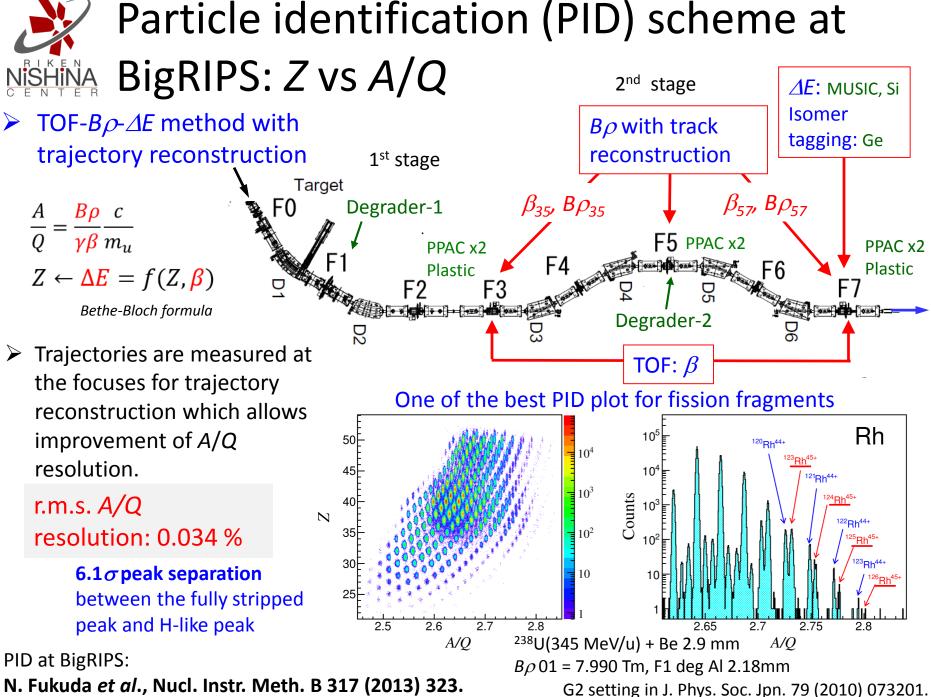
N. Fukuda, H. Takeda, H. Suzuki, D.S. Ahn, T. Sumikama, D. Murai, Y. Yanagisawa, K. Kusaka, M. Ohtake, N. Ianbe, K. Yoshida, T. Kubo



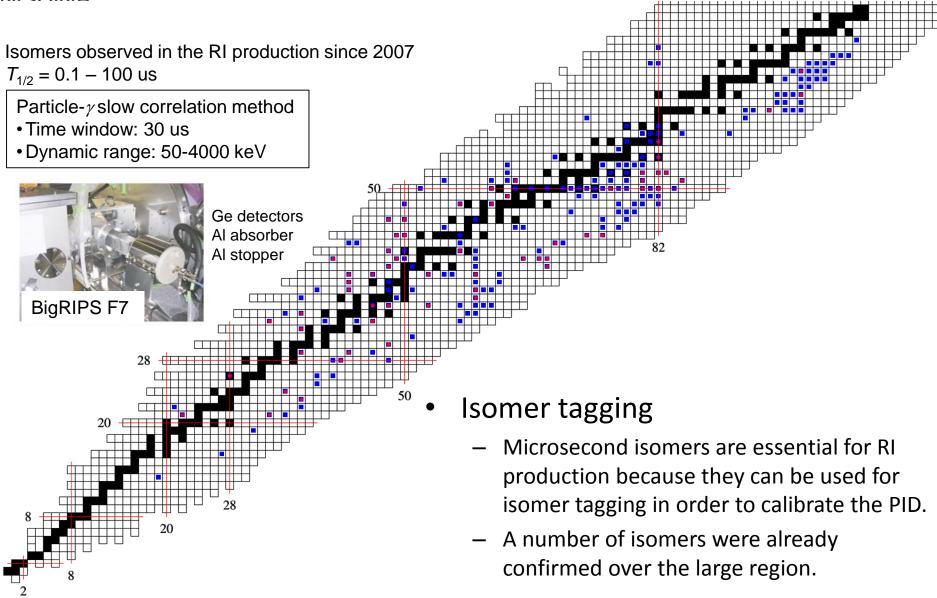
- Introduction
 - Production mechanism of RI beams
 - Particle identification (PID) scheme
 - RI beams at the BigRIPS separator
- Measured production yields and cross sections
 - Neutron-rich nuclei by in-flight fission of ²³⁸U beam
 - Proton-rich nuclei by projectile fragmentation of ¹²⁴Xe and ⁷⁸Kr beams
 - Neutron-rich nuclei by projectile fragmentation of ⁷⁰Zn and ⁴⁸Ca beams
- Database of RI beams produced at BigRIPS
- Summary



Production reactions at BigRIPS

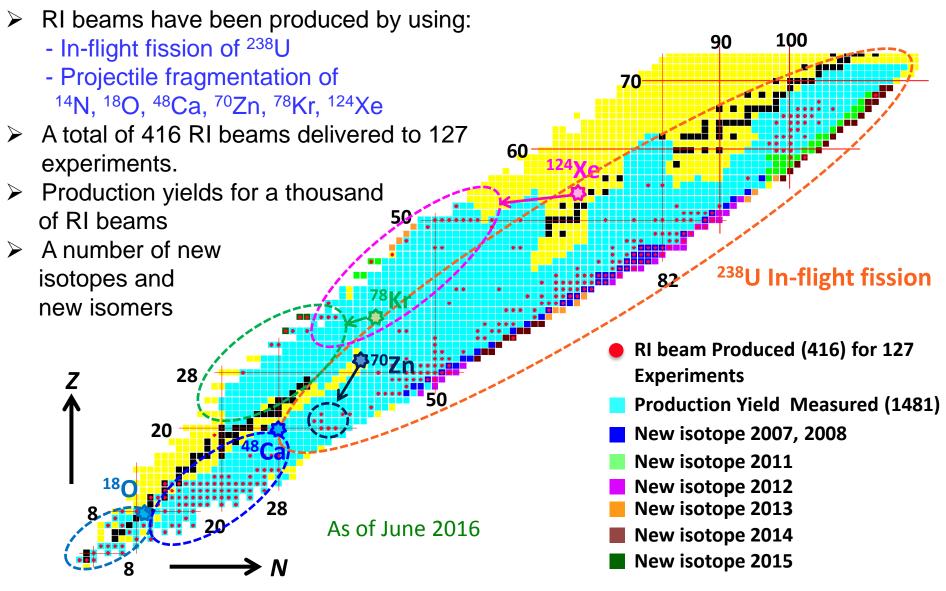


- very powerful for producing a wide range of medium-heavy neutron-rich isotopes
- large production cross section
- Projectile fragmentation

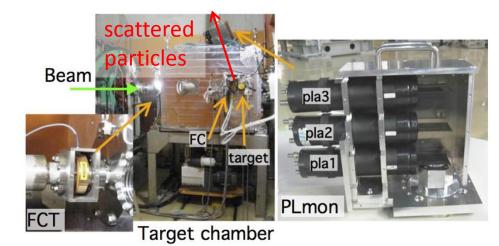


all kinds of fragments (RI beams) lighter than projectile can be produced

²³⁸U(345 MeV/u) + Be 100 N **BigRIPS** data 90 80 70 60 50 40 30 2.1 2.2 2.32.42.5 2.6 2.7A/0

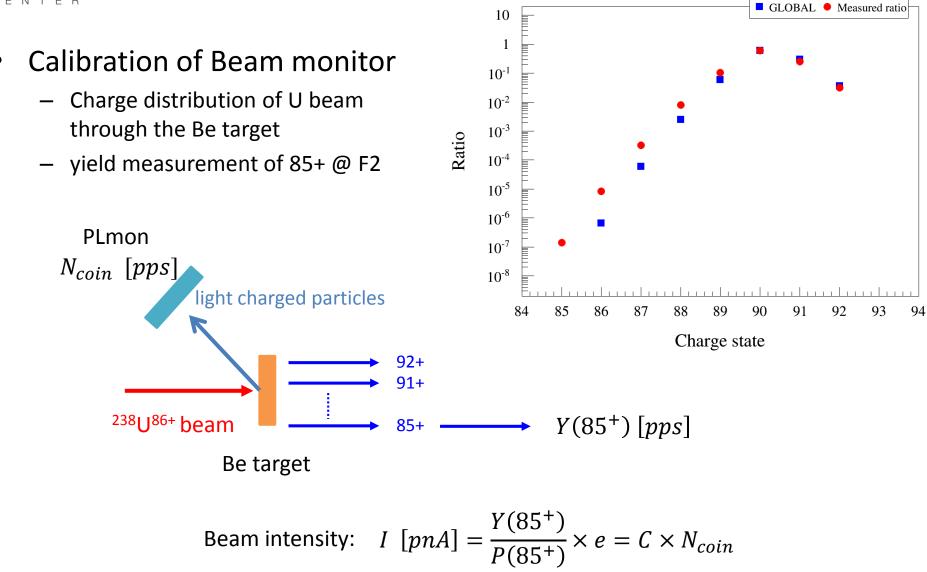


RI beams produced at BigRIPS (May 2007 – June 2016)

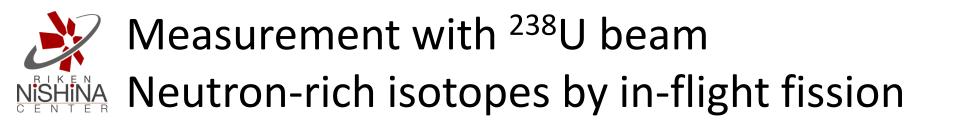


Measurement of production cross sections

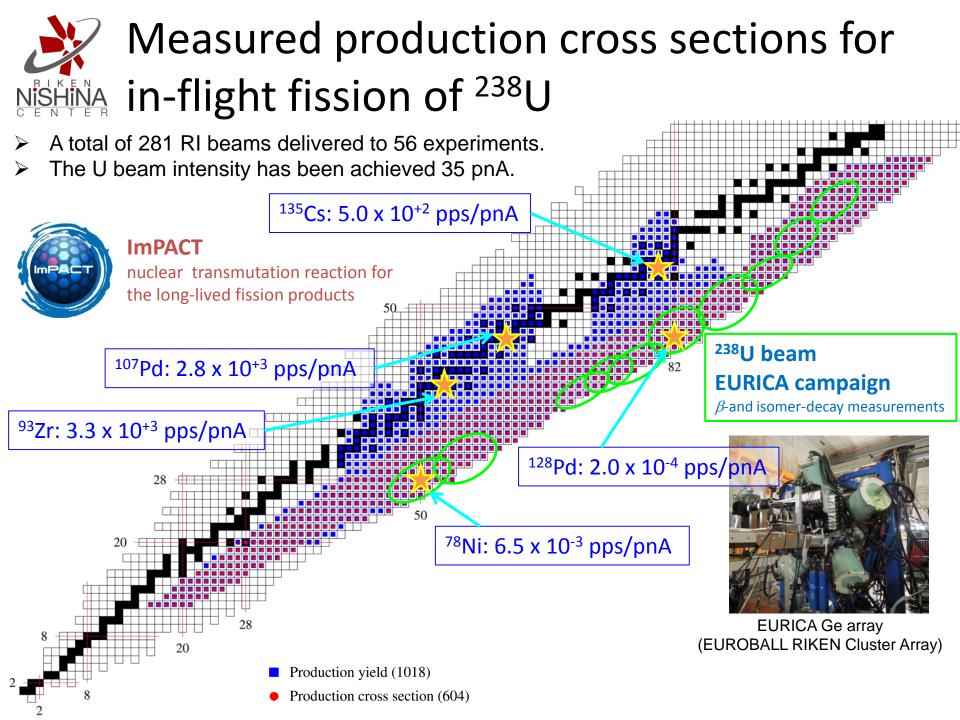
Measurement of production cross section is important. \rightarrow Allowing accurate estimation of RI beams.

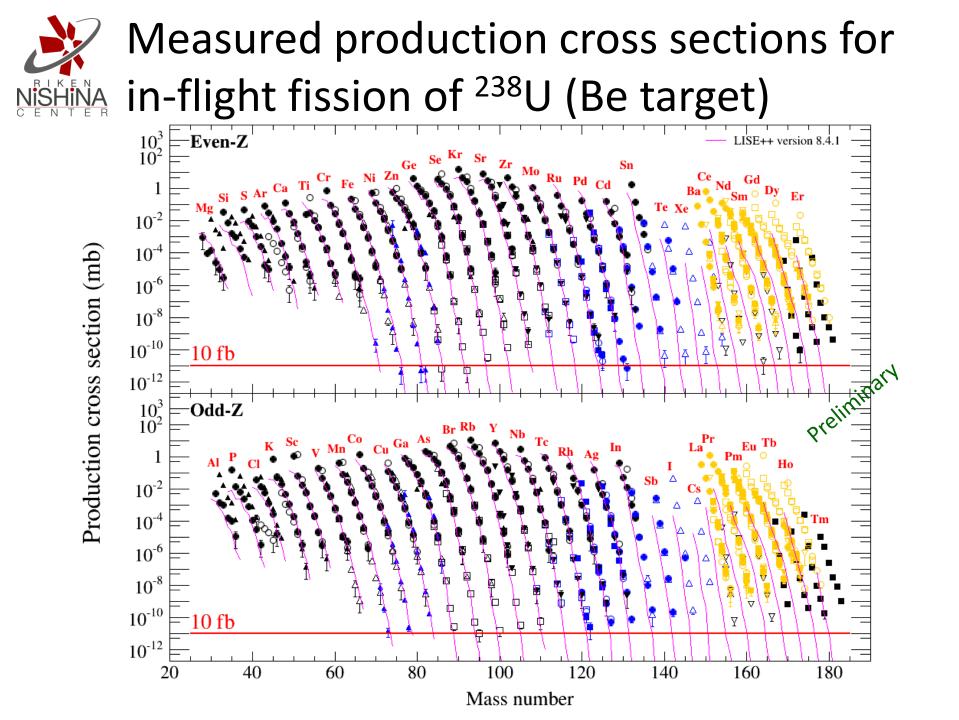

- Production cross section is deduced from
 - Yield:
 - High resolution PID analysis
 - Transmission:
 - LISE⁺⁺ simulation (Monte Carlo mode)

- Beam intensity:
 - monitored by detecting light charged particles recoiling out of the target



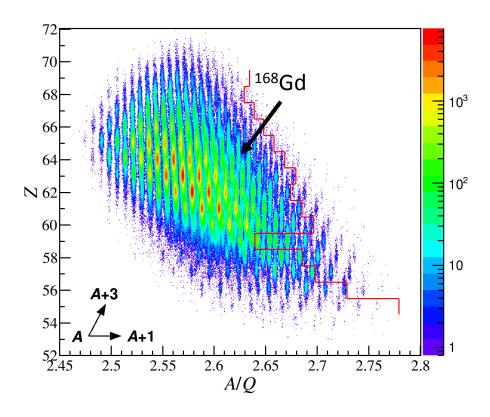
Beam intensity

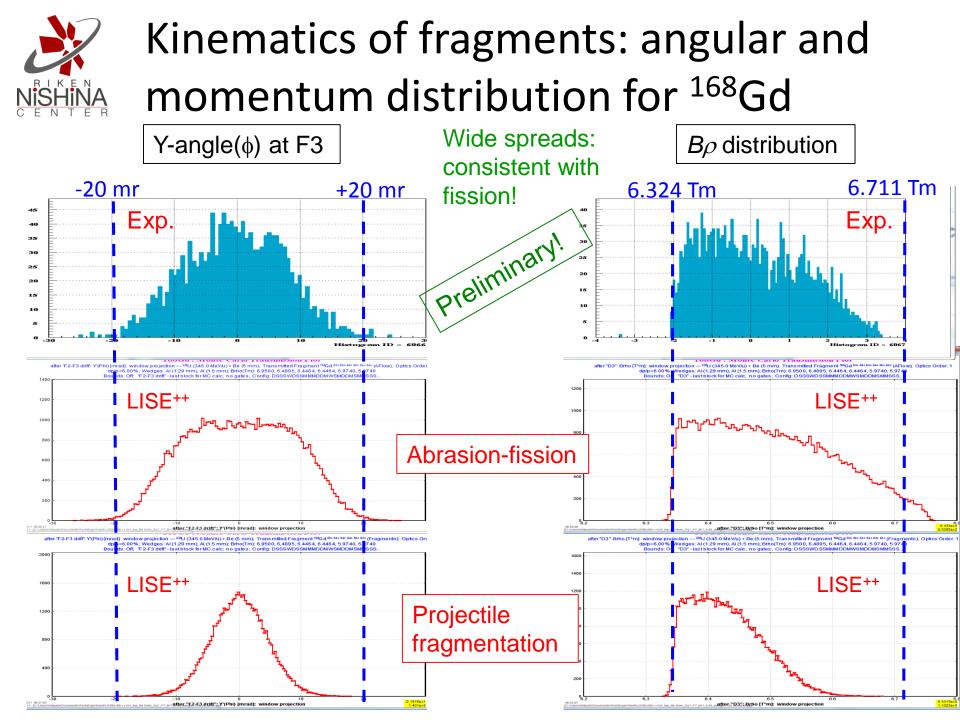

e: elementary charge


Charge distribution (Be 1mm)

- Measured production yields
- Measured production cross sections

 comparison with LISE++ prediction
- Example of Z ~ 64

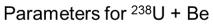


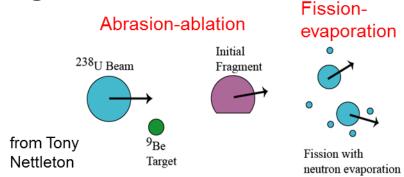

New isotope search around $Z \sim 64$

Experimental condition

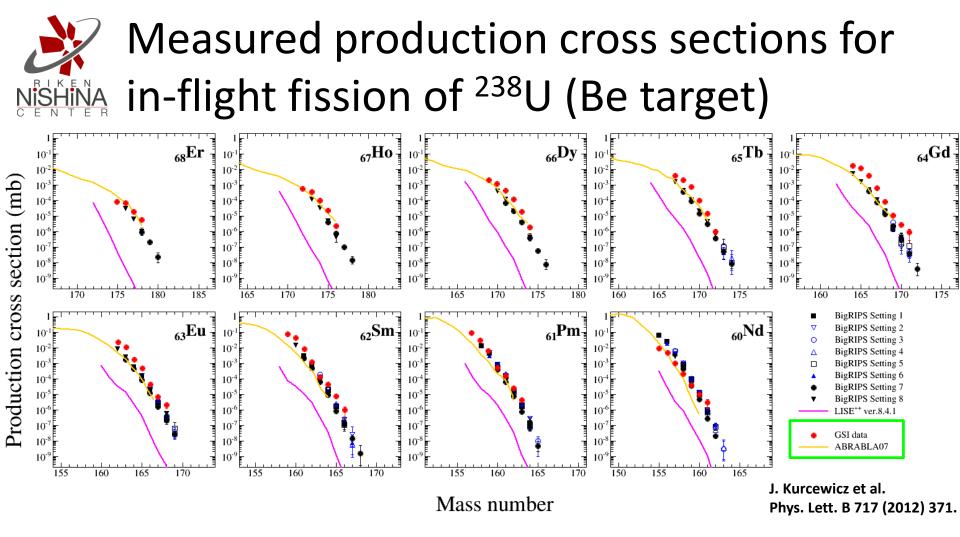
Setting	1	2						
Target	Be 4.9	9 mm						
D1 Βρ	6.950 Tm							
Tuned for	168	Gd						
F1 degrader	Al 1.27 mm							
F5 degrader	Al 1.40 mm							
F1 slit ($\Delta p/p$)	+3/-2%	+/- 3%						
F2 slit (mm)	+15 / -4	+15 / -5						
F5 slit (mm)	+/-	120						
F7 slit (mm)	+/-	15						

- *A***/Q** resolution: 0.036 % (*σ*)
- **A/Q** accuracy: +/- 0.1 %
- *Z* resolution: 0.50 % (*σ*)

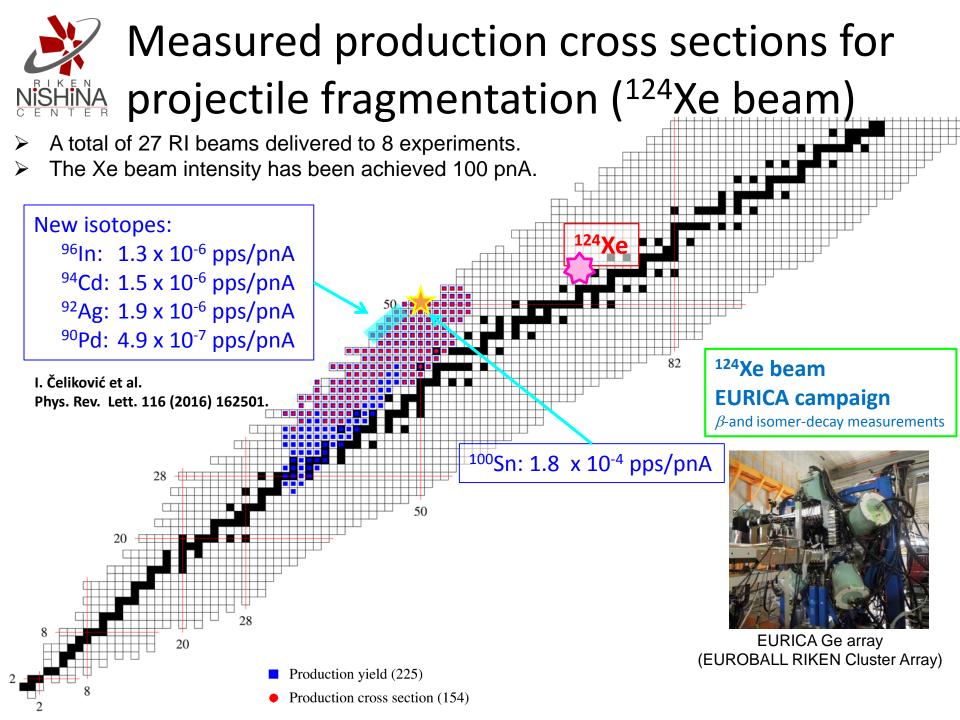


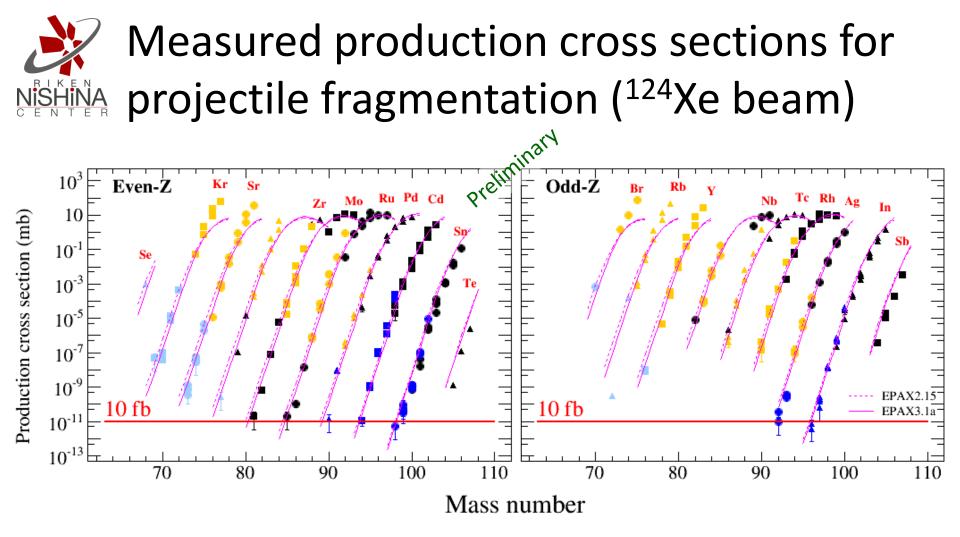

Abrasion Fission model

• LISE⁺⁺ (next talk by T. Oleg)

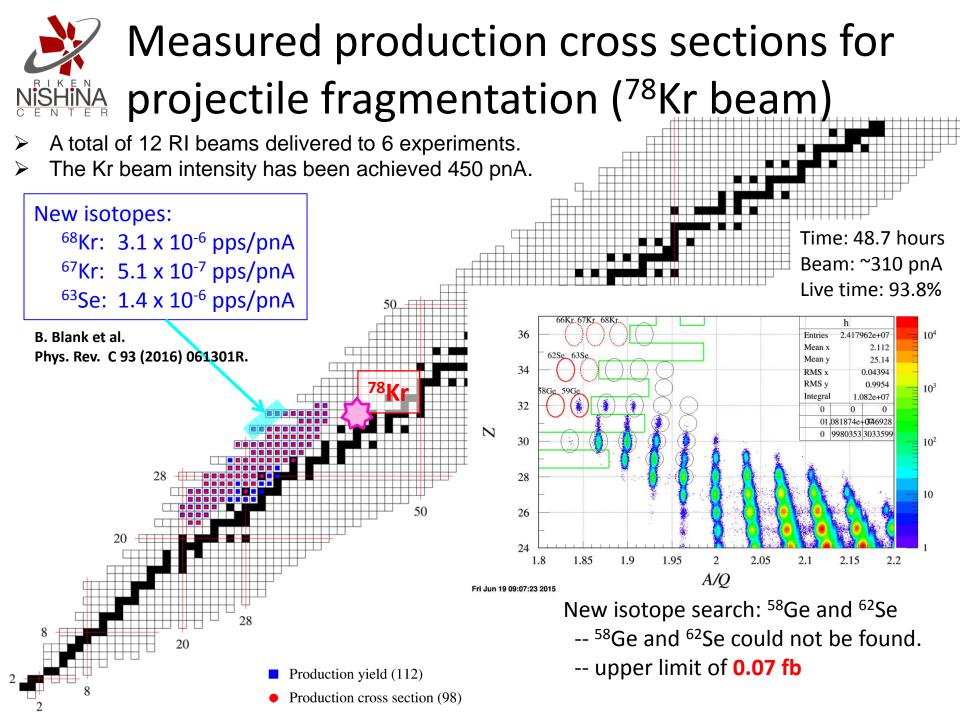

- Three excitation energy regions method

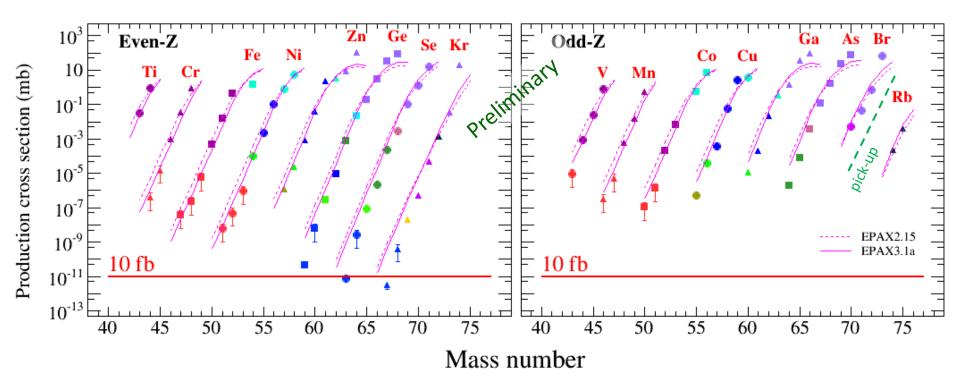
	Low	Middle	High
fissile	²³⁶ 92U	²²⁶ 90Th	²²⁰ 84Ra
<i>E</i> * MeV	23.5	100	250
σ mb	200	500	350


- ABRABLA07
 - three-stage nuclear-reaction model developed for description of peripheral and semi-peripheral collisions at relativistic energies

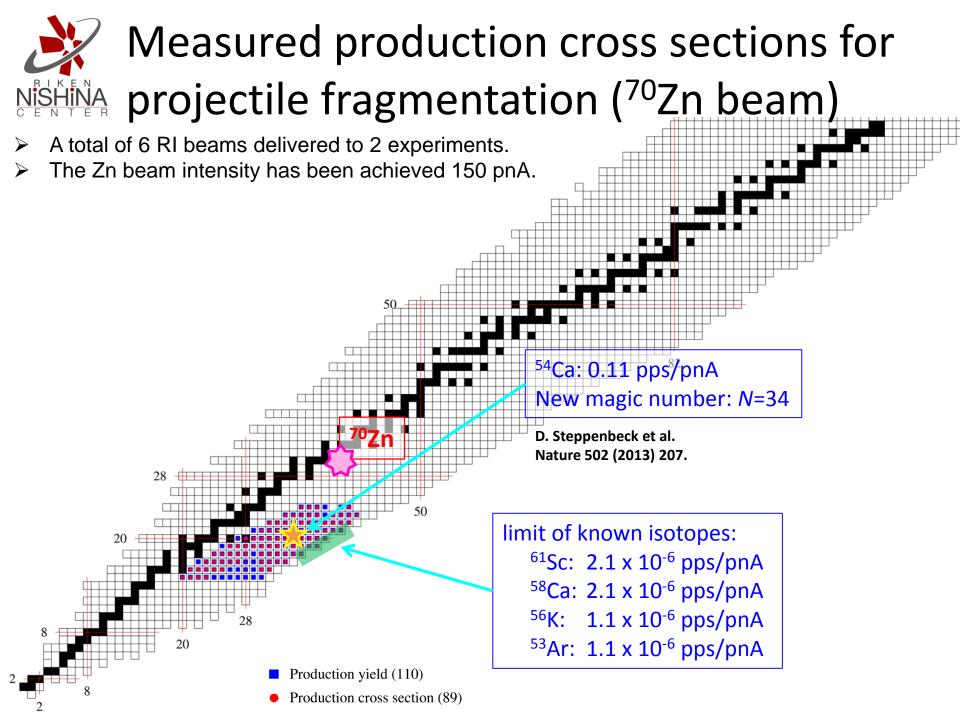


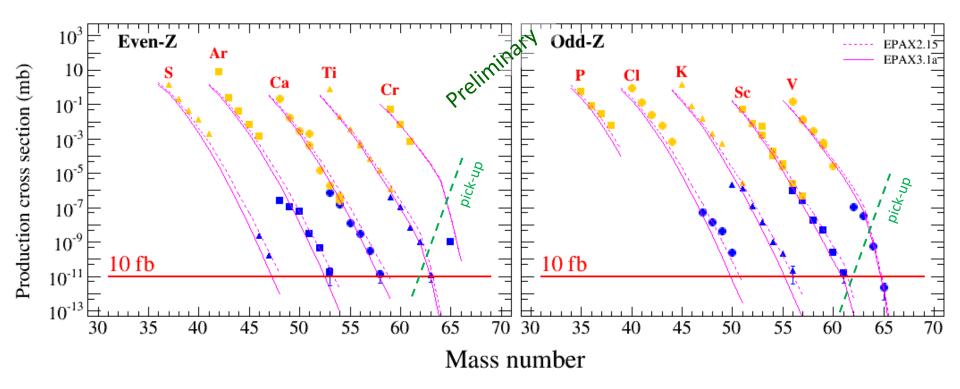
- the LISE predictions are three orders of magnitude smaller than the measured cross sections.
- BigRIPS data were consistent with GSI-FRS data.
 - ➤ GSI-FRS: ²³⁸U(1 GeV/u) + Be
- > The ABRABLA07 predictions are in good agreement with measured cross sections.

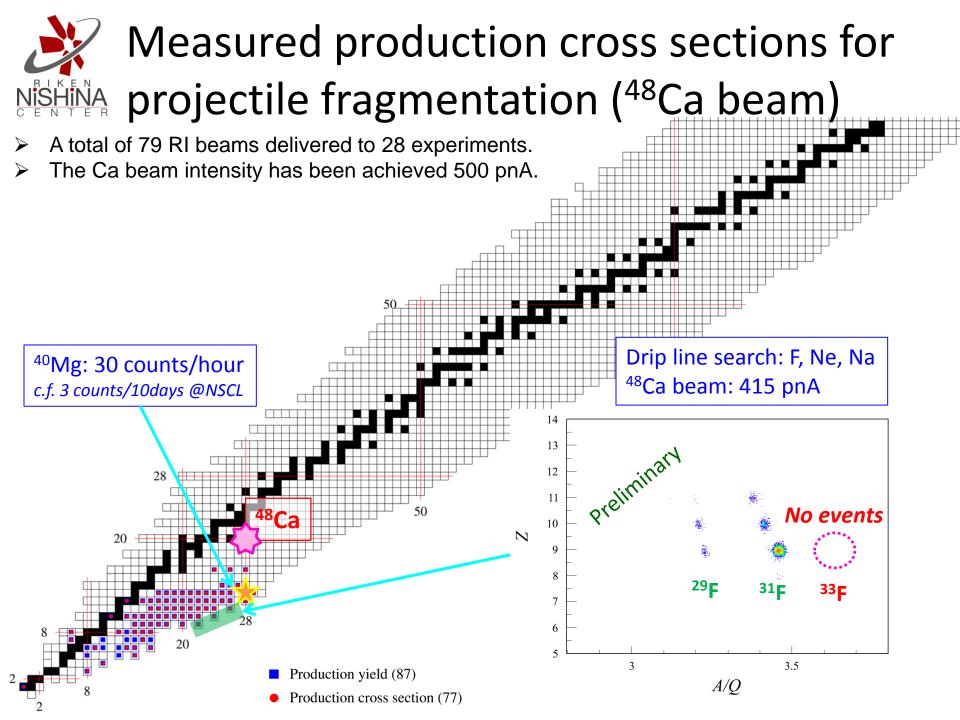

- Proton rich nuclei:
 - ¹²⁴Xe beam
 - ⁷⁸Kr beam
- Neutron rich nuclei:
 - ⁷⁰Zn beam
 - ⁴⁸Ca beam

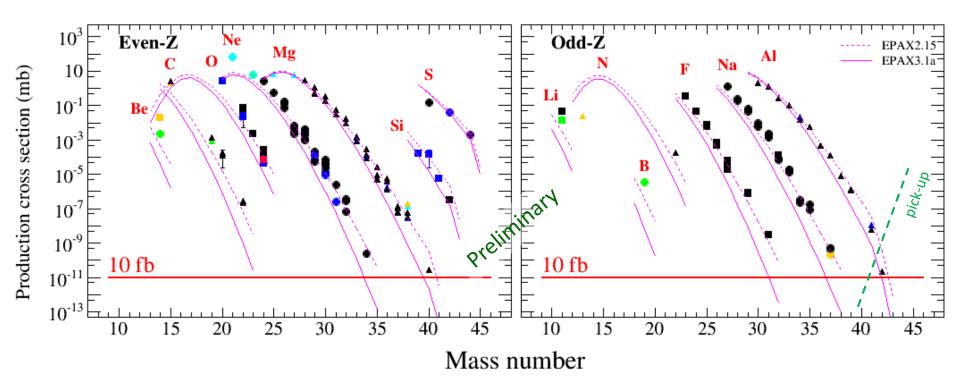


- > The measured cross sections are fairly well reproduced by EPAX3.1a.
- In very proton-rich region and higher Z region, our measured cross sections are almost one order of magnitude smaller than the calculated values with the EPAX3.1a.

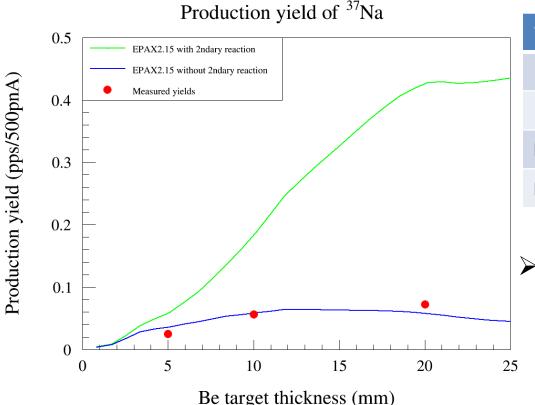

cf) ¹⁰⁰Sn ~ 1/6, ⁷³Sr ~1/3


Measured production cross sections for projectile fragmentation (⁷⁸Kr beam)

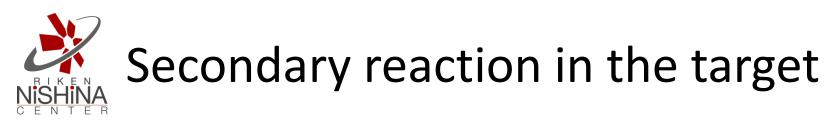

- > The measured cross sections are fairly well reproduced by EPAX3.1a.
- In very proton-rich region, our measured cross sections are almost one order of magnitude smaller than the calculated values with the EPAX3.1a. cf) ⁶⁹Kr ~ 1/14, ⁶⁴Sr ~1/9, ⁶⁰Ge ~ 1/7
- > It is surprising that measured cross sections for Rb are well reproduced.

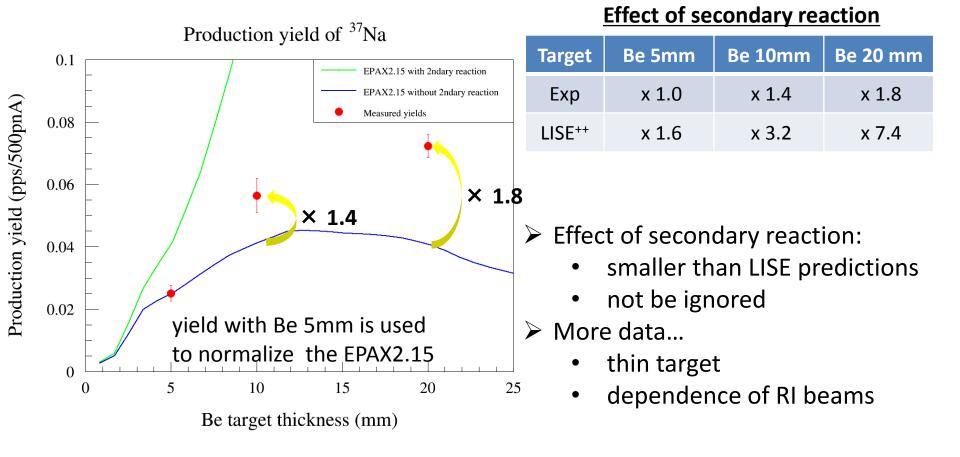

Measured production cross sections for projectile fragmentation (⁷⁰Zn beam)

- Overall, the calculated cross sections with both EPAXs are in good agreement with the experimental cross sections.
- For Z < 20, EPAX2.15 estimates the cross section better than EPAX3.1a.
- For Z > 20, EPAX3.1a estimates them better than EPAX2.15.


Measured production cross sections for projectile fragmentation (⁴⁸Ca beam)

- Overall, the calculated cross sections with EPAX2.15 are in good agreement with the experimental cross sections.
- > The EPAX3.1a underestimates the cross sections.
- ➢ In the LISE⁺⁺ simulation, secondary reaction in the target is NOT included.


 ³⁷Na were produced with different target thicknesses to study the effect of secondary reaction in the target material.


Experimental condition

Target	Be 5mm	Be 10mm	Be 20 mm
D1 Βρ	9.433 Tm	9.259 Tm	8.838 Tm
F1 slit		+/- 120 mm	
F1 deg		15 mm	
F5 deg		7 mm	

Overall, the calculated yields without secondary reaction are in good agreement with the measured yields.

 ³⁷Na were produced with different target thicknesses to study the effect of secondary reaction in the target material.

- Analyzed data of RI beams (as of august 2016)
 number of settings: 227
 number of yields: 4692
 number of c.s.: 2579
- Database of RI beams
 - Production cross sections and yields
 - Experimental conditions
 - Isomeric nucleus
 - Gamma ray energy
 - Half life
 - Sample of gamma ray energy spectrum
 - Table Y. Shimizu *et al.*, APR **47**, 166 (2014).

Web Interface (Access restriction!)

																	<u>73Sr</u>	<u>74Sr</u>	<u>75Sr</u>	<u>76Sr</u>	77Sr	78Sr	79Sr	80Sr
																			<u>74Rb</u>	<u>75Rb</u>	<u>76Rb</u>	77Rb	78Rb	79Rb
															<u>69Kr</u>	<u>70Kr</u>	<u>71Kr</u>	<u>72Kr</u>	<u>73Kr</u>	<u>74Kr</u>	75Kr	76Kr	77Kr	78Kr
																	<u>70Br</u>	<u>71Br</u>	<u>72Br</u>	<u>73Br</u>	74Br	75Br	76Br	77Br
												<u>64Se</u>	<u>65Se</u>	<u>66Se</u>	<u>675e</u>	<u>68Se</u>	<u>69Se</u>	<u>70Se</u>	<u>71Se</u>	<u>72Se</u>	73Se	74Se	75Se	76Se
													<u>64As</u>	<u>654</u>	<u>66As</u>	7As	<u>68As</u>	<u>69As</u>	<u>70As</u>	<u>71As</u>	72As	<u>73As</u>	74As	75As
										<u>60Ge</u>	<u>61Ge</u>	<u>62Ge</u>	<u>63Ge</u>	<u>64Ge</u>	<u>65Ge</u>	<u>66Ge</u>	<u>67Ge</u>	<u>68Ge</u>	<u>69Ge</u>	<u>70Ge</u>	71Ge	72Ge	73Ge	74Ge
											<u>60Ga</u>	<u>61Ga</u>	<u>62Ga</u>	<u>63Ga</u>	<u>64Ga</u>	<u>65Ga</u>	<u>66Ga</u>	<u>67Ga</u>	<u>68Ga</u>	<u>69Ga</u>	70Ga	71Ga	72Ga	73Ga
						54Zn	55Zn	<u>56Zn</u>	<u>57Zn</u>	<u>58Zn</u>	<u>59Zn</u>	<u>60Zn</u>	<u>61Zn</u>	<u>62Zn</u>	<u>63Zn</u>	<u>647n</u>	<u>65Zn</u>	<u>667n</u>	<u>67Zn</u>	<u>68Zn</u>	69Zn	70Zn	71Zn	72 Z n
								<u>55Cu</u>	<u>56Cu</u>	<u>57Cu</u>	<u>58Cu</u>	<u>59Cu</u>	<u>60Cu</u>	<u>61Cu</u>	<u>62Cu</u>	<u>63Cu</u>	<u>64Cu</u>	<u>65Cu</u>	<u>66Cu</u>	67Cu	68Cu	69Cu	<u>70Cu</u>	<u>71Cu</u>
		48Ni	49Ni	50Ni	<u>51Ni</u>	<u>52Ni</u>	<u>53Ni</u>	<u>54Ni</u>	<u>55Ni</u>	<u>56Ni</u>	<u>57Ni</u>	<u>58Ni</u>	<u>59Ni</u>	<u>60Ni</u>	<u>61Ni</u>	<u>62Ni</u>	<u>63Ni</u>	<u>64Ni</u>	65Ni	66Ni	67Ni	<u>68Ni</u>	<u>69Ni</u>	<u>70Ni</u>
					<u>50Co</u>	<u>51Co</u>	<u>52Co</u>	<u>53Co</u>	<u>54Co</u>	<u>55Co</u>	<u>56Co</u>	<u>57Co</u>	<u>58Co</u>	59Co	<u>60Co</u>	<u>61Co</u>	<u>62Co</u>	63Co	64Co	<u>65Co</u>	<u>66Co</u>	<u>67Co</u>	<u>68Co</u>	<u>69Co</u>
	45Fe	46Fe	<u>47Fe</u>	<u>48Fe</u>	<u>49Fe</u>	<u>50Fe</u>	<u>51Fe</u>	<u>52Fe</u>	<u>53Fe</u>	<u>54Fe</u>	<u>55Fe</u>	<u>56Fe</u>	57Fe	58Fe	59Fe	<u>60Fe</u>	61Fe	62Fe	<u>63Fe</u>	<u>64Fe</u>	<u>65Fe</u>	<u>66Fe</u>	<u>67Fe</u>	<u>68Fe</u>
			<u>46Mn</u>	<u>47Mn</u>	<u>48Mn</u>	<u>49Mn</u>	<u>50Mn</u>	<u>51Mn</u>	<u>52Mn</u>	<u>53Mn</u>	<u>54Mn</u>	55 M n	56Mn	57 M n	58Mn	59Mn	<u>60Mn</u>	<u>61Mn</u>	<u>62Mn</u>	<u>63Mn</u>	<u>64Mn</u>	<u>65Mn</u>	<u>66Mn</u>	<u>67Mn</u>
<u>des</u>							I																	

Table of Nuclides

<u>14N Beam</u>	<u> 180 Beam</u>	<u>48Ca Beam</u>
Isotope Sear	<u>rch</u>	Isomer Searc

70Zn Beam78Kr Beam124XochList of Publications

<u>238U Beam</u> List of Experiments

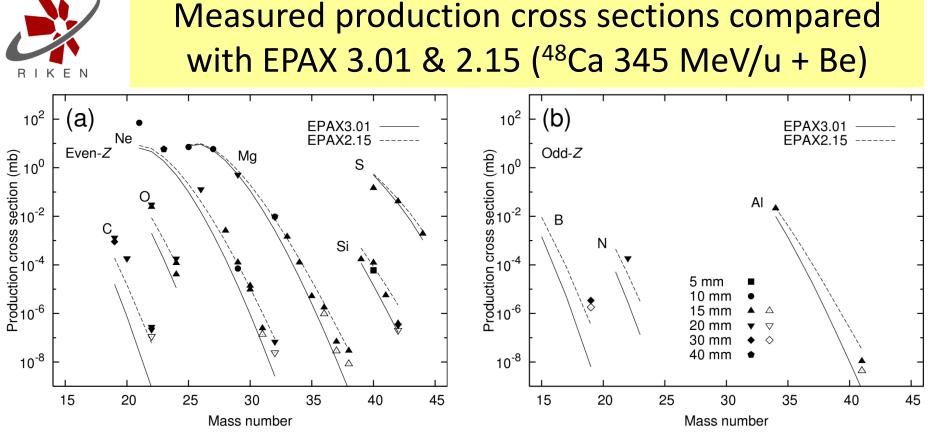
<u>124Xe Beam</u>

Web Interface (Access restriction!)

Ē	\ S	Z = 33	N = 33	^{N:} Č	Čross section & yield												<u>74Rb</u>	<u>75Rb</u>	<u>76Rb</u>	77 Rb	78Rb	
D1	Yield [pps/pnA]	Cross section (exp) [mb]	Error ² [m		Mea	asurement date	Beam	Target	Brho01 ³ [Tm]	F1 slit L [mm]	F1 slit R [mm]		<u>69Kr</u>	<u>70Kr</u>	<u>71Kr</u>	<u>72Kr</u>	<u>73Kr</u>	<u>74Kr</u>	75Kr	76Kr	77Kr	
<u>8</u>	2.09e-5				20	015-06-02	78Kr 345MeV	Be 5mm	4.9668	60.0	2.0				<u>70Br</u>	<u>71Br</u>	<u>72Br</u>	<u>73Br</u>	74Br	75Br	76Br	
1	9.41e+2	3.62e-3	8.78e-4	2.54e-2	20	015-05-24	78Kr 345MeV	Be 5mm	5.4550	64.2	64.2	<u>66Se</u>	<u>675e</u>	<u>68Se</u>	<u>69Se</u>	<u>70Se</u>	<u>71Se</u>	<u>72Se</u>	73Se	74Se	7 5Se	
8	2.94e-1				20	013-06-28	124Xe 345MeV	Be 4mm	5.1100	64.2	40.0	<u>65As</u>	<u>66As</u>	<u> 7As</u>	<u>68As</u>	<u>69As</u>	<u>70As</u>	<u>71As</u>	72As	<u>73As</u>	74As	
omer	informat	tion Isor	mer in	forma	tion		γ ray e	nerg	y spe	ctrur	n	<u>64Ge</u>	<u>65Ge</u>	<u>66Ge</u>	<u>67Ge</u>	<u>68Ge</u>	<u>69Ge</u>	<u>70Ge</u>	71Ge	72Ge	73Ge	ĺ
	a ray (keV)	ntensity (%) E	Error ⁴ (%)	Half life (us)	Error (us)	-	γ-, Γ	ay energy	spectrum		eld measurement"	<u>63Ga</u>	<u>64Ga</u>	<u>65Ga</u>	<u>66Ga</u>	<u>67Ga</u>	<u>68Ga</u>	<u>69Ga</u>	70Ga	71Ga	72Ga	
	(keV)	ntensity (%) E	Error ⁴ (%)	Half life (us) 8.2	Error (us)	nts	γ-1 500 - 125.3 keV	ay energy	spectrum	"66Se yie Date: 2015 Run#: 94 Beam: ⁷⁸ K	r 345MeV/u	<u>63Ga</u> <u>62Zn</u>	<u>64Ga</u> <u>63Zn</u>	<u>65Ga</u>	<u>66Ga</u> <u>65Zn</u>	<u>67Ga</u>	<u>68Ga</u>	<u>69Ga</u> <u>68Zn</u>	70Ga 69Zn	71Ga 70Zn	72Ga 71Zn	
nergy 115 125	(keV) In 5.2 5.4	0		8.2	0	Counts	125.3 keV	ay energy	spectrum	[™] 66Se yie Date: 2015 Run#: 94 Beam: [™] K Target: Be Bρ ₀₁ : 5.18t Counts:	5/05/24 5r 345MeV/u 5 5mm 6 Tm			65Ga 647m 63Cu		67Ga 667 65Cu		69Ga 68Zn 67Cu				
n ergy 115	(keV) In 5.2 5.4 7.3 5.4	0		8.2	0	Counts	500 125.3 keV	ay energy	spectrum	"66Se yie Date: 2015 Run#: 94 Beam: ⁷⁸ K Target: Be Bp ₀ : 5.18 Counts: 115.2 ke 125.3 ke 267.5 ke	5/05/24 fr 345MeV/u e 5mm	<u>62Zn</u>	<u>63Zn</u>	65Ga 64Zn 63Cu 62Ni	<u>65Zn</u>	67Ga 667 65Cu 64Ni	<u>67Zn</u>	69Ga 68Zn 67Cu 66Ni	69Zn	70Zn	71Zn	
115 125 267	(keV) In 5.2	0 0 0		8.2 1.1 8.2	0 0 0 0	Counts	500 - 125.3 keV 400 - 115.2 keV		spectrum	"66Se yie Date: 2015 Run#: 94 Beam: ⁷⁸ K Target: Be Bp ₀ : 5.18 Counts: 115.2 ke 125.3 ke 267.5 ke 392.9 ke	5/05/24 5 mm 6 Tm 22: 1068 / 122885 20: 1686 / 122885 20: 132 / 122885	<u>62Zn</u>	<u>63Zn</u>	65Ga 647m 63Cu 62Ni 61Co	<u>65Zn</u> <u>64Cu</u>	67Ga 667 657 657 657 657 657 637 637	<u>6772n</u> <u>66Cu</u>		69Zn 68Cu	70Zn 69Cu	71Zn <u>70Cu</u>	
nergy 115 125 267 394	(keV) In 5.2 5.4 7.3 5.4 7.1 5.2	0 0 0 0 0		8.2 1.1 8.2 8.2 8.2	0 0 0 0 0	Counts	500 = 125.3 keV 400 = 115.2 keV 200 = 115.2 keV	392.9 keV		"66Se yie Date: 2015 Run#: 94 Beam: ⁷⁸ K Target: Be Bp ₀ : 5.18 Counts: 115.2 ke 125.3 ke 267.5 ke 392.9 ke	5/05/24 cr 345MeV/u 5 mm 6 Tm cv: 1068 / 122885 cv: 1686 / 122885 cv: 132 / 122885 cv: 820 / 122885	<u>62Zn</u> <u>61Cu</u> <u>60Nf</u>	63Zn 62Cu 61Ni	<u>647n</u> <u>63Cu</u> <u>62Ni</u>	65Zn 64Cu 63Ni	<u>667n</u> <u>65Cu</u> <u>64Ni</u>	677711 666Cu 65Ni	66Ni	69Zn 68Cu 67Ni	70Zn 69Cu <u>68Ni</u>	71Zn 70Cu 69Ni	

Table of Nuclides

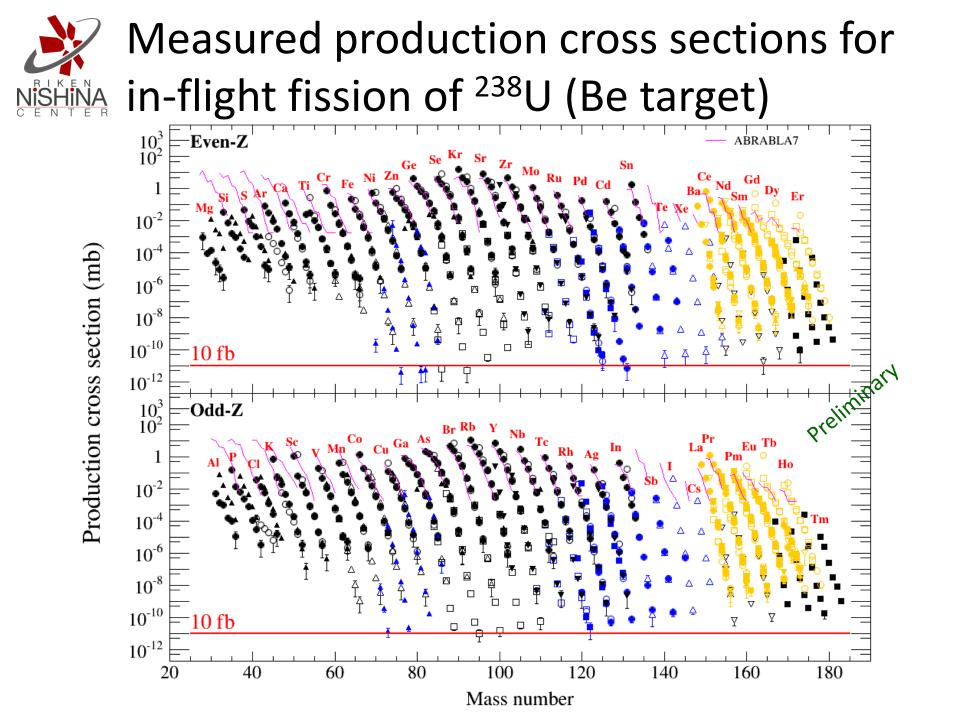
<u>14N Beam</u> <u>180 Beam</u>	<u>48Ca Beam</u> <u>70Zn Beam</u>	<u>78Kr Beam</u> <u>124Xe Beam</u>	<u>238U Beam</u>
<u>Isotope Search</u>	<u>Isomer Search</u>	List of Publications	List of Experiments



Web Interface (Access restriction!)

		Amon	.i.a	7. "										BigRIPS s	<u>74Sr</u> <u>75Sr</u>	<u>76Sr</u>	77Sr	78Sr 79	9Sr 80Sr			
66	As	Arsen Z = 33		Z: <u>«</u> 3 N: <u>»</u>		_		•							iemo				-			
					ros	s sect	ion	1 & y	vield				Run	83	Measureme	nt date		2015-05-2	24			
ID ¹	Yield [pps/pnA]	Cross sectio (exp) [mb]	Error4	mb] LISE++ [mb]	Measuremei date	Measurement date Particular 2015-06-02 78K		Targ	get	Brho01 <mark>3</mark> [Tm]	l L	Target	Be 5mm	Beam		78Kr 345MeV					
8	2.09e-5					2015-06-02			IeV Be 5r	mm	4.9668		Trigger	F7								
11	9.41e+2	3.62e-3	8.78e	-4 2.54e	-2	2 2015-05-24		8Kr 345M	IeV Be 5r	mm	5.4550		Log Book Vol.		Log Book 1							
<u>48</u>	2.94e-1				2013-06-28 124Xe 345MeV Be 4mm 5.1100						5.1100			Devic	Device setting							
			mori	nforma	tio	<u> </u>							Exit Beam Dump L [mm]	124.8	Exit Beam Dum	p R [mm]		40.1				
Isome	er informa	ation ISO	meri										F1 Detector	Not used	F1 Degra	der		Al 4.5mr	n			
	ma ray gy (keV)	Intensity (%)	Error <mark>4</mark> (%)	Half life (us)	Error		1	r	γ-ray ene	ergy s	pectrum	of '	F1 slit L [mm]	64.2	F1 slit R [r	nm]		64.2				
1	15.2	0		8.2	0	Counts	500	- 125.	.3 keV				F2 Detector	Not used								
1	25.4	0		1.1	0		400						F2 slit L [mm]	25	F2 slit R [1	nm]		25				
2	67.3	0		8.2	0)	300	115.2	2 keV				F3 Detector	Pla 0.2mm,PPAC1,PPAC2	F4 Detec	tor		Not used	d			
3	94.2	0		8.2	0)	300	Ē					F5 Detector	Pla 0.1mm,PPAC1,PPAC2	F5 Degrader		Not used		d			
8	37.1	0		8.2	0)	200		392.9) keV	,		F5 slit L [mm]	120	F5 slit R [1		120					
9	63.3	0		8.2	0)	100		267.5 keV		0.75		F6 Detector	Not used	F7 Detec	tor	IC,Pla	a 0.2mm,PPA	AC1,PPAC2			
1	552	0		8.2	0)	0	0 200	0 400	600	835. 800	0 ke 10(F7 slit L [mm]	50	F7 slit R [r	nm]		50				
								5 200		000	000	101		Magne	tic rigidity				1			
Tabl	le of N	Juclides	і і S										Brho01 [Tm]	5.455	Brho12 []	[m]		4.811				
	<u>Beam</u>	180 Beam	<u>48Ca Bea</u>	<u>am 70Zn E</u>	<u>Beam</u>	<u>78Kr Be</u>	<u>am</u>	<u>124Xe</u>	<u>Beam</u>	<u>238U</u>	<u>Beam</u>		Brho23 [Tm]	4.8115								
	ope Sear		Isomer S			<u>List of P</u>					of Experi		Brho34 [Tm]	4.787	Brho45 []	[m]		4.787				
Гhe	RI de	atabas	se sys	stem h	elp	s us i	not	t on	ly to	m	ana	ge	Brho56 [Tm]	4.770	Brho67 []	[m]		4.770				
ots	of de	ata bu	t also	o to op	erc	ate th	ie l	BigF	RIPS :	sep	oara	t	or.									

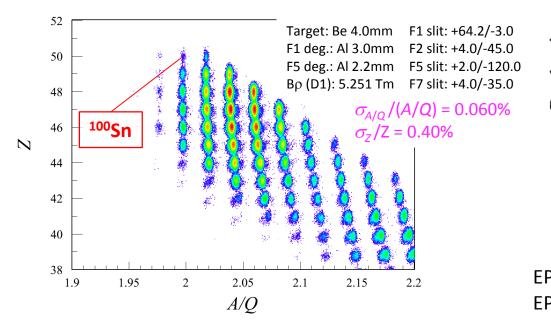
- Production yields and cross sections of various radioactive isotopes were measured using the BigRIPS separator at RIBF
- Neutron-rich isotopes from ²³⁸U beam
 - For the region of Z < 50, measured yields are well reproduced by LISE predictions
 - For the region of Z > 50, LISE predictions are three orders of magnitude smaller than the measured yields.
 - The ABRABLA predictions are good agreements with measured cross sections for the region of Z > 60
- Proton-rich isotopes from ¹²⁴Xe and ⁷⁸Kr beams
 - EPAX3.1a reproduces the measured cross sections except for very protonrich region and high Z region (near projectile).
- Neutron-rich isotopes from ⁷⁰Zn and ⁴⁸Ca beams
 - For the region of Z < 20, measured cross sections are well reproduced by EPAX2.15.
 - For the region of Z > 20, measured cross sections are well reproduced by EPAX3.1a.
- Work on the RI database system is currently operating.

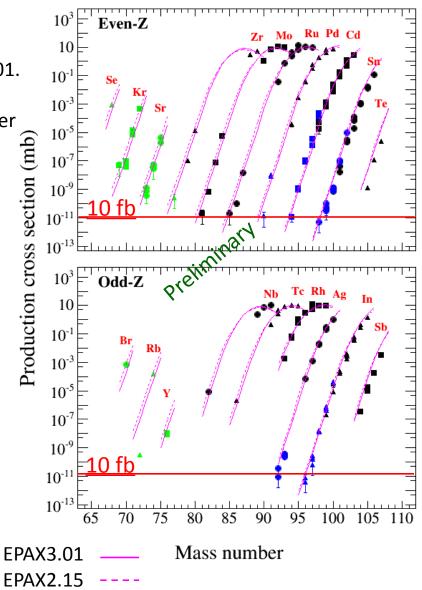


Open symbols: cross sections with the correction for the secondary reaction effect in the target (only for the nuclides whose augmentation factors are more than 1.6.)

- Fairly good agreement between the experimental cross sections and EPAX 2.15.
- EPAX 3.01 underestimates the cross sections.

Modification of EPAX3 from EPAX2

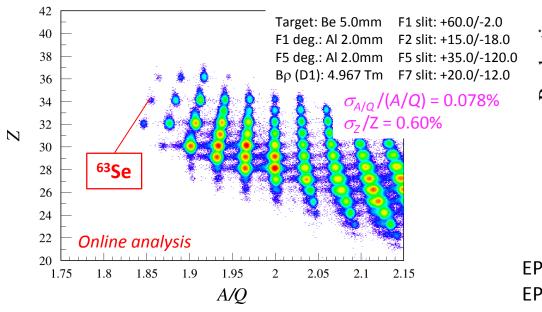

The c.s. of very neutron-rich fragments from medium-mass and heavy projectile were modified, which were overestimated by EPAX2. At the same time, the good agreement of EPAX2 for the neutron-deficient side is maintained.

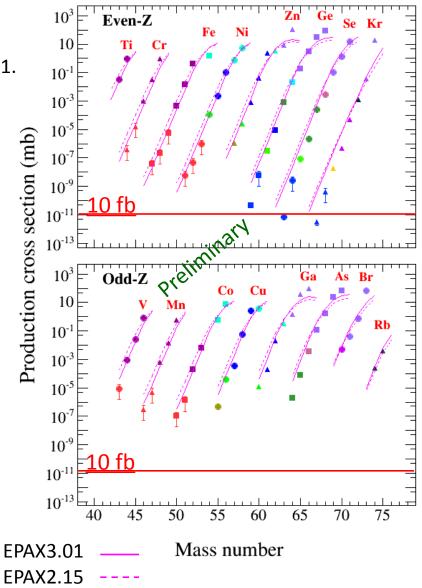


Measured production cross sections for projectile fragmentation (¹²⁴Xe beam)

¹²⁴Xe+Be at 345 MeV/u

- The measured c.s. are fairly well reproduced by EPAX3.01.
- In very proton-rich region and higher Z region, our measured c.s. are almost one order of magnitude smaller than the calculated values with the EPAX. e.g. ¹⁰⁰Sn ~ 1/6, ⁷³Sr ~1/3
- Example: ¹⁰⁰Sn setting for EURICA 2013
 - ✓ Beam current: 35 pnA
 - ✓ ¹⁰⁰Sn: 4.0 x 10⁻³ pps at 35 pnA


Measured production cross sections for projectile fragmentation (⁷⁸Kr beam)


⁷⁸Kr+Be at 345 MeV/u

- The measured c.s. are fairly well reproduced by EPAX3.01.
- In very proton-rich region, our measured c.s. are almost one order of magnitude smaller than the calculated values with the EPAX.

e.g. ⁶⁹Kr ~ 1/14, ⁶⁴Sr ~1/9, ⁶⁰Ge ~ 1/7

- Example: ⁶⁷Kr setting for EURICA 2015
 - ✓ Beam current: 400 pnA
 - ✓ ⁶³Se: 5.6 x 10⁻⁴ pps at 400 pnA

Measured production cross sections for projectile fragmentation (⁷⁰Zn beam)

 10^{3}

10

 10^{-1}

 10^{-3}

10-5

Even-Z

⁷⁰Zn+Be at 345 MeV/u

28

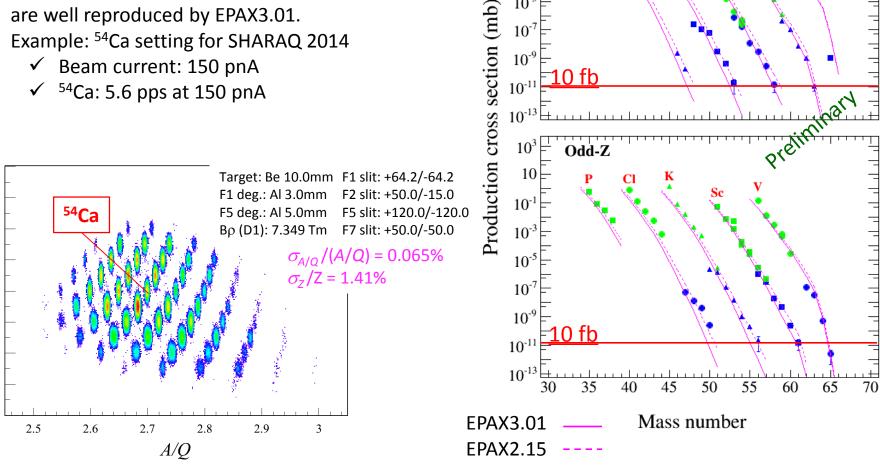
26

24

22

20

18


16

14

12

N

- For the region of Z < 20, measured cross sections</p> are well reproduced by EPAX2.15.
- \blacktriangleright For the region of Z > 20, measured cross sections are well reproduced by EPAX3.01.

Measured production cross sections for projectile fragmentation (⁴⁸Ca beam) 10^{3} Even-Z ⁴⁸Ca+Be at 345 MeV/u 10 The predictions from the EPAX2.15 formula are in 10^{-1} better agreement with the measured cross 10^{-3} sections than those from the EPAX3.01 formula. 10^{-2} cross section (mb) Example: ³³F setting for Drip line search 2014 10^{-7} ✓ Beam current: 340 pnA 10^{-9} ✓ ³¹F: 3.6 x 10⁻¹ pps at 340 pnA 10⁻¹¹ 10^{-13} 10^{3} Odd-Z Production 14 10 Target: Be 20.0mm F1 slit: +120.0/-120.0 F1 deg.: Al 15.0mm F2 slit: +15.0/-15.0 13 10-1 F5 deg.: Al 7.0mm F5 slit: +120.0/-120.0 12 Bρ (D1): 9.385 Tm F7 slit: +20.0/-20.0 10^{-3} 11 $\sigma_{A/Q}/(A/Q) = 0.238\%$ 10^{-5} $\sigma_{z}/Z = 1.18\%$ 10 10^{-7} N 9 10^{-9} 8 10-11 31**F** 7 10^{-13} 10 15 2030 35 4045 6 25 5 Mass number EPAX3.01 3 3.5

A/Q

EPAX2.15 ----