
TRANSVERSE MODE  COUPLING INSTABILITY 

WITH SPACE CHARGE 

V. Balbekov,  APC seminar 04/14/2016

TMCI  with space charge is considered in frameworks of the boxcar model. 

Eigenfunctions of the bunch without wake are used as the basis  

to investigate in depth the problem of instability with the wake.

Full text:   V. Balbekov, FERMILAB-PUB-16-079-APC,  arXiv:1603.03744



Example: tunes vs constant wake field TMCI without space charge

TMCI has been observed first in PETRA (1980)

First explanation has been given in frameworks 

of two-particle model where the oscillating 

particles propel each other by a wake field  

(R.Kohaupt, DESY M-80/19, 1980). 

The theory was evolved further in many works 

on the base of Vlasov equation.

At present, there is a complete understanding 

of the phenomenon  without space charge:

The TMCI occurs when frequencies of two 

neighboring head-tail modes of the bunch 

(oscillators!) approach each other coalescing 

eventually  due to the bunch wake field.
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Lowest TMCI mode appears as a coalescence of 

multipoles  m=0 and  m=±1, dependent on sign of the 

wake  q (solid/dashed lines present real/imag parts).

The wake strength q is normalized to get the tune shift    

ν0 = q  at  q<<Qs for the lowest  (m=0) head-tail mode. 

In such a case, the TMCI threshold is  qthres ≈ 0.57 Qs

almost independently on the bunch size am shape.

TMCI of higher modes is possible as well.

However, the understanding is not so well when space charge is essential.   



TMCI with space charge by M.Blaskiewicz, PRSTAB 1, 044201 (1998). 

The solution has been obtained in this 

paper in form of restricted series of 

multipoles ~exp(imφ) where  φ is 

synchrotron phase.

The TMCI growth rate is plotted in the 

graph against the space charge tune shift 

at constant negative wake. 

The growth rate goes down in the 

beginning, and the stabilization occurs at

ΔQ/Qs= 0.5-0.9

This result is treated as proof of the state-

ment that space charge suppresses TMCI

However, the instability is resumed at  

ΔQ/Qs > 2.2  

if the high order multipoles are used.
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The bad convergence does not provide a way to answer the question:   

Is the high space charge a stabilizing or destabilizing factor?    
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“Vanishing TMCI” 1.  A. Burov,  PRSTAB 12, 044202 (2009), 

2.  V. Balbekov,  PRSTAB 14, 094401 (2011).    
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The limiting case   ΔQ >> Qs has been 

considered in these papers.  

It was shown that space charge enforces 

the instability with positive wake  so that the 

TMCI threshold goes down  

but it suppresses the instability excited by 

negative wake:  

at

However, the last statement is questionable 

because all negative multipoles were 

excluded from consideration in the quoted 

papers due to used approximations. 

Meanwhile, just the coalescence of the 

multipoles m = 0 and m = -1 is responsible 

for the TMCE with negative wake  without 

space charge.
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Numerical simulation by M. Blaskiewicz, IPAC 2012, p. 3165 (2012).       

Code TRANFT has been used for the simulation 

Positive wake 

Alternating wakes 

Smooth bunch

Negative wake

Boxcar                

Hollow bunch

square well

The results are in agreement with the suggestions that space charge 

enforces effect of positive wake and reduces it if the wake is negative. 

The last statement is confirmed at  ΔQ/Qs<3  and maybe at  ΔQ/Qs<6.

However, there are no data at higher tune shifts. 
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Boxcar model

Square bunch (boxcar) model provides a unique possibility 

to study the problem in depth because its eigenfunctions

without wake are known exactly at any tune shift

(F. Sacherer, CERN-SI-BR-72-5, 1975). 

They can be used as the basis set for solution of the problem      

with wake providing easy solvable and fast converging series 

of equations.
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The boxcar eigenfunctions

Coherent transverse displacement of the bunch,    

as a function of time and longitudinal coordinate     

in the rest frame, is (w/o chromaticity)

where   Pn(θ) are Legendre polynomials. 

At any n = 0, 1, …, there are n+1 eigenfunctions

Xnm in the longitudinal phase space (θ,p-p0)~(A,φ).

They have to be determined from the equation:
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The functions  Xnm are polynomials of power  n in the phase space, 

coefficients  Snm are needed to assure normalization of the functions.

The eigentunes νnm are plotted in the graph. At  ΔQ = 0, they start from the points  νnm = mQs

that is  m is the multipole number whereas the index  n is associated with number of radial 

mode, in traditional presentation.

The highest tunes  νnn are positive at any  ΔQ, and  νnn → 0 at  

The expression                                is acceptable for other tunes being weakly dependent on  nQmQsnm 
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Equations of the boxcar bunch with wake 

Representing solution with wake in the form

using properties of the Legendre polynomials     

one can get  dispersion equation for the bunch 

eigentunes as the infinite continued fraction
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Truncating the fraction by the assumption      Wn= 0 at    n > nmax results in:  

dispersion equation with the recursive relation and initial conditions 
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The problem can be explored step by step up to desirable  nmax.  

With any n, it is the algebraic equation of power   (n+1)(n+2)/2 .
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Three-mode approximation  

The lowest approximation  T0(ν) = 0  is trivial in essence reflecting the dependence of 

minimal bunch eigentune on the wake strength with accepted normalized ν0,0 = q

The first approximation which allows to see TMCI is   T1(ν) = 0

that is in the expanded form

This equation is the partial case of my three-mode model (V.Balbekov,JINST10 P10032)

although the last has been built using other basis and considerations, including 

additional factors like chromaticity, different wake form, etc.

However, the mentioned analysis has been restricted by the case of  modest space 

charge:                 

ΔQ/Qs < 3.5

Now the restriction has to be removed because just the case of high space charge is a 

subject of special interest.

(In advance: it will be shown that this approximation provides qualitatively correct result) 
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Three-mode approximation:  region of stability

3
)(

22 q

Q

Q
q s 















Imaginary part of the solutions is shown against the wake strength at different tune shifts. 

The instability threshold   qth/Qs ≈ ±0.57  at  ΔQ = 0.

Then threshold of positive wake goes down when the tune shift increases.

Threshold of negative wake goes up in absolute value if  ΔQ/Qs increases from 0 to 3.465. 

An additional region of instability appears after that which quickly extends (from red to green)  

It coalesces with the main instability region at  ΔQ/Qs= 3.6. 

The instability threshold goes down in absolute value after that.

Stability region in (q-ΔQ) plane
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Three-mode approximation:  eigentunes
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Tunes on the boundary of the stab.reg. Black  q>0,  

red  q<0. The merged tunes are shown by bold lines. 

m = 0 &-1 m = 0 & 1

m = 0 & 1

Left:     Real part of the solutions against the wake strength at different tune shifts. 

Right:  Tunes on the boundary of the stability region.

Coalescence of the modes  m=0 and  m=1 is responsible for the TMCI with positive wake. 

With negative wake:  the modes  m=0 and  m=-1  are coalesced at  ΔQ/Qs< 3.46,  and

m=0 and  m=1  -- at ΔQ/Qs> 3.6. All the tunes about coincide in the transition region 

So the alternation of coalescing multipoles causes the dog-leg of the threshold curve.
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Higher approximation: equations
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Higher approximations are needed to 

validate the result and to make sure 

that the saturation is achieved.

Provided recursive formulae allow to 

investigate the process step by step.

Generally, it leads to an algebraic 

equation of power  (nmax+1)(nmax+2)/2   

where  nmax is max power of the   

Legendre polynomial in using.

Its real roots can be found numerically. 

The system is unstable if amount of 

the real roots is less then the equation 

power.

1st apx

addition
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Example:  nmax = 2



Higher approximations: stability threshold

TMCI threshold  qthresh/Qs is presented against  ΔQ/Qs in different approximations. 

Black curve in the top of left graph is the threshold of positive wake at any approximation,

other curves refer to the negative wake.

The dog-leg of the negative threshold curve appears in any approximation.

Due to the good convergence, the approximation  nmax ≥ 6 can be used with any ΔQ.

However, lower approximations are also acceptable if ΔQ/Qs is rather small 

In particular,  three-mode approximation is really applicable at   ΔQ/Qs < 3.5.

The strip bounded by dashed lines is very narrow region of instability inside the wide 

stable region.  It firmly appears at  nmax ≥ 3.
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Higher approximations:  Threshold tunes

The bunch tunes are shown against the tune shift on the boundary of the stability region.

The left graph is being demonstrated to remind that the a sudden veer of the threshold 

happens when the coalescence is switched from the modes   m = 0 &-1 to   m = 0 &+1.

About the same happens at higher approximations:

At modest  ΔQ/Qs, the TMCI appears by coalescence of the modes  m = 0 &-1 but further 

it goes up to the combinations  m = 3 & 4 at  nmax = 4,  and m = 4 & 5 at  nmax = 7.

There are several transitional steps which can cause small strips or spots of instability in 

the wide stable region. One of them has been demonstrated before, but generally these  

mini-regions are elusive because of small size and the instability rate.

m=0 & 1m=0 & -1

nmax = 1 nmax = 4 nmax = 7
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Why does the switching happen?

Coalescence  of the multipoles   m = 0 &-1 causes the instability at   ΔQ/Qs< 4 

because tune of the mode  m=0  (ν0 ≈ q) is pushed down by negative wake 

striving to the mode  m=-1:,  ν-1≈ -Qs. This stage is presented by magenta lines in the figures.

However, at  growing  ΔQ ,  the coalescence strive up to higher tunes where the bunch 

spectrum is  are more tight (orange oval). The final positions are show by orange lines.  

At  nmax= 4, the final position is located in the edge of  the spectrum being restricted by the 

used basis functions. It means that the equilibrium (saturation) is not reached yet. 

But it is located inside the spectrum in the equilibrium (saturated) position as at  nmax= 7.

The saturation is achieved at nmax = 6, and extra basis vectors no longer affect the coupling.

Only lowest radial modes can be coupled eventually but the higher modes can take a part at 

the transition.

Spectrum w/o wake nmax = 4 nmax = 7
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Summary:  complete outline of the stability region
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3-mode model  

ΔQ/Qs<3.5

Different boundaries of the region are 

described by different equations.

Presented simplified formulae provide 

the accuracy 15% or better.

The simplest three-mode model 

resolves itself to the algebraic 

equation of 3rd order  which is 

acceptable at ΔQ/Qs<3.5   and can 

include chromaticity, and different 

bunch and wake forms.      
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Comparison with numerical simulation

My results are inserted into the 

plot of M. Blaskiewicz (IPAC2012). 

There is a perfect agreement with 

the simulation results for the 

boxcar bunch with constant wakes 

of any signs.

(The middle curves relate to other 

bunch/wake models)    
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Comparison with analytical calculation

The TMCI growth rate is presented in the graphs 

against the space charge tune shift at negative constant 

wake (q=-1.13).

Top graph:  M. Blaskiewicz, PRSTAB 1, 044201 (1998).

Expansion technique has been applied in the paper    

but the basis differs from the boxcar eigenfunctions.

Bottom plot is obtained by my 3-mode approximation.

It could tell about an amazing similarity of the pictures   

if not the difference of the horizontal scales.          

Space between 2 regions of instability is  ΔQ/Qs ≈ 1.5   

on the top plot,  and 3 times more by the bottom one. 

Another contradiction is that the second region of 

instability appears in the top plot only at  mmax= 10.                       

In my solution, it exists at any  nmax but moves to right 

and reaches the equilibrium  ΔQ/Qs~45 at  nmax≥ 6.

Thus one can tell about a qualitative similarity of the results       

but numerical consent is present firmly only at ΔQ/Qs< 2.
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High space charge limit (vanishing TMCI)

It has been declared and supported that negative wake can’t cause TMCI if                   

(A. Burov, 2009:  V. Balbekov, 2011).     

Opposite conclusion follows from this work:  TMCI threshold  → 0 at 

The idea that ignoring of negative multipoles could be a reason of the “vanishing”       has 

little force now (at least for the boxcar bunch)  because it has been established that   just 

positive multipoles have main part in the instability at          

The explanation can be reached if to note that, for the boxcar model, central equation of 

the mentioned papers is a partial case of the present paper, with additional assumptions 

concerning the basis functions (eigenmodes without wake): 

that is 
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This truncated basis includes only lowest radial 

modes of positive multipoles, and asymptotical 

values of remaining tunes are used

Only this part of the spectrum has                       

been taken for the consideration
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High space charge limit – threshold calculation 

Full set of harmonics                        Truncated  set  

The truncation drastically affects the result. 

The convergence is poor in the right-hand plot but the trend is rather clear –

absolute value of the threshold  increases at higher space charge.         

I guess that the statement “vanishing TMCI” should not be applied, at least 

to boxcar bunch though its applicability to other distributions and especially 

to other wake forms is the open question.              

Top:  nmax = 2-4

Next:  nmax = 5-16, Δn = 1
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Conclusion

Transverse Mode Coupling Instability of square bunch    

with space charge and constant wake is considered.

Borders of the stability region are drawn around.

It is shown that the space charge lowers the instability 

threshold of positive wake  

Threshold of negative wakes goes up at  ΔQ/Qs < 7, and  

goes down to 0 at larger space charge.


