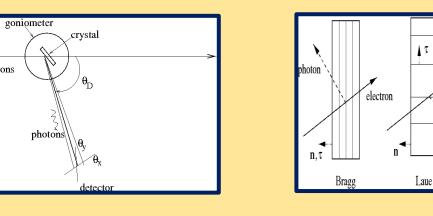

Parametric X-Rays at FAST Tanaji Sen Fermi National Laboratory, Batavia, IL 60510, USA

ABSTRACT

We discuss the generation of parametric X-rays (PXR) in the photoinjector at the new FAST facility at Fermilab. Detailed calculations of the intensity spectrum, energy and angular widths and spectral brilliance with a diamond crystal are presented. We also report on expected results with PXR generated while the beam is channeling. A new goniometer with several ports could allow the simultaneous detection of PXR at multiple energies.

YIELD, SPECTRAL BRILLIANCE

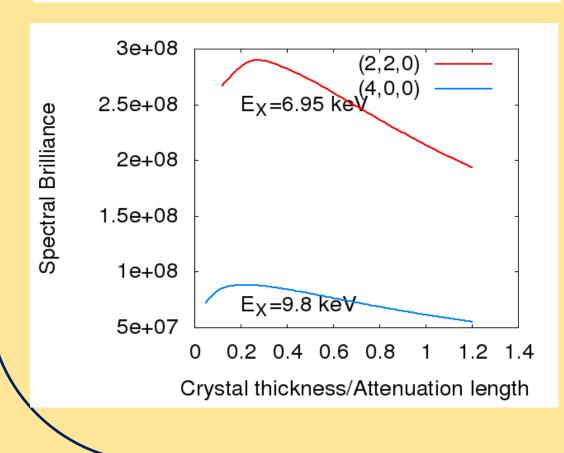
Plane	X-ray energy	$L_{a,C}$	L _{a,air}	Attenuation	Yield	ΔE
	[keV]	[cm]	[cm]	in air	[photons/el-sr]	[eV]
(1,1,1)	4.26	0.0097	12.72	3.8×10^{-4}	3.7×10^{-7}	59
(2,2,0)	6.95	0.043	57.2	0.17	9.9×10^{-5}	93
(4,0,0)	9.83	0.120	144.9	0.50	8.8×10^{-5}	131


Same goniometer as used for channeling. 90° port determines Bragg angle= 45°

MOTIVATION

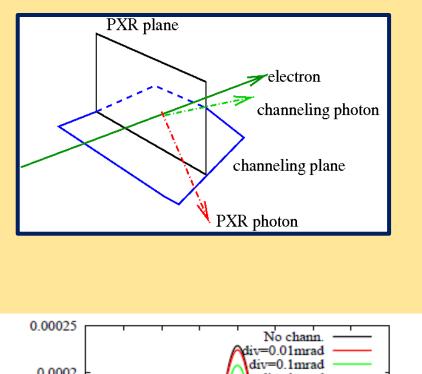
Energy

10 keV X-rays	Beam Ene
Synchrotron Radiation	3 GeV
Transition Radiation	300 MeV
Compton Scattering	22 MeV
Channeling Radiation	10 MeV
Parametric Radiation	5.7 MeV



Parameter	Value
Beam energy	50 [MeV]
Bunch charge	20 [pC]
Length of a macropulse	1 [ms]
Number of bunches/macropulse	2000
Macropulse repetition rate	5 [Hz]
Crystal, thickness	Diamond, 168 [μ m]

 $E = \hbar c \frac{g \sin(\theta_B + \alpha)}{2 \sin^2((\theta_D + \alpha)/2)} \stackrel{\theta_D = 2\theta_B, \alpha = 0}{\longrightarrow}$


- Emitted at large angles from the beam direction. Differentiates it from channeling, bremsstrahlung
- X-ray energy is independent of beam energy
- Tunable by changing crystal orientation
- Narrow line width. Typically ~ 1%
- Lower background from other
- sources, especially at large angles.
- Can be produced while channeling
- Multiple X-ray energies at once.

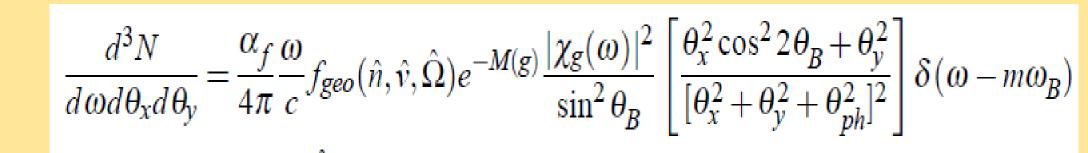
Crystal thickness/Attenuation length

- Photon absorption in 1m of air included.
- Brilliance averaged over emittance growth.
- Yield saturates at crystal thickness $L_c=1.2 L_a$; brilliance at $L_c=0.25 L_a$

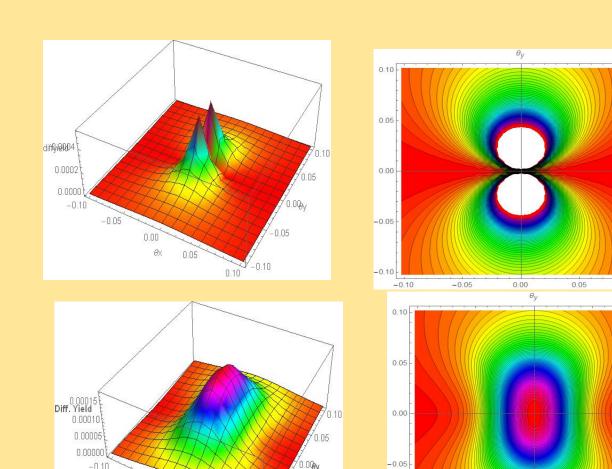
PXR WHILE CHANNELING

0.0002

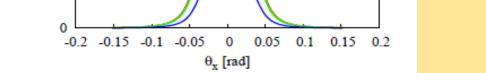
0.00015


0.0001

5e-05


- $\frac{d^2 N}{d\theta_x \theta_y}|_{PXRC} = \frac{d^2 N}{d\theta_x \theta_y}|_{PXR} \sum_n^{N_B} P_n |F_{nn}|^2$
 $$\begin{split} \langle P_n \rangle &= \frac{1}{\sqrt{2\pi}\sigma'_x} \frac{1}{d_p} \langle \int d\phi_{x,0} e^{-\frac{\phi_{x,0}^2}{2(\sigma'_x)^2}} | \int_{-d_p/2}^{d_p/2} e^{-ik\phi_{x,0}x} \psi_{n,K_C}(x) dx |^2 \rangle_{K_C} \\ \langle |F_{nn}(\theta_x)|^2 \rangle &= \frac{1}{d_p^2} \langle | \int_{-d_p/2}^{d_p/2} \psi_{n,K_C}^*(x) e^{-i\frac{\omega_B\theta_x x}{c}} \psi_{n,K_C}(x) dx |^2 \rangle_{K_C} \end{split}$$
 $\delta = 1 - \sum_{n=1}^{N_B} \langle P_n \rangle \langle |F_{nn}|^2 \rangle$
 - PXRC is PXR emitted by channeled electrons and making intra-band transitions

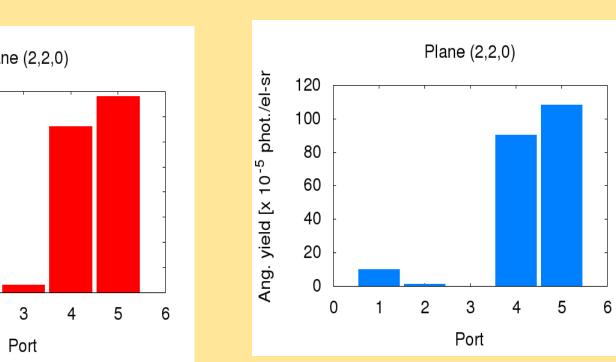
PXR SPECTRUM

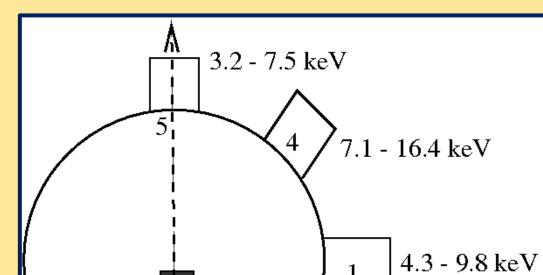

PXR energy depends on the lattice spacing, Bragg angle and angle of detection.

 $\frac{1}{2\sin\theta_{R}}$

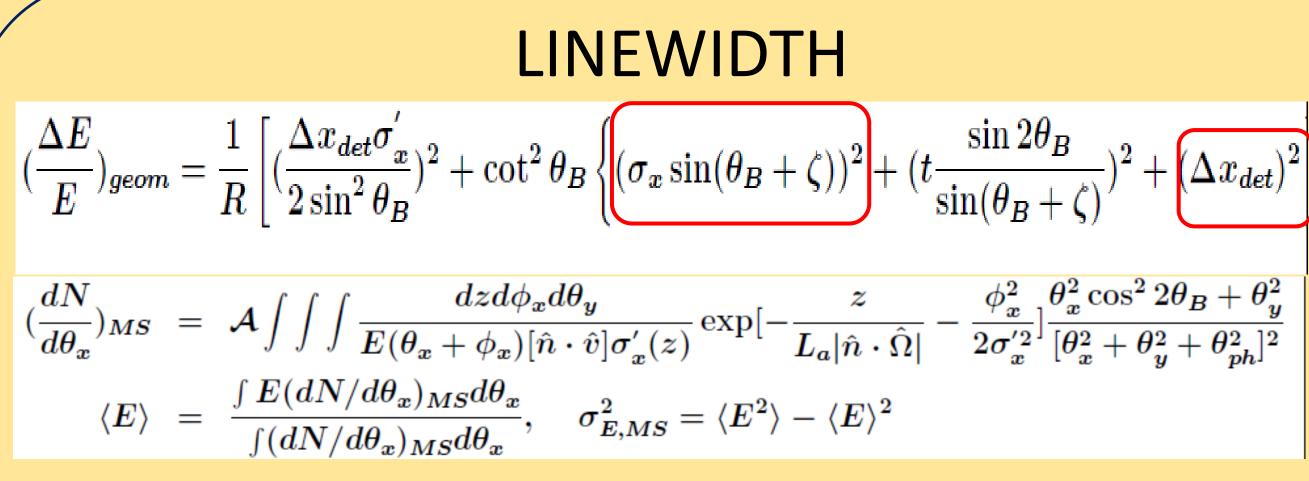
- Photon intensity depends on path length in crystal, angle between lattice plane and normal to surface
- Also on the susceptibility, crystal structure factor. Only some planes allowed
- Angular spectrum is broadened by multiple scattering, angular resolution

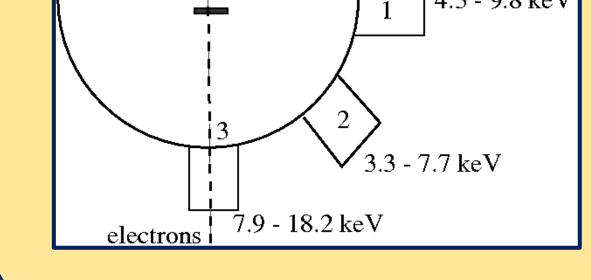
div=1mrad -----


Plane	$\sigma'[{ m mrad}]$	Yield	Spect. Brill.	
	0.01	0.38	35.1	
$(2,\!0,\!ar{2})$	0.1	0.35	$1.9{ imes}10^5$	
	1.0	0.16	$1.8{ imes}10^8$	


Y: 10^{-4} phot/(e⁻ - sr)

S.B: phot/(mm-mrad)²0.1%BW


- PXRC along (2,0,-2) plane, channeling along (1,1,0) plane without crystal rotations
- Yield decreases with beam divergence, but spectral brilliance increases



Port	Plane 111			Plane 220		
	Energy	t/L_a	Sp. Br. [×10 ⁸]	Energy	t/L_a	Sp. Br. [×10 ⁸]
4	7.1	0.36	5.5	11.6	0.09	2.2
5	7.9	0.26	5.7	12.8	0.07	2.1
Port	Plane 311			Plane 400		
	Energy	t/L_a	Sp. Br. [×10 ⁸]	Energy	t/L_a	Sp. Br. [×10 ⁸]
4	13.6	0.06	0.59	16.4	0.04	0.59
5	15.1	0.05	0.57	18.2	0.03	0.56

- Smaller linewidth increases brilliance, important for applications
- Geometric effects and multiple scattering are largest effects \bullet
- Main geometric effects from beam size and the detector width.
- Multiple scattering effects are found analytically.
- Theory agrees well with previous experimental results

- X-ray energies from 3 18 keV
- Yield, brilliance highest at ports 4, 5
- Plane (1,1,1) has highest brilliance
- Larger thickness increases brilliance for

higher energy X-rays

Port

APPLICATIONS

- Low emittance beam would give higher brilliance PXR
- Phase contrast imaging with better resolution
- Sub-ps X-ray pulses with a slit mask in chicane