News from Pythia

Neutrino grassroots discussion @ Fermilab (March 15 2016) Stefan Prestel, remotely :(

Pros and cons of PYTHIA 8

- No ep, γp or $\gamma \gamma$ incoming beams.
- Fewer in-built processes.

Pros and cons of PYTHIA 8

- No ep, γp or $\gamma \gamma$ incoming beams.
- Fewer in-built processes.
- + Evolved MPI model, sophisticated diffractive machinery.
- + au polarisation in production and decay.
- + More perturbative physics: Matching and Merging!
- + Simple card files: Should be better match for software frameworks. Compatible with modern in- and outputs
- + Simple and extensive online documentation http://home.thep.lu.se/~torbjorn/pythia82html/Welcome.html

Pros and cons of PYTHIA 8

Sophisticated showers for DIS available. $\gamma p/\gamma \gamma$ under investigation.

- No ep, γp or $\gamma \gamma$ incoming beams.

This is a plus!

- Fewer in-built processes.
- + Evolved MPI model, sophisticated diffractive machinery.
- + au polarisation in production and decay.
- + More perturbative physics: Matching and Merging!
- + Simple card files: Should be better match for software frameworks. Compatible with modern in- and outputs
- + Simple and extensive online documentation http://home.thep.lu.se/~torbjorn/pythia82html/Welcome.html

Only for pp

PYTHIA6 development has stopped. PYTHIA6 support is not high-priority for developers any longer.

LHC lessons

LHC is a jet machine need to get jet production right need to get jet evolution right

LHC is a jet machine need to get jet production right need to get jet evolution right

LHC physics requires accurate & precise QCD calculations: Next-to-leading order, next-to-next-to-leading order, "not-so-approximate" all-order resummation...

Data can only be described if we

Combine multiple accurate fixed-order calculations with each other, and with all-order resummation, into a single precise prediction (\triangleq matrix element merging)

Done in PYTHIA 8

In retrospect, also important for HERA data

SHERPA predictions for the jet cross sections in H1 (in Q^2 and $E_{T,B}^2/Q^2$). Plot taken arXiv:0912.3715

Exact psp factorisation enables ME corrections. Good agreement after combining many multi-jet matrix elements w/ each other and w/ shower.

In retrospect, also important for HERA data

SHERPA predictions for the jet cross sections in H1 (in Q^2 and $E_{T,B}^2/Q^2$). Plot taken arXiv:0912.3715

Exact psp factorisation enables ME corrections. Good agreement after combining many multi-jet matrix elements w/ each other and w/ shower.

The DIS issue: Parton showers and cross section

Initial state radiation in a traditional PS proceeds by

- Take massless incoming line, shift to accommodate virtuality t.
- Split the massive incoming line to produce the emission.

Naive introduction of a virtuality t means $x_{After} \neq x_{Bjorken \ Before}$

- \Rightarrow Shower changes momentum fraction of the "core" process.
- \Rightarrow Must recalculate scattering cross section $d\sigma = f(x, Q^2)d\hat{\sigma}$ after each emission! \Rightarrow **Not possible / practical.**

Fix in pp: "Backward evolution". Electrons take recoil. Bad for DIS.

The new Pythia 8 model

Pythia 6 model

• Redefine hard scattering

- Energy sharing very messy
- ♦ Not coherent
- ♦ Holes in phase space
- Jet rates technically depend on custom structure functions.
- Cannot easily improved with full MEs \rightarrow uncertain for large W^2
- + GVMD model for $W^2 \lesssim 1 \text{GeV}$

Pythia 8 model (DIRE)

- Exact on-shell phase space factorization
- Straight-forward energy sharing
- ♦ Coherence built in
- ♦ Full phase space coverage
- ♦ Depends only on standard structure functions^(*)
- $+ \quad \mbox{Exact} \quad \mbox{phsp} \quad \mbox{factorization} \\ \mbox{allows merging with exact MEs} \\$
- − No diffraction yet for $W^2 \lesssim 1 \text{GeV}$

^(*) up to power corrections from difference of kernels to DGLAP.

Relevance for neutrinos?

For PYTHIA 8, neutrino scattering is deep inelastic scattering.

Still new in PYTHIA 8. We know that LHC improvements may fix issues with HERA (high- W^2) data (work in progress)

How high W^2 for current experiments? Varied Pythia 6 parameters?

Summary and Outlook

Things to do in PYTHIA 8:

Diffractive model, Low-multiplicity hadronization, generalized proton structure.

Opportunities:

PYTHIA 8 is maintained and developed (in C++). Hadronization tunes more up-to-date. Well-defined showers may allow better interface to non-perturbative physics. High- W^2 physics can be made more reliable.

Questions

Is neutrino phenomenology sensitive to improvements in PYTHIA 8? What about nuclear effects, also for eA and pA?