Peer Review: It’s not just for Physics Anymore!

Rob Kutschke
LArSoft Usability Workshop
June 23, 2016
Spirit of this talk

• I will point out some things that the HEP community has traditionally done very well
• I will discuss some lessons learned from the broader software development community
• It’s time to draw lessons from all of the above and apply them to HEP software development.
Outline

- HEP analysis peer review process
- HEP has a good track record of integration testing
- Lessons learned from HEP construction project reviews.
 - Just the good parts!
- Lessons from the software development community
- Use the specialists
- Summary
Life Cycle of a Physics Analysis

- HEP Community knows how to review an analysis very well:
 - Genesis of the idea
 - Analysis sub-group
 - Analysis group
 - Formal internal review (aka “god-parenting”)
 - Final review by collaboration
 - Peer review organized by the journal
 - Publication

- Very few outright errors get through the process
Life Cycle of a Physics Analysis

- HEP Community knows how to do this very well:
 - Genesis of the idea
 - Analysis sub-group
 - Analysis group
 - Formal internal review (aka “god-parenting”)
 - Final review by collaboration
 - Peer review organized by the journal
 - Publication
 - Feedback from the HEP community

- Very few outright errors get through the process
Life Cycle of a Physics Analysis

• HEP Community knows how to do this very well:
 – Genesis of the idea
 – Analysis sub-group
 – Analysis group
 – Formal internal review (aka “god-parenting”)
 – Final review by collaboration
 – Peer review organized by the journal
 – Publication
 – Feedback from the HEP community

• Very few outright errors get through the process

Cross-pollination with other groups and subgroups
Analysis Sub-group

• Most of the work is done in these meetings.
• Usually a spirit of “we are all on the same team”.
• Ongoing, weekly or bi-weekly meetings
 – Powerpoint slides; maybe a discussion forum?
 – Eventually a written internal report (or two, or three)
• A continuum of “styles”:
 – The more experienced mentoring the less experienced
 – An on-going community self-education project
 – Any analysis has elements from points along this continuum
• Invite outside experts as appropriate
• Cross-pollination with other groups and sub-groups
• An integral part of the education/mentoring process
Analysis Group ... Journal Review

- Presentations in group and collaboration meetings
- Written report by authors
 - Input to the formal internal review process.
 - Many errors and omissions caught by authors at this step
- Sometimes a side working group for a cross-cutting issue.
- Presentations and written report by the formal internal review committee.
- Communication with journal reviewers is logged for everyone to see.
Features of the HEP Analysis Peer Review Process

• It works really well!
• A lot of the value is in the early stages in which review is lightweight and frequent
• A lot of the value is in the preparation:
 – of proper internal note
 – for the formal internal review
• A small group of people are charged with carefully vetting the algorithms and results.
 – But everyone is invited to participate
• External experts invited when appropriate
• Full information is available to all collaborators
Features of the HEP Analysis Peer Review Process

• It works really well!
• A lot of the value is in the early stages in which review is lightweight and frequent
• A lot of the value is in the preparation:
 – of proper internal note
 – for the formal internal review
• A small group of people are charged with carefully vetting the algorithms and results.
 – But everyone is invited to participate
• External experts invited when appropriate
• Full information is available to all collaborators
• An integral part of the education/mentoring process
HEP and Integration Testing
HEP and Integration Testing

• Most mature HEP experiments have broad integration testing suites:
 – A small subset is run as part of the nightly build
 – These days a smaller subset may run in a CI build.
 – The full set is used for release validation.
 – Focus on:
 • Ensure repeatability when it is expected
 • Ensure an overall improvement when it is expected
 – The suite needs to be broad

• Overall we do this well but we usually don’t get started as early as we should
 – Mu2e had good integration testing for CD3, but not CD2.
Lessons Learned from DOE Construction Project Reviews
Lessons Learned from Mu2e Reviews

• Mu2e just finished a DOE CD3c review
 – Full DOE 413.3b) is much too heavy-weight for us
 – But there were good things in the process

• Over the past few years, each Mu2e subsystem has had a series of technical reviews
 – Organized by Mu2e
 – Often separate reviews for mechanics and electronics
 – Reports from these reviews available to CDx reviewers
 – Each subsystem still needs a final Construction Readiness Review before it’s funding is final

• Reviews are expensive
 – Money, hours and opportunity cost
 – Costs included in the project budget and plan of work.
Lessons Learned from Mu2e Reviews

• Impressions of most Mu2e people:
 – A lot of value added came from the prep work for the review
 – Each upcoming review motivated us to:
 • Have a second (or third) set of eyes look at everything
 • Track down and tie up loose ends.

• Reviewer comments
 – All in all of mixed value
 – But some were extremely valuable

• On net the reviews were worth their cost
Lessons from the Software Development Community
Lessons From the Software Development Community

• In many successful software companies, code review is a critical part of the development cycle.
• People have studied what works and what does not
• Some references from Marc Mengel
 – FAGAN, M. Design and code inspections to reduce errors in program development, _IBM Systems Journal 15(3) 1976_ pp 1820211
 – Smartbear: Best Kept Secrets of Code Review
 • But remember that they are selling their automated tools!
Lessons from the Software Development Community

• I have not yet read these carefully but a few things jump out:
 – Most errors are found by the authors when preparing for the review
 • Marc remembers a number of about 70% from, he thinks, the ”Mythical Man Month”.
 – Many lightweight reviews give better results fewer heavyweight reviews
 • Thinks of this as an analog to the weekly sub-group meeting at which one week’s work is discussed
 – Optimum chunk of code for a lightweight review is 200 to 400 lines.
Use the Specialists
Use the Specialists

- Skills needed to develop a successful algorithm include
 - Physics drivers
 - Detector physics
 - Quirks of this particular detector – often dominant
 - For LArSoft, there are potentially many detectors!
 - What do downstream algorithms and analyzers expect?
 - Software tools
 - Big and getting bigger
- Unreasonable to expect anyone master everything
 - But our community does cover all of the bases
 - Invite relevant experts to participate at appropriate times
Summary

- HEP has a great record of peer review for physics analysis.
 - Integrated QC and education/mentoring
 - In HEP software we don’t do this
- Mature HEP experiments do good integration testing
- We know the value in construction project reviews.
- The software community has advice for reviews
 - Many lightweighter better than fewer heavyweight
- All find that much value added is in the prep for the review
 - In our case: having a deadline, profiling, prep presentation
- LArSoft needs to apply these lessons:
 - Reviews have a cost: people, time, opportunity cost
 - SCD and Experiment management must budget for this cost