
Mu2e’s Use of fcl: A Case Study

Rob Kutschke, Andrei Gaponenko
LArSoft Usability Workshop
June 22, 2016

Mu2e-‐doc-‐7654-‐v3

Some Background and General Comments

• With the recent improvements fcl is much more powerful than
it was 5 years ago,

• It is not a programming language – it is a language for
specifying a static configuration
– We like this model
– When we need to script things we use bash/perl/python at the

discretion of the person doing the work
• This leads to large volumes of fcl files but SAM is great at

managing them
– By design we can do everything we need to by prefixing and

postfixing a handful of fcl definitions to a base fcl file.
• We never parse and edit in place

6/22/2016Kutschke/Mu2e & fcl: A Case Study2

A Common Use Case Using Base plus Delta

• The physics is all in the included file, which is kept is in the
code release and resolved using FHICL_FILE_PATH.

• The other lines are all script generated
– Ensures unique EventIds and random seeds across an

ensemble of many 10,000 process jobs
• 10,000 final fcl files go into SAM

6/22/2016Kutschke/Mu2e & fcl: A Case Study3

#include "JobConfig/cd3/cosmic/cosmic_s1_general.fcl"

source.firstRun: 1500
source.firstSubRun: 1
source.maxEvents: 1000000
services.user.SeedService.baseSeed: 669411106

// Also set unique output file names – but they don’t fit here.

• Prepare 10,000 fcl files for 10,000 grid processes:

Parameter Set Validation

• This is a great step forward and we are very happy that it is
now available.
– We have had some painful times without it.

• We have experimented with it and will add it to our most
important modules over the summer.
– Then extend it to all modules at lower priority.

• You need to do the migration from the bottom up.

6/22/2016Kutschke/Mu2e & fcl: A Case Study4

Design Goals for Mu2e use of fcl

1) Single points of maintenance
2) A .fcl file that runs correctly interactively can be submitted as

a grid job without change

6/22/2016Kutschke/Mu2e & fcl: A Case Study5

• For	 a	 little	 while	 we	 got	 away	 with	 the	 solution	 “everyone	
should	 just	 remember	 all	 the	 steps	 needed	 to	 do	 it	 right”.

• We	 all	 know	 that	 this	 does	 not	 scale	 well	 but	 the	
problems	 started	 immediately.

Single Points of Maintenance

1) Parameters that affect physics may not have default values
in code.
• The default values must be in .fcl files
• We have not yet achieved this but we are working toward it.

2) When two modules have a common piece of configuration,
define it in a prolog and use it in both places

3) When you need to override a few parameters:
– Use a base+delta style; do not copy and edit.

6/22/2016Kutschke/Mu2e & fcl: A Case Study6

• All	 of	 the	 above	 lead	 to	 deep	 configurations
• I	 believe	 that	 this	 is	 a	 language	 independent	 statement
• It	 would	 also	 be	 true	 if	 we	 used	 python,	 json or	 xml	 as	

a	 configuration	 language

No Physics Defaults in Code - 1

• For example:

• Why?
– A single well defined place to find the default value.
– Experience has shown that people change the code, forget

about the value in the .fcl file and are confused when results do
not change as expected.
• Or worse, they just assume that they did it right, don’t check and

discover the error after 1,000,000 CPU hours

6/22/2016Kutschke/Mu2e & fcl: A Case Study7

double pmin=
pset.get<double>(“pmin”); // Recommended

double pmin=
pset.get<double>(“pmin”, 100.); // Not allowed

No Physics Defaults in Code - 2

• Downside: this can lead to big parameter sets:
– The solution is to factorize:

• A final comment:
– Non-physics parameters may have default values in code
– ie diagnostics level

6/22/2016Kutschke/Mu2e & fcl: A Case Study8

label : {
module_type : MyModule
userParams : {

a : 1
b : 2

}
expertParams : @local::myModuleExpertDefaults

}

Dealing with Deep Configurations

• Deep configurations run the danger of being write-only
• The following options to art are indispensable:

• The two annotate features are a very welcome addition.
• It also helps if the creators of the configuration document the

big picture.
6/22/2016Kutschke/Mu2e & fcl: A Case Study9

--debug-config <file> Output post-processed configuration to
<file> and exit. Equivalent to
env ART_DEBUG_CONFIG=<file> art ...

--config-out <file> Output post-processed configuration to
<file> and continue with job.

--annotate Include configuration parameter source
information.

--prefix-annotate Include configuration parameter source
information on line preceding parameter
declaration.

Example Drawn From Event Mixing

• Configuring 7 instances of one module
– The module has many configuration parameters – about 15
– Only two differ from one instance to another

6/22/2016Kutschke/Mu2e & fcl: A Case Study10

Event Mixing – Mixing Step

• Read in one signal event (optional)
• Read in events from 7 separate background sources

– Use 7 mix-filter modules, one per BG source
– Each module reads in a random number of events from its set

of background files
• Mean is Poisson random variate

– ~3000 events per signal event
• For each subsystem, the art::Event now contains 7 (or 8)

data products containing analog hit precursors.
• Overlay hit precursors on top of each other, apply a model of

the electronics and form digis.
• Ready for reconstruction.

6/22/2016Kutschke/Mu2e & fcl: A Case Study11

Event Mixing – Base Configuration of a Mixing Module

• Two parameters have values of @nil
– I think of these as “pure virtual” parameters

6/22/2016Kutschke/Mu2e & fcl: A Case Study12

BEGIN_PROLOG
mixinFilenames : @nil
mixerTemplate: {

module_type : MixMCEvents
fileNames : @local::mixinFilenames
// Many lines elided …
detail : {

mean : @nil
genModuleLabel : “generate”
g4ModuleLabel : “detectorFilter”
g4StatusTag : “g4run”
stepInstanceNames : @local::stepInstanceNames
// Many lines elided …

}
}
END_PROLOG

Comments on the previous slide

• Items inside detail : {} are parsed by Mu2e code
• Items outside detail : {} are parsed parsed by art code.

6/22/2016Kutschke/Mu2e & fcl: A Case Study13

Event Mixing – fcl fragment for a mixing job

• Each background set has many files.
• File names are randomized by the machinery that creates fcl

files for grid jobs – filenames are injected at that time.

6/22/2016Kutschke/Mu2e & fcl: A Case Study14

physics : {
filters : {
flashMixer : @local::mixerTemplate
dioMixer : @local::mixerTemplate
// and 5 more

}
}
See docdb-6273 for source of mean values.
physics.filters.flashMixer.detail.mean : 5.11e-5
physics.filters.dioMixer.detail.mean : 8.37e-6
// and 5 more

Event Mixing – Another way to write the previous slide

• Previous slide was the only way prior to @table.
• For many cases we prefer this style.

6/22/2016Kutschke/Mu2e & fcl: A Case Study15

physics : {
filters : {
flashMixer :{

@table::mixerTemplate
mean : 5.11e-5

}
dioMixer : {

@table::mixerTemplate
mean : 8.37e-6

}
// and so on

}
}

Example Drawn from Track Fitting

• How to treat an ensemble of many modules as a single unit
for purposes of top level configuration

• This allows changes to be made inside the unit without any
need for changes to end user fcl.
– For example splitting one module into several modules

6/22/2016Kutschke/Mu2e & fcl: A Case Study16

Track Finding and Fitting

• In Mu2e tracking finding and fitting is implemented as a
sequence of 8 modules plus one or more final fitter modules

• The final fitter comes in 20 flavors:
– (+, -) * (e, mu, pi, K, p) * (upstream, downstream)

• This started life as a single module that did everything
• Then we split it into 3 modules

– Many end users had to hand update fcl files
– So we developed the strategy shown here

• Then we split into 5 modules; and later to 8 modules.
– No change to end user fcl or code.

6/22/2016Kutschke/Mu2e & fcl: A Case Study17

Track Fitting prolog 1/3 – Define a base configuration

• This is not a runnable configuration.
• Some @locals refer to other @locals, 3 or 4 deep
• END_PROLOG is in 2 pages …

6/22/2016Kutschke/Mu2e & fcl: A Case Study18

BEGIN_PROLOG

Basic configuration of the fitter module
TrkRecFit : {

module_type : TrkRecFit
SeedFit : @local::KalSeedFit
KalFit : @local::KalFinalFit
KalDiag : @local::KalDiagDirect
SeedCollectionLabel : @nil
fitparticle : @nil
fitdirection : @nil

}

Track Fitting prolog 2/3 – Define complete configurations

• These are complete configurations and will run.

6/22/2016Kutschke/Mu2e & fcl: A Case Study19

downstream going electron
TrkRecFitDownstreameMinus : {

@table::TrkRecFit
SeedCollectionLabel : "PosHelixFinder"
fitparticle : @local::Particle.eminus
fitdirection : @local::FitDir.downstream

}

upstream going electrons
TrkRecFitUpstreameMinus : {

@table::TrkRecFit
SeedCollectionLabel : ”NegHelixFinder"
fitparticle : @local::Particle.eminus
fitdirection : @local::FitDir.upstream

}
// And so on: (+, -) * (e, mu, pi, K, p) * (up, down)

Track Fitting prolog 3/3 – define units of work

6/22/2016Kutschke/Mu2e & fcl: A Case Study20

Tracking : {
producers : {

FSHPreStereo : @local::FSHPreStereo
MakeStereoHits : @local::MakeStereoHits
// and 5 more modules

// Up to 20 complete fitter configurations
TRFDownstreameMinus : @local::TrkRecFitDownstreameMinus
TRFUpstreameMinus : @local::TrkRecFitUpstreameMinus
TRFDownstreammuMinus : @local::TrkRecFitDownstreammuMinus

}
TPRDownstreameMinus : […] // The full sequence of modules
TPRDownstreammuMinus : […] // The full sequence of modules
// and so on

}
END_PROLOG

Top level fcl file that uses Track Fitting

• This says very clearly what it does: it looks for two types of
tracks, downstream going e- and mu-.
– Goal is to make fcl talk physics, not fcl

• Major refactoring of the tracking modules took place behind
the scenes with zero changes to end user fcl files.

• It’s still not perfect – see backup slides.

6/22/2016Kutschke/Mu2e & fcl: A Case Study21

physics : {
producers : {

@table::Tracking.producers
}

tpath : [@sequence::Tracking.TPRDownstreameMinus,
@sequence::Tracking.TPRDownstreammuMinus]

trigger_paths : [tpath]
}

Features to Enable grid processing

• The example originated in EventMixing but it would take too
long to give the full story
– So this is stripped down.

6/22/2016Kutschke/Mu2e & fcl: A Case Study22

A fragment that works interactively for testing: myjob.fcl

6/22/2016Kutschke/Mu2e & fcl: A Case Study23

BEGIN_PROLOG
mixinFilenames : [“/mu2e/data/users/kutschke/test.art”]
END_PROLOG

physics : {
producers : {

a : {
@table::A
inputFile : @local::mixinFilenames

}
b : {

@table::B
inputFile : @local::mixinFilenames

}
// A real job might have 2, 3, 4 … more modules like this

}
}

Statement of the Problem

• I want to run the myjob.fcl interactively for testing and then
run exactly the same myjob.fcl on the grid

• In each grid process, I want my grid script to replace the
value of the PROLOG parameter mixinFilenames with a
different value. The value changes from one grid process to
the next.

• I do not want to parse the file to find everywhere that
mixinFilenames is used and change those – I want to just
change mixinFilenames and have that change propagate via
@local::

• I do not want to edit the file so that the interactive fcl and grid
fcl are different.

6/22/2016Kutschke/Mu2e & fcl: A Case Study24

Attempt 1: This fails

• This fails because mixinFilenames still had it’s original value
at the time that the two @local:: were evaluated.

6/22/2016Kutschke/Mu2e & fcl: A Case Study25

#include “mjob.fcl”

mixinFilenames : [“/mu2e/data/users/kutschke/differentFile.art”]

Attempt 2: This fails too

• This fails because the definition of mixinFilenames inside
myjob.fcl overrides the value at the top of the file. This
happens before the @local:: are evaluated.

6/22/2016Kutschke/Mu2e & fcl: A Case Study26

mixinFilenames:[“/mu2e/data/users/kutschke/differentFile.art”]

#include “myjob.fcl”

Attempt 3: This works!

• This works because the definition of mixinFilenames inside
myjob.fcl is silently ignored.

• This the use case that motivated the creation of
@protect_ignore.

6/22/2016Kutschke/Mu2e & fcl: A Case Study27

mixinFilenames @protect_ignore: [
“/mu2e/data/users/kutschke/differentFile.art”]

#include “myjob.fcl”

Thanks to the art team!

• We appreciate the help we get from the art team whether we
come to them with bug reports or just to ask advice.
– We usually get a fast turn around and the problem is solved.

• We appreciate the time that they take to ask enough
questions so that they can discover the question we should
have asked.
– Sometimes we learn that it is very different from the question

we actually asked!

6/22/2016Kutschke/Mu2e & fcl: A Case Study28

Patterns	 we	 show	 here	 were	 developed	 by	 many	
members	 of	 the	 art	 team	 and	 many	 members	 of	 the	
Mu2e	 collaboration.

Backup Slides

6/22/2016Kutschke/Mu2e & fcl: A Case Study29

Event Mixing – Generation Step

• We model of 7 sources of background hits
– Muon Decay in Orbit
– Protons from muon nuclear capture
– Neutrons from muon nuclear capture
– Photons from muon nuclear capture
– Deuterons from muon nuclear capture
– Beam flash
– Muons that stop on material other than our stopping target

• Generate single particle events from each source.
• Pass through G4
• Only write out events that make hits (small fraction of events)
• Save analog precursors to digis

6/22/2016Kutschke/Mu2e & fcl: A Case Study30

It’s still not quite perfect

• This is a comment on page 21.
• If we define all 20 possible fitter modules in the

Tracking.producers table but don’t use them all, then we get
some warning messages at job start up
– “Module is not used in any path”

• In the trigger path, the 7 modules that precede the final fitter
module appear twice.
– This is OK since art automatically identifies repeated modules

and runs only on the first encounter. It remembers the result on
subsequent encounters.

– The wasted time is trivial on the scale of the whole job

6/22/2016Kutschke/Mu2e & fcl: A Case Study31

