Mu2e-doc-7654-v3

2= Fermilab

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Mu2e’s Use of fcl: A Case Study

Rob Kutschke, Andrei Gaponenko
LArSoft Usability Workshop
June 22, 2016

Some Background and General Comments

With the recent improvements fcl is much more powerful than
it was 5 years ago,

It is not a programming language — it is a language for

specifying a static configuration

— We like this model

— When we need to script things we use bash/perl/python at the
discretion of the person doing the work

» This leads to large volumes of fcl files but SAM is great at
managing them

— By design we can do everything we need to by prefixing and
postfixing a handful of fcl definitions to a base fcl file.
 We never parse and editin place

J€ :
3¢ Fermilab
Kutschke/MuZ2e & fcl: A Case Study 6/22/2016

A Common Use Case Using Base plus Delta
* Prepare 10,000 fcl files for 10,000 grid processes:

#include "JobConfig/cd3/cosmic/cosmic_sl general.fcl"

source.firstRun: 1500

source.firstSubRun: 1

source.maxkEvents: 1000000
services.user.SeedService.baseSeed: 669411106

// Also set unique output file names - but they don’t fit here.

* The physics is all in the included file, which is kept is in the
code release and resolved using FHICL_FILE_PATH.

* The other lines are all script generated

— Ensures unique Eventlds and random seeds across an
ensemble of many 10,000 process jobs

« 10,000 final fcl files go into SAM

2= Fermilab

3 Kutschke/MuZ2e & fcl: A Case Study 6/22/2016

Parameter Set Validation

This is a great step forward and we are very happy that itis
now available.

— We have had some painful times without it.

We have experimented with it and will add it to our most
important modules over the summer.

— Then extend it to all modules at lower priority.
You need to do the migration from the bottom up.

2= Fermilab

Kutschke/MuZ2e & fcl: A Case Study 6/22/2016

Design Goals for Mu2e use of fcl

1) Single points of maintenance
2) A .fcl file that runs correctly interactively can be submitted as
a grid job without change

* For a little while we got away with the solution “everyone
should just remember all the steps needed to do it right”.

 We all know that this does not scale well but the
problems started immediately.

2= Fermilab

5 Kutschke/MuZ2e & fcl: A Case Study 6/22/2016

Single Points of Maintenance

1)

Parameters that affect physics may not have default values
in code.

» The default values must be in .fcl files

» We have not yet achieved this but we are working toward it.

When two modules have a common piece of configuration,
define it in a prolog and use it in both places

When you need to override a few parameters:
— Use a base+delta style; do not copy and edit.

* All of the above lead to deep configurations
* | believethatthisis a language independent statement
* |twouldalsobe true if we used python, json or xml as
a configuration language

2= Fermilab

Kutschke/MuZ2e & fcl: A Case Study 6/22/2016

No Physics Defaults in Code - 1

* For example:

double pmin=
pset.get<double>(“pmin”); // Recommended

double pmin=
pset.get<double>(“pmin”, 100.); // Not allowed

 Why?
— A single well defined place to find the default value.

— Experience has shown that people change the code, forget
about the value in the .fcl file and are confused when results do

not change as expected.

« Or worse, they just assume that they did it right, don’t check and
discover the error after 1,000,000 CPU hours

2= Fermilab

7 Kutschke/MuZ2e & fcl: A Case Study 6/22/2016

No Physics Defaults in Code - 2

* Downside: this can lead to big parameter sets:
— The solution is to factorize:

label : {
module type : MyModule
userParams : {
a . 1
b : 2
}

expertParams : @local::myModuleExpertDefaults

;

» Afinal comment:
— Non-physics parameters may have default values in code
— le diagnostics level

2= Fermilab

8 Kutschke/MuZ2e & fcl: A Case Study 6/22/2016

Dealing with Deep Configurations

» Deep configurations run the danger of being write-only
* The following options to art are indispensable:

--debug-config <file> Output post-processed configuration to
<file> and exit. Equivalent to
env ART _DEBUG_CONFIG=<file> art

--config-out <file> Output post-processed configuration to
<file> and continue with job.

--annotate Include configuration parameter source
information.

--prefix-annotate Include configuration parameter source
information on line preceding parameter
declaration.

* The two annotate features are a very welcome addition.

* [t also helps if the creators of the configuration document the
big picture.

2= Fermilab

9 Kutschke/MuZ2e & fcl: A Case Study 6/22/2016

Example Drawn From Event Mixing

» Configuring 7 instances of one module
— The module has many configuration parameters — about 15
— Only two differ from one instance to another

2= Fermilab

10 Kutschke/MuZ2e & fcl: A Case Study 6/22/2016

Event Mixing — Mixing Step

11

Read in one signal event (optional)

Read in events from 7 separate background sources
— Use 7 mix-filter modules, one per BG source

— Each module reads in a random number of events from its set
of background files

* Mean is Poisson random variate
— ~3000 events per signal event

For each subsystem, the art::Event now contains 7 (or 8)
data products containing analog hit precursors.

Overlay hit precursors on top of each other, apply a model of
the electronics and form digis.

Ready for reconstruction.

2= Fermilab

Kutschke/MuZ2e & fcl: A Case Study 6/22/2016

Event Mixing — Base Configuration of a Mixing Module

BEGIN_PROLOG

mixinFilenames : @nil
mixerTemplate: {
module_ type : MixMCEvents
fileNames . @local::mixinFilenames
// Many lines elided
detail : {
mean ;. @nil
genModulelLabel . “generate”
g4ModulelLabel . “detectorFilter”
gdStatusTag . “g4run”
stepInstanceNames . @local::stepInstanceNames
// Many 1lines elided ..
}
}
END_PROLOG

« Two parameters have values of @nil

— | think of these as “pure virtual” parameters
a¢ Fermilab

12 Kutschke/MuZ2e & fcl: A Case Study 6/22/2016

Comments on the previous slide

+ ltems inside detall : {} are parsed by Mu2e code
 ltems outside detail : {} are parsed parsed by art code.

2= Fermilab

13 Kutschke/MuZ2e & fcl: A Case Study 6/22/2016

Event Mixing — fcl fragment for a mixing job

physics : {
filters : {
flashMixer . @local::mixerTemplate
dioMixer . @local::mixerTemplate
// and 5 more
}
}

See docdb-6273 for source of mean values.

physics.filters.flashMixer.detail.mean
physics.filters.dioMixer.detail.mean

// and 5 more

» Each background set has many files.

5.11e-5
3.37e-6

* File names are randomized by the machinery that creates fcl
files for grid jobs — filenames are injected at that time.

14 Kutschke/Mu2e & fcl: A Case Study

2= Fermilab

6/22/2016

Event Mixing — Another way to write the previous slide

physics : {
filters : {

flashMixer :{
@table: :mixerTemplate
mean : 5.11e-5

}

dioMixer : {
@table: :mixerTemplate
mean . 8.37e-6

}

// and so on
}
}

* Previous slide was the only way prior to @table.

« For many cases we prefer this style.
2F Fermilab

15 Kutschke/MuZ2e & fcl: A Case Study 6/22/2016

Example Drawn from Track Fitting

« How to treat an ensemble of many modules as a single unit
for purposes of top level configuration
* This allows changes to be made inside the unit without any
need for changes to end user fcl.
— For example splitting one module into several modules

2= Fermilab

16 Kutschke/MuZ2e & fcl: A Case Study 6/22/2016

Track Finding and Fitting

* In Mu2e tracking finding and fitting is implemented as a
sequence of 8 modules plus one or more final fitter modules

* The final fitter comes in 20 flavors:

—(+,-) " (e, mu, pi, K, p) * (upstream, downstream)
* This started life as a single module that did everything
 Then we splitit into 3 modules

— Many end users had to hand update fcl files
— So we developed the strategy shown here

* Then we splitinto 5 modules; and later to 8 modules.
— No change to end user fcl or code.

2= Fermilab

17 Kutschke/MuZ2e & fcl: A Case Study 6/22/2016

Track Fitting prolog 1/3 — Define a base configuration

BEGIN PROLOG

Basic configuration of the fitter module
TrkRecFit : {

module type . TrkRecFit

SeedFit . @local::KalSeedFit
KalFit . @local::KalFinalFit
KalDiag . @local::KalDiagDirect
SeedCollectionLabel : @nil

fitparticle ; @nil

fitdirection . @nil

« This is not a runnable configuration.
« Some @Iocals refer to other @locals, 3 or 4 deep
« END_PROLOG is in 2 pages ...
a¢ Fermilab

18 Kutschke/MuZ2e & fcl: A Case Study 6/22/2016

Track Fitting prolog 2/3 — Define complete configurations

downstream going electron

TrkRecFitDownstreameMinus : {
@table: :TrkRecFit
SeedCollectionLabel : "PosHelixFinder"
fitparticle . @local::Particle.eminus
fitdirection . @local::FitDir.downstream
}

upstream going electrons
TrkRecFitUpstreameMinus : {
@table: :TrkRecFit

SeedCollectionLabel : ”"NegHelixFinder"
fitparticle . @local::Particle.eminus
fitdirection . @local::FitDir.upstream

}
// And so on: (+, -) * (e, mu, pi, K, p) * (up, down)

* These are complete configurations and will run.

2= Fermilab

19 Kutschke/MuZ2e & fcl: A Case Study 6/22/2016

Track Fitting prolog 3/3 — define units of work

Tracking : {

producers : {
FSHPreStereo : @local: :FSHPreStereo
MakeStereoHits . @local: :MakeStereoHits

// and 5 more modules

// Up to 20 complete fitter configurations

TRFDownstreameMinus . @local::TrkRecFitDownstreameMinus
TRFUpstreameMinus . @local::TrkRecFitUpstreameMinus
TRFDownstreammuMinus . @local::TrkRecFitDownstreammuMinus
Y
TPRDownstreameMinus . [.. 1 // The full sequence of modules
TPRDownstreammuMinus : [..] // The full sequence of modules
// and so on
}
END PROLOG
2% Fermilab

20 Kutschke/MuZ2e & fcl: A Case Study 6/22/2016

Top level fcl file that uses Track Fitting

physics : {

21

producers : {
@table::Tracking.producers

}

tpath : [@sequence::Tracking.TPRDownstreameMinus,
@sequence::Tracking.TPRDownstreammuMinus]
trigger paths . [tpath]

This says very clearly what it does: it looks for two types of
tracks, downstream going e- and mu-.

— Goal is to make fcl talk physics, not fcl

Major refactoring of the tracking modules took place behind
the scenes with zero changes to end user fcl files.

It’s still not perfect — see backup slides.
a¢ Fermilab

Kutschke/MuZ2e & fcl: A Case Study 6/22/2016

Features to Enable grid processing

* The example originated in EventMixing but it would take too
long to give the full story

— So this is stripped down.

2= Fermilab

22 Kutschke/MuZ2e & fcl: A Case Study 6/22/2016

A fragment that works interactively for testing: myjob.fcl

BEGIN_PROLOG

mixinFilenames : [“/mul2e/data/users/kutschke/test.art”]
END_PROLOG
physics : {
producers : {
a . A
@table: :A
inputFile : @local::mixinFilenames
}
b . {
@table: :B
inputFile : @local::mixinFilenames
}
// A real job might have 2, 3, 4 .. more modules 1like this

}
}

2= Fermilab

23 Kutschke/MuZ2e & fcl: A Case Study 6/22/2016

Statement of the Problem

24

| want to run the myjob.fcl interactively for testing and then
run exactly the same myjob.fcl on the grid

In each grid process, | want my grid script to replace the
value of the PROLOG parameter mixinFilenames with a
different value. The value changes from one grid process to
the next.

| do not want to parse the file to find everywhere that
mixinFilenames is used and change those — | want to just
change mixinFilenames and have that change propagate via
@local::

| do not want to edit the file so that the interactive fcl and grid
fcl are different.

2= Fermilab

Kutschke/MuZ2e & fcl: A Case Study 6/22/2016

Attempt 1: This fails

#include “mjob.fcl”

mixinFilenames : [“/mu2e/data/users/kutschke/differentFile.art”]

* This fails because mixinFilenames still had it’s original value
at the time that the two @local:: were evaluated.

2= Fermilab

25 Kutschke/MuZ2e & fcl: A Case Study 6/22/2016

Attempt 2: This fails too

mixinFilenames: [“/mu2e/data/users/kutschke/differentFile.art”]

#include “myjob.fcl”

« This fails because the definition of mixinFilenames inside
myjob.fcl overrides the value at the top of the file. This
happens before the @Ilocal:: are evaluated.

2= Fermilab

26 Kutschke/MuZ2e & fcl: A Case Study 6/22/2016

Attempt 3: This works!

mixinFilenames @protect ignore: [
“/mu2e/data/users/kutschke/differentFile.art”]

#include “myjob.fcl”

This works because the definition of mixinFilenames inside
myjob.fcl is silently ignored.

This the use case that motivated the creation of
@protect_ignore.

2= Fermilab

27 Kutschke/MuZ2e & fcl: A Case Study 6/22/2016

Thanks to the art team!

* We appreciate the help we get from the art team whether we
come to them with bug reports or just to ask advice.

— We usually get a fast turn around and the problem is solved.
* We appreciate the time that they take to ask enough

guestions so that they can discover the question we should
have asked.

— Sometimes we learn that it is very different from the question
we actually asked!

Patterns we show here were developed by many
members of the art team and many members of the
MuZ2e collaboration.

2= Fermilab

28 Kutschke/MuZ2e & fcl: A Case Study 6/22/2016

Backup Slides

2= Fermilab

29 Kutschke/MuZ2e & fcl: A Case Study 6/22/2016

Event Mixing — Generation Step

« We model of 7 sources of background hits
— Muon Decay in Orbit
— Protons from muon nuclear capture
— Neutrons from muon nuclear capture
— Photons from muon nuclear capture
— Deuterons from muon nuclear capture
— Beam flash
— Muons that stop on material other than our stopping target

Generate single particle events from each source.

Pass through G4

Only write out events that make hits (small fraction of events)
Save analog precursors to digis

2= Fermilab

30 Kutschke/Mu2e & fcl: A Case Study 6/22/2016

It’s still not quite perfect

* This is a comment on page 21.

 If we define all 20 possible fitter modules in the
Tracking.producers table but don’t use them all, then we get
some warning messages at job start up

— “Module is not used in any path”

* Inthe trigger path, the 7 modules that precede the final fitter
module appear twice.

— This is OK since art automatically identifies repeated modules

and runs only on the first encounter. It remembers the result on
subsequent encounters.

— The wasted time is trivial on the scale of the whole job

2= Fermilab

31 Kutschke/MuZ2e & fcl: A Case Study 6/22/2016

