
The LArSoft code analysis process

Erica Snider

Fermilab

June 23, 2016

2

General goals of the process

 Writing good code is a process.

– Can't just sit down and “bang it out”

 With analyses, hope to improve quality and usability of code

– Usability

● Repeated design / usage pattens following from adherence to common principles

– Easier to learn and use

● Create more of a toolkit through improved design

● Allow more sophistication through layering of algorithms

– Quality

● The code does what it was intended to do (from the coding point of view)

● Good computing resource utilization

● Maintainable: more modular, easier to test, internally well documented, …

Particularly important – experiments long lived. Support needs to transition

– Include full scope of code: algorithm implementations, infrastructure

3

General goals of the process

 Writing good code is a process.

– Can't just sit down and “bang it out”

 With analyses, hope to improve quality and usability of code

– Usability

● Repeated design / usage pattens following from adherence to common principles

– Easier to learn and use

● Create more of a toolkit through improved design

● Allow more sophistication through layering of algorithms

– Quality

● The code does what it was intended to do (from the coding point of view)

● Good computing resource utilization

● Maintainable: more modular, easier to test, internally well documented, …

Particularly important – experiments long lived. Support needs to transition

– Include full scope of code: algorithm implementations, infrastructure

4

General goals of the process

 Writing good code is a process.

– Can't just sit down and “bang it out”

 With analyses, hope to improve quality and usability of code

– Usability

● Repeated design / usage pattens following from adherence to common principles

– Easier to learn and use

● Create more of a toolkit through improved design

● Allow more sophistication through layering of algorithms

– Quality

● The code does what it was intended to do (from the coding point of view)

● Good computing resource utilization

● Maintainable: more modular, easier to test, internally well documented, …

Particularly important – experiments long lived. Support needs to transition

– Include full scope of code: algorithm implementations, infrastructure

Code analysis is a strategic initiative
strongly backed by SCD

Expect strong technical support
to be available for an on-going program
of LArSoft code analyses

June 23, 2016 5

General attributes / guidelines

 The analysis procedure shall:

– Not be overly prescribed

– Be as light-weight as possible for the situation

– Be performed collaboratively with the code author(s)

– Have clear objectives in each instance

– Have adequate time and efort available for the review

– Have adequate efort allocated in advance to implement recommendations

– Have a written report to the authors, requesters, experiment ofine
coordinators, LArSoft community

 Want analyses to be manifestly useful to authors/experiments.

 We should all want to have our code reviewed/analyzed!

June 23, 2016 6

General attributes / guidelines

 The analysis procedure shall:

– Not be overly prescribed

– Be as light-weight as possible for the situation

– Be performed collaboratively with the code author(s)

– Have clear objectives in each instance

– Have adequate time and efort available for the review

– Have adequate efort allocated in advance to implement recommendations

– Have a written report to the authors, requesters, experiment ofine ofine
coordinators, LArSoft community

 Want analyses to be manifestly useful to authors/experiments.

 We should all want to have our code reviewed/analyzed!

The essence of it

June 23, 2016 LArSoft code analysis process 7

Specifc goals of each analysis

 Ensure compliance with art / LArSoft design principles

– The common principles underlying the design

 Evaluate / improve code performance

– CPU and memory

 Ensure the use of best practices in coding

– Typically aimed at either performance or maintainability

– The context of art / LArSoft is an important component of this

 Evaluate and improve high and low-level architecture

– Class structure, data product design, interface design...

 No change to the physics output

– NOT aimed at physics performance. Just make it do what it does now better

8

How the procedure was developed

 What we did

– Created a committee of experts, people with experience with code reviews

– Designed a set of guidelines based on that experience

– Ran a trial review, keeping careful notes of issues related to the process

– Wrote recommendations for the process

● https://cd-docdb.fnal.gov:440/cgi-bin/ShowDocument?docid=5765

● https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/Code_analysis_process_and_tools

 The committee

– Software engineering experts: Chris Jones, Jim Kowalkowski, Marc Paterno

– LArSoft domain experts: Gianluca Petrillo, Erica Snider

– Outside domain expert: Rob Kutschke

– Analysis trial code authors: Dorota Stefan, Robert Sulej

https://cd-docdb.fnal.gov:440/cgi-bin/ShowDocument?docid=5765
https://cdcvs.fnal.gov/redmine/projects/larsoft/wiki/Code_analysis_process_and_tools

June 23, 2016 9

Participants / roles

 Each review will involve the following parties

– Code authors

– Two software engineering experts

– An additional problem domain expert

● e.g., someone from LArSoft team, SCD reconstruction group, additional
experiment members

– Additional experts considered to be necessary or useful

– Also, observers with no ofcial role are welcome

 The following roles will be assigned

– Review leader, who will facilitate the process

● Should be one of the experts

– Scribe, who will record important conclusions or points of discussion

● Should not be the review leader

10

Conduct of the analysis

Each analysis has fve basic steps1) Initiating the review

2) Preparatory work

1) Initiating the review

3) Review meeting(s)

4) Review report

5) Follow-up work

11

Conduct of the analysis

Initiating an analysis

– Basically anyone can request a review.

● The code authors

● An experiment representative

● Core LArSoft team

● The result of some future policy (e.g., for each
“pull request” equivalent)

– Several types of analyses are possible

● General design, class structure, interfaces

● Computing performance, resource bottlenecks

● Compliance with coding or C++ practices

– At the time of the request

● Agree on type and scope of the review, the
charge to the analysis team, objectives and any
metrics needed to assess “success”

1) Initiating the review

2) Preparatory work

1) Initiating the review

3) Review meeting(s)

4) Review report

5) Follow-up work

12

Preparatory work

– Prerequisites

● Assemble analysis team

● Agreements with people who will implement the
agreed upon changes

– To make meetings as productive as possible

● Common work areas for building, profling

● Obtain test fcl and input data

● A set of tests to validate changes

● Gather viewing aids: diagrams, repository clones

● Generate reports from static analysis tool

● Generate preliminary time and memory profles

● Preview of the code by the analysis team

Conduct of the analysis

1) Initiating the review

2) Preparatory work

1) Initiating the review

3) Review meeting(s)

4) Review report

5) Follow-up work

13

Review meetings

– No pre-defned structure or format

– The following considered useful

● Agreement on how to allocate time

● Overview presentation or discussion by authors

– Introduction to major concepts and abstractions

● Discussion of targets of opportunity

– e.g., “While we were in there, we noticed that 90%
of the time was spent here...”

– Sessions should last about four hours

● Number of sessions depends on the analysis

Conduct of the analysis

1) Initiating the review

2) Preparatory work

1) Initiating the review

3) Review meeting(s)

4) Review report

5) Follow-up work

14

Review report

– Should include

● Recommended

– changes

– items for more investigation, thought, discussion

– conclusions regarding targets of opportunity

● Additional items worthy of note

● Before / after metrics, when they exist

● Comments on the process

– Should be co-authored by all involved

● Need only be long enough to specify problems
and solutions

Conduct of the analysis

1) Initiating the review

2) Preparatory work

1) Initiating the review

3) Review meeting(s)

4) Review report

5) Follow-up work

15

Follow-up work

– Scope defned by code authors / experiments in
consultation with Core LArSoft team

● Create prioritized task list

– To facilitate implementation

● Defne milestones in LArSoft issue tracker that
describe overall targets

● Enter work tasks into LArSoft issue tracker

– Each task should be under a milestone

– Experiments may choose to track tasks also

● Reports on the progress toward these milestones

– e.g., at experiment / LArSoft meetings

– Document lessons learned

● Make this list available to LArSoft community

● A brief report presented when of broad interest

Conduct of the analysis

1) Initiating the review

2) Preparatory work

1) Initiating the review

3) Review meeting(s)

4) Review report

5) Follow-up work

June 23, 2016 LArSoft code analysis process 16

A recent example: the PMA analysis

 Analyzed Pattern Matching Algorithm code

– Authors Dorota Stefan and Robert Sulej

– Analysis team: Chris Jones, Jim Kowalkowski, Rob Kutschke, Marc Paterno,
Gianluca Petrillo, Erica Snider

 Focused on

– High-level design

– Computing performance (authors priority)

– Low-level coding practices

and

– the analysis process

June 23, 2016 LArSoft code analysis process 17

A recent example: the PMA analysis

 About a week in advance

– Prepared shared repositories on GitHub

– The team read and commented on the code

– Identifed testing fcl and data

 The meetings

– Three hours on one day, two hours the next

● Each meeting focused more narrowly on particular topics

– Ran memory and CPU profling using igprof (+ valgrind, but was less useful)

– Quickly identifed performance issue with use of TVector in a tight loop

● Change resulted in factor of 2 in CPU speed (profling reported 10—20%)

● A second suggestion led to another 30% improvement, for a total factor of 3

– Identifed various possible structural and low-level improvements

June 23, 2016 LArSoft code analysis process 18

A recent example: the PMA analysis

 The report

– Everyone met a third time for about one hour to write the report

– Recommended changes, further consideration in fve areas

● Design / architecture

● LArSoft coding guidelines

● art coding guidelines

● C++ coding practices

● Code management

for three groups to implement

● Code authors

● LArSoft team

● art team

– Report is here: https://cd-docdb.fnal.gov:440/cgi-bin/ShowDocument?docid=5766

https://cd-docdb.fnal.gov:440/cgi-bin/ShowDocument?docid=5766

June 23, 2016 LArSoft code analysis process 19

A recent example: the PMA analysis

 Created frst “lessons learned” list Created frst “lessons learned” list

– Keeping transient data as module state between events can signifcantly and unnecessarily
increase the memory footprint of modules.

– TObject memory and CPU overheads can have a signifcant impact on overall performance in
some cases. Care should be exercised when choosing to use TObjects sub-classes.

– IgProf was much more convenient that Callgrind for profling work.

– Cloning the repository and using local tools was faster for looking at large amounts of code.

– The GitHub repository was very convenient for commenting.

● For structural reviews, the GitHub commenting was not very useful.
● For code conformance and best practices comments, the GitHub commenting was very

useful.
– The search facilities in git itself (e.g. git grep) are useful in looking at code. The git history

facilities are also useful.

From the report

June 23, 2016 LArSoft code analysis process 20

The authors' description of the experience

21

Important tools for analyses

 Collaborative

– GitHub.com

● Used for annotating code, chats between analysis team members

 Performance proflers

– IgProf (http://igprof.org)

– Valgrind (http://valgrind.org)

 Static code analyzers

– Clang static analyzer (http:clang-analyzer.llvm.org)

● Used by CMS, works at Fermilab

 Class structure diagramming

– No general tools available that works well

(Just used, so just used what team was familiar with)

http://igprof.org/
http://valgrind.org/
http://clang-analyzer.llvm.org/

June 23, 2016 LArSoft code analysis process 22

Summary / conclusions

 LArSoft hopes to create a culture that seeks code analysis

– Assist non-expert code authors in writing expertly crafted code

– More time to think about physics

 Had good experience with the frst analysis

– Tangible improvements: 3x faster

– Design improvements: create independent algorithmic components

– Authors are happy!

– Experiment, LArSoft team, computing providers all happy at the outcome

 Will take the next steps here, today

– Thank you Mike Wallbank (EM shower reconstruction) and Bruce Baller
(clustering) for volunteering their code!!

The end

