
Patrick Gartung

LArSoft Usability Meeting

22 June 2016

Build system explorations: Spack

• The current build system used to build Fermilab projects:

– Makes use of cmake macros that were developed with earlier

versions cmake that lacked the features of current cmake

– Makes use of environment variables defined by UPS, a

Fermilab developed environment setup tool, that has problems

running on new OS’s and in linux containers

– Only got a unified build script within the last year or so.

– Doesn’t integrate well with IDE’s available on Linux or OSX

– Uses LD_LIBRARY_PATH to find libraries

• Great for portability

• A problem on OSX ElCapitan where DYLD_LIBRARY_PATH is

squashed in shell sub-processes by SIP

– Not used anywhere else in HEP (but what build system is?)

Why look into new build systems?

2

• Spack is the “supercomputer package manager”

– Developed at LLNL for use on “supercomputers”

– but it can be used on any Linux and OSX

• Spack was presented at SC15 and caught the attention of

Fermilab developers

• Spack is like cmsbuild, buildFW, contractor, worch, lcgcmake,

conda, macports, homebrew, etc in that it

– Builds a stack of dependent software packages

• Spack is not like scram, mrb, setup_for_development, etc in

that

– Spack does not set up an environment for interactively building

software (as of v0.9.1)

• (That is where SpackDev comes in)

What is Spack?

3

• Open source, well documented and community supported

– https://github.com/LLNL/spack source code

– http://software.llnl.gov/spack documentation

– https://www.computer.org/csdl/proceedings/sc/2015/3723/00/28

07623.pdf official paper

– https://github.com/LLNL/spack/wiki Information including info

about weekly teleconference

– https://groups.google.com/d/forum/spack google group

Spack Links

4

https://github.com/LLNL/spack
http://software.llnl.gov/spack
https://www.computer.org/csdl/proceedings/sc/2015/3723/00/2807623.pdf
https://github.com/LLNL/spack/wiki
https://groups.google.com/d/forum/spack

• Each software package is defined by its own python class

– Source versions and urls

– Variants

• Used to control cmake or configure options

– Package dependencies

• syntax for a range of dependency versions and variants

– Source patches

– Build and install method

• Spack packages can be collected into a repo that is added on

to spack rather than adding to the 400+ spack built-in

packages.

– One was created by HSF to collect packages common to HEP

– https://github.com/HEP-SF/hep-spack

Spack Packages

5

• Spack sets up a build environment per package

– explicitly unsets LD_LIBRARY_PATH in the package build

environment

– compilers set to wrapper scripts that

• Add rpath to compiler and linker arguments for each package

dependency

• Add include paths to compiler arguments for each package

dependency

– sets CMAKE_PREFIX_PATH and/or PKCONFIG_PATH for

each package dependency

• Why use rpath?

– setting rpath circumvents the issue of SIP on OS X 10.11

squashing DYLD_LIBRARY_PATH in shell subprocesses

– your program always finds the right libraries regardless of

environment variables

Spack package build environment

6

• Spack worked out of the box on SLF6, SL7 and Ubuntu 14.04

– Spack includes the python packages it needs so the only requirement is

python 2.6+

• Digging a little deeper than README.md resolved any initial

misunderstandings.

• Spack worked out of the box on OS X with Xcode command line tools

installed (clang)

– Fortran support on OS X requires a Homebrew or MacPorts install of gcc with

gfortran, but that’s expected

• Spack developers and community are very helpful.

– Google group and weekly teleconference (report from HEP community

included in the agenda)

• Resolved a bug I found compiling gcc on OS X.

– Spack compiler wrapper generated command “ld -r -rpath …”.

– On linux the -rpath is ignored, on OS X this errors out.

Feedback and Experience

7

• Using the root and geant4 packages definition in hep-spack,

built on these platforms

– OSX10.10 with clang 7.0.2 and spack-built gcc 4.9.3

– OSX10.11 with clang 7.3.0 and spack-built gcc 4.9.3

– SL7 with spack-built gcc 4.9.3

– SLF6 with spack-built gcc 4.9.3

– Ubuntu 14.04 with spack-built gcc 4.9.3

Platforms built on

8

• Adding features is straightforward and the spack developers

accept many pull requests

– Create tarballs and relocate pre-built binaries

• Work by Benedikt Henger with testing by Patrick Gartung

– https://github.com/LLNL/spack/pull/445

• Refining package relocation on OSX by Patrick Gartung

– https://github.com/LLNL/spack/pull/1013

– Alternate install location

• Work by Benedikt Hegner with testing by Patrick Gartung

– https://github.com/LLNL/spack/pull/908

– Create view directories ala lcgcmake

• https://github.com/LLNL/spack/pull/869

Adding features to spack

9

https://github.com/LLNL/spack/pull/445
https://github.com/LLNL/spack/pull/1013
https://github.com/LLNL/spack/pull/908
https://github.com/LLNL/spack/pull/908

• Question during HSF workshop: Does spack catch

incompatible dependencies (i.e. different version

requirements)

• Made root dependent on one version of clhep and geant4

– I know root is not dependent on geant4. This was a test.

• Made geant4 dependent on a different version of clhep.

• Did spack catch this?

• Yes, but the error is a little cryptic:
[vagrant@localhost geant4]$ spack install root

==> Error: Invalid spec: 'clhep@2.3.2.2^cmake@3.2:'. Package clhep requires version 2.3.1.1, but

spec asked for 2.3.2.2

Incompatible dependencies

10

• Sort of, but not out of the box

• Needed some modification or replacement of existing cmake

scripts

– There are no UPS defined environment variables in the spack

build environment

• These could be defined by declaring the spack-built packages to a

UPS install, but I am not expert.

Can Spack build FNAL software?

11

• Ben Morgan has put in a lot of effort into building the art stack

with Spack

– Defined a Spack package repo with packages for cetlib, fhicl-

cpp, messagefacility and canvas

• https://github.com/drbenmorgan/artstack-spack

– All dependent on cetbuildtools2

• Attempt to redefine cetbuildtool macros without using environment

variables defined by UPS

– https://github.com/drbenmorgan/cetbuildtools2

– http://drbenmorgan.github.io/cetbuildtools2/

– Cetbuildtools macro find_ups_package() can be replaced by

cmake’s find_package() because Spack defines

CMAKE_PREFIX_PATH and/or PKGCONFIG_PATH

• Out of the box I used this to build cetlib, fhicl-cpp and

messagefacility

Can Spack build the Art stack?

12

https://github.com/drbenmorgan/cetbuildtools2
http://drbenmorgan.github.io/cetbuildtools2/

• I picked up where Ben left off with canvas

• I reused the altCmakelists.cmake files I had created for the

worch build of Art 1.14 and updated them for the latest

canvas and art.

• I added the missing cmake cetbuildtools macro

Build_Dictionary

– Initially this crashed during dictionary generation because of a

missing argument to the genreflex –D option

– This missing argument was defined by cetbuildtools using ups

environment variables

– Needed to set one environment variable in the root package

definition to the checkClassVersion script would work on linux.

• Built all of the libraries for canvas and art on SLF6 and SLF7.

Can Spack build canvas/art?

13

• With gcc yes. With clang mostly.

– Spack wants to build everything with gcc, so I had to make all of

the packages using cmake dependent on cmake%clang

• Ben was able to build everything up to canvas with clang.

• I was able to build all of the libraries for canvas and art with

clang and the changes I made for Linux.

• There was a problem loading libraries with root. The CLHEP

library could not be found because it did not use @rpath in

LC_ID_DYLIB. Patching the CLHEP CMakeLists.txt fixed this

problem and the dictionary libraries load with no error.

Can Spack build Art on OSX?

14

• I have built the larsoftobj packages nusimdata, larcoreobj,

lardataobj and larsimobj.

• The rest of larsoft can be built once I can build the packages

that the rest of larsoft depends on built.

Can Spack be used to build LArSoft?

15

• Need to set up an interactive development environment. This

is where SpackDev comes in.

• SpackDev

– Thin layer atop Spack for building sets of dependent packages

– Locates dependencies

– Builds all dependent packages

• If A->B->C and A->C and I modify C, A and B will be rebuilt

– Transparent – all SpackDev commands written to file

– SpackDev command files can be reviewed and executed

separately

– There to help you but not required. You can run the cmake

commands yourself in the build environment spack sets up.

– Build Cmake packages and non-Cmake packages

– Cmake with or without (modified) cetbuildtools

SpackDev

16

• I have built canvas, art and larsoftobj packages using spack.

• Spack fills the needs for a new build system.

• Features like relocate-able binary installs are being worked

on.

• SpackDev, an interactive development environment setup

script based on Spack is being worked on.

Conclusions

17

