
1

J.S. Marshall for The Pandora Team
LArSoft Workshop

22 June 2016

Lessons Learned from
Collaborative Software
Development using Pandora

𝛾p

𝜇

𝛾

Pandora Development Lessons

Overview

2

Aim: Describe development practices that seem to have worked
well for the Pandora multi-algorithm pattern recognition project

• Pandora Goals and Architecture

• Pandora Developer Feedback

• Things that have worked well for:

1. Designing and Implementing Algorithms

2. Testing Algorithms

• Things that haven’t worked so well

• Possible lessons for LArSoft

Absolutely not trying to claim any Pandora practices are perfect - we are still learning!

Pandora Development Lessons

What Pandora is

3

HCAL
TPC

EC
AL

n

𝜋+

γ

Typical ILC event topologies:

NIMA.2009.09.009, NIMA.2012.10.038, EPJC 75:439

• Great success with particle flow
reconstruction in fine granularity
detectors proposed for use at ILC.

• Quite a small project, attracting
some success and interest by
trying hard to do software “right”.

• Significant effort to adopt proper
software-engineering practices.

1. It is easy to provide the building-blocks that define a pattern recognition problem.

2. Logic required to solve pattern recognition problems is cleanly implemented in algorithms.

3. Operations to access or modify building-blocks requested by algs, performed by Pandora.

• Multi-algorithm approach to pattern recognition uses large numbers (80+) of algorithms,
each designed to address specific topologies. Gradually build-up picture of events.

• This approach can be difficult to implement, so the Pandora Software Development Kit
was designed to provide a robust, but user-friendly environment in which:

HCAL
EC

AL
TPC

Pandora Development Lessons

What Pandora is (not)

4

• Pandora is not an alternative to (or replacement for) LArSoft. It is not a general
purpose software framework to support diverse tasks through experiment life cycle.

• Instead, it tries to make multi-algorithm event reconstruction easier to design, implement, test
and maintain. It takes care of most memory-management, provides visual debugging, etc.

• Example usage: Try to implement pattern recognition in producer module. Process starts to
involve multiple steps or maybe a recursive approach or reclustering would be helpful…

• Implementation quickly becomes complex and likely reinvents wheel: Pandora can help!

LArPandora

LArPandoraContent

PandoraSDK PandoraMonitoring

80+ algorithms and tools,  
specifically for LAr TPC usage

Re-usable libraries with APIs,  
support multi-alg approach

Producer module, provides  
translation LArSoft ⟷ Pandora

Pandora
integration

with LArSoft

Pandora Development Lessons 5

Pandora SDK Design

http://xkcd.com/974/

http://xkcd.com/974/

Pandora Development Lessons

Pandora APIs

6

• A client, or translation application is responsible for controlling pattern recognition: it
creates the Pandora instance(s) and uses the Pandora APIs to request services.

• It registers algorithm factories, giving Pandora instances the ability to instantiate specific
algorithms, and it provides the algorithm configuration via an XML file.

• Each event, it asks Pandora to create the input ‘building blocks’ (e.g. Hits and, optionally,
MCParticles) to describe an event and it receives the final output Particles.

• To create an input building block, must
provide a list of simple parameters:
energy, position, etc.

• Algorithms access information stored
in building blocks but do not need to
know how information was obtained.

• Translation app isolates Pandora
algorithms from host framework.

Pandora Development Lessons

Pandora APIs - Comments

7

• Getting interface right for Pandora input/output vital to allow re-use of functionality:

• Translation app for each use-case tightly focused on, i), collecting information to fully define
pattern recognition input (operations may be detector specific) and, ii), processing output.

• Allowed LC algorithms to be re-used successfully for CMS HGCAL studies; just needed a
new Pandora translation app to provide self-describing Hits, Tracks, etc.

• Ensures Pandora SDK (and Monitoring) can be re-used to solve very different problems in
HEP. Current major use cases: ILC / CLIC (inc. CMS) and LAr TPC reconstruction.

Pandora Development Lessons

Pandora Content APIs

8

• Pandora algorithms contain the step-by-
step instructions for finding patterns in the
provided data: provide the “brain power”.

• Algorithms can use APIs to access Pandora
“content” and to ask Pandora to make new
objects or modify existing objects.

• Each API implementation fully tested so
that it can be used with total confidence.
Exception handling ensures robustness.

Pandora Development Lessons

Pandora Content APIs - Comments

9

• Getting interface right for accessing/manipulating instances of objects in Pandora
Event Data Model was vital to make multi-algorithm approach a reality:

• Algorithms structured around key operations and can be written in simple pseudo-
code form. Common algorithms, with associated design patterns, include:
• Creating Clusters (containers of Hits)
• Refining Clusters (Cluster merging or Cluster splitting)
• Creating Particles (containers of Clusters, Tracks and Vertices)
• Refining Particles (Particle merging or Particle splitting)

• Algorithms can then focus on providing key Boolean logic to drive operations; logic is
typically determined by investigating event topology.

• As “non-const” operations can only be requested via APIs, Pandora is able to perform
memory management and book-keeping for changes to underlying objects (non trivial).

• Proves effective at concentrating developer thoughts/ideas. Algorithm
implementation can remain rather clean, aiding readability and maintenance.

Pandora Development Lessons

Feedback from Developers

10

Best features

• Quick to try out new ideas.

• Visual debugging works really well.

• Standalone development environment.

• Simple XML-based configuration.

• Can re-use algorithms very easily.

• Can trust SDK services completely.

• Some typical tasks for new developers:

• Add a new algorithm - Can quickly identify key algorithm operations (e.g. Cluster merging
or splitting) and build algorithm structure around API calls. Free to focus on guiding logic.

• Optimise an existing algorithm - Need only focus on algorithm guiding logic. Visualisation
APIs allow for sophisticated visual debugging to understand treatment of individual events.

• Asked developers to identify best and worst features of working with Pandora SDK:

Worst features

• Sometimes non-obvious how to use
available APIs to achieve goals.

• Adding new properties to objects in
EDM is possible, but difficult.

• ROOT event display idiosyncrasies.

• Build system non-intuitive.

Pandora Development Lessons 11

Algorithm Design
and Implementation

http://xkcd.com/844/

http://xkcd.com/844/

Pandora Development Lessons

Event Data Model

12

• EDM is critically important: a set of classes representing the input building-blocks for a
problem and the structures that can be created using these building blocks.

• Successful EDM provides a well-defined development environment and allows for
independence of the algorithms, which can only communicate via the EDM.

• Constructs to which developers will be exposed on a daily basis: should be a “joy to
use” and must facilitate simple and “clean” assessment of event topologies.

• Aided by simple
constructs to avoid
re-inventing wheel:

• Three-vectors,
linear fits, etc.

• Re-usable Helper fns
keep algs clean, avoid
code repetition.

CaloHit Track (LC
use only)

MC
Particle

Cluster Vertex

Particle
(PFO)

Algorithm objects

Input objects

Daughter object
can be added to
parent object

MC Particle Link

Created by Algs

Created by
Client App

Pandora Managed Types

Pandora Development Lessons

Developer Training

13

• Pandora algorithms create and/or modify Clusters, Vertices and Particles. Decisions
whether to proceed with these operations can be complex and use-case specific.

• Learning library aims to demonstrate/test key functionality in a simple use-case.  
The logic is deliberately trivial, but all API usage is present and explained.

• Developers can be exposed to major operations and style-guide, with notes of
explanation, before starting to write real algorithms: seems to work well.

Example clusters, shown via
DisplayLists example algorithm

https://github.com/PandoraPFA/Documentation

• Example list access and display

• Cluster, Vertex and Particle creation

• Cluster merging, splitting, deletion, reclustering

• Creating and saving new lists of objects

• Using Algorithm Tools and Plugins.

• Library consists of example Algorithms,
Tools, Plugins and Helper functions:

https://github.com/PandoraPFA/Documentation

Pandora Development Lessons

Communication

14

• Pandora project is sufficiently small that it is possible to have one manager/librarian
who can maintain an overview of the entire project and (try to) keep things on track.

• Widely recognised as a good idea for each package (library and interfaces) to designate a
package manager with a sense of ownership/pride and detailed understanding.

• Need to understand how their package appears to others who do not have intimate
knowledge of inner workings. Police interface changes and dependencies.

• Perform code reviews to help enforce consistency in design/implementation. Using git
version control strongly promotes this work flow: Pull request ⇒ communicate!

Idealistic, but achievable: hope is for managers to develop a sense of pride and ownership.
Can act as spokesperson for the package and must be included in all relevant discussions.

Pandora Development Lessons

Algorithm Design

15

• Must have basic knowledge of development environment and open-up communication:

• Work through core algorithm operations and rules using learning library.

• Discuss algorithm aims with package manager to answer a number of key questions:
• How/where the algorithm best-fits in to the existing multi-algorithm approach?
• What are the inputs, outputs and key services to request from Pandora?
• Does any re-usable infrastructure already exist for this type of algorithm?

• As intended, should allow construction of skeleton algorithm where it remains to “just”
provide the key Boolean logic to guide non-const operations on event objects.

• Embrace object oriented approach: existing algs typically compare e.g. Clusters and store
all information in custom Association instances, whose operator< can identify best matches.

• Embrace visual development: allows design of topological selection cuts at point of usage,
or can use tree-writing functionality to understand selection in context of full distributions.

• Expect iterative improvement: many algs start off trying to address too wide a range of
topologies. Incrementally become a series of connected algs, or one alg using multiple tools.

Pandora Development Lessons

Style Guide

16

• Pandora has rigorous style “guide”. Guides criticised for stifling creativity, but we don’t
agree: algorithms should be creative, but implementation should be clean and readable.

• Following discussion of interfaces and logic, in design phase, aim is that any/all developers
should provide a near identical implementation.

• Intention is to write self-describing code where every type and instance is well-named to
help ensure readability. This is genuinely achievable!

• Place aesthetics/readability and proof of correctness first, then use tools such as Coverity
and Intel VTune Amplifier to check/optimise. Can later accept changes for e.g. speed reasons.

E.g. Type names start in upper case ◆ Variable names start in lower case ◆ Typedef template specialisations for
readability, e.g. stl containers ◆ Prefix pointer variables with “p” ◆ Prefix member variables with “m_” ◆ Function

names should indicate action(s) performed ◆ Refactor functions to aim for max. 7 ± 2 lines implementation ◆
Interfaces only in header files ◆ All implementation in source files ◆ Consider const correctness ◆ Provide Doxygen

information ◆ Comments in implementation only for non-standard features, prefixed with ATTN, TODO, etc.

Pandora Development Lessons 17

Algorithm Testing

http://xkcd.com/292/

http://xkcd.com/292/

Pandora Development Lessons

• XML-configured multi-algorithm chains
currently available for LAr TPC reco:

• Dedicated reco for cosmic ray muons

• Dedicated reco for neutrino events

• Cheated reco (development use only!)

• Reco with 3D event slicing; then apply
e.g. neutrino or CR reco to each slice.

 <!-- 3D track reconstruction -->
 <algorithm type = "LArThreeDTransverseTracks">
 <InputClusterListNameU>ClustersU</InputClusterListNameU>
 <InputClusterListNameV>ClustersV</InputClusterListNameV>
 <InputClusterListNameW>ClustersW</InputClusterListNameW>
 <OutputPfoListName>TrackParticles3D</OutputPfoListName>
 <TrackTools>
 <tool type = "LArClearTracks"/>
 <tool type = "LArLongTracks"/>
 <tool type = “LArOvershootTracks">
 <SplitMode>true</SplitMode>
 </tool>
 <tool type = “LArUndershootTracks">
 <SplitMode>true</SplitMode>
 </tool>
 <tool type = “LArOvershootTracks">
 <SplitMode>false</SplitMode>
 </tool>
 <tool type = “LArUndershootTracks">
 <SplitMode>false</SplitMode>
 </tool>
 <tool type = "LArMissingTrackSegment"/>
 <tool type = "LArTrackSplitting"/>
 <tool type = “LArLongTracks">
 <MinMatchedFraction>0.75</MinMatchedFraction>
 <MinXOverlapFraction>0.75</MinXOverlapFraction>
 </tool>
 <tool type = "LArMissingTrack"/>
 </TrackTools>
 </algorithm>

Example XML snippet - 3D track reco

Simple Configuration

18

• XML-based configuration is ultimately limited, but is a standard/recognised tool and is
extremely easy to read and understand. It is much liked by Pandora developers.

• By presenting each algorithm with control of its own XML parsing in its ReadSettings
callback, can actually introduce some quite sophisticated behaviour.

• XML structure suits nested Parent/Daughter algorithm use-cases, recursive approaches or
use of algorithm tools to perform specific tasks.

Pandora Development Lessons

Visual Debugging

19

• PandoraMonitoring package depends on the Pandora SDK and ROOT. It understands
how to translate Pandora objects into ROOT TEVE for visualisation.

• PandoraMonitoring APIs allow algs to perform customised, visual debugging. Algs can
choose which objects to display, when and in which colours. Can add guiding markers, etc.

• Reusable visualisation algs can be added to PandoraSettings XML config files at different
points in multi-algorithm reconstruction without rebuilding.

• Extremely rewarding way to work: seeing a problem presented visually can often lead to
proper understanding much more rapidly than print statements or debugger.

 . . .
 <algorithm type = "LArLayerSplitting"/>
 <algorithm type = “LArLongitudinalAssociation"/>
 <algorithm type = "LArVisualMonitoring">
 <ClusterListNames>ClustersU</ClusterListNames>
 </algorithm>
 <algorithm type = “LArTransverseAssociation"/>
 <algorithm type = "LArVisualMonitoring">
 <ClusterListNames>ClustersU</ClusterListNames>
 </algorithm>
 <algorithm type = "LArLongitudinalExtension"/>
 <algorithm type = "LArTransverseExtension"/>
 <algorithm type = "LArOvershootSplitting"/>
 <algorithm type = "LArBranchSplitting"/>
 <algorithm type = “LArKinkSplitting"/>
 . . .

e.g. Add markers
to check cone fit

to a cluster

e.g. Add two
event display

algs to
examine

changes as
reconstruction

progresses

Pandora Development Lessons

// ATTN: Edited for slide display; inc. removal of API return value checks
int main(int argc, char *argv[])
{
 Parameters parameters;

 if (!parameters.ParseCommandLine(argc, argv))
 return 1;

 const pandora::Pandora *const pPandora(new pandora::Pandora());
 LArContent::RegisterAlgorithms(*pPandora);
 PandoraApi::ReadSettings(*pPandora, parameters.m_pandoraSettingsFile);

 unsigned int nEvents(0);
 while (nEvents++ < parameters.m_nEventsToProcess)
 {
 PandoraApi::ProcessEvent(*pPandora);
 PandoraApi::Reset(*pPandora);
 }

 delete pPandora;
 return 0;
}

Standalone Environment

20

• Pandora persistency allows input objects (Hits, MCParticles, Gaps etc.) to be serialised
in .pndr files (small, portability not guaranteed) or .xml files (large, but compressible).

• No longer need full client/translation app to develop or test algs: can move to lightweight
environment where Entry Point constructs Pandora instance and runs reconstruction.

• Enables development without delays or complications introduced by parent software
framework and build system: rebuild and run in seconds, making for healthy development.

• Simple Makefile option and command line app: in realm of standard, well documented C++

 <!-- ALGORITHM SETTINGS -->
 <algorithm type = "LArEventReading">
 <EventFileName>/PATH/TO/Events.pndr</EventFileName>
 <ShouldReadEvents>true</ShouldReadEvents>
 <SkipToEvent>0</SkipToEvent>
 </algorithm>

• Self-describing input objects; algs
don’t need to worry how/where
object properties were calculated.

• Objects serialised/deserialised by
Pandora, following requests from
EventReading, EventWriting algs.

Pandora Development Lessons

Exception Handling

21

• Pandora services aim to offer robust exception handling and reporting: idea is that
operations should not proceed if input is invalid or unexpected situation arises.

• Better to refuse to return a value, and say why, than to return a nonsense (or supposedly
safe) value that computer cannot intrinsically distinguish as incorrect.

• SDK services try to check/pre-empt all possible ways operations could be going awry.
Running a new alg for first time will likely bail out of operations and say why.

• In debug mode, StatusCodeExceptions unwind stack at point of construction and store
backtrace for user reference. Correct alg logic until all runs cleanly in soak testing.

• Extremely effective because Pandora services
play a key role in core alg operations:

• E.g. Prevent/flag re-use of Hit in a second Cluster,

• Prevent split/delete of Cluster already in Particle.

Example screen output:  
 
Pandora::ReadSettings - Invalid xml file.
Failure in reading pandora settings, STATUS_CODE_FAILURE
PandoraApi::ReadSettings(*pPandora,  
 parameters.m_pandoraSettingsFile)  
 throw STATUS_CODE_FAILURE
 in function: main
 in file: /PATH/LArReco/test/PandoraInterface.cxx line#: 134
Pandora Exception caught: STATUS_CODE_FAILURE• Thought req’d: return value checks vs. exceptions.

• Speed implications: avoid “routine exceptions”.

Pandora Development Lessons

Things that haven’t worked so well

22

• Ancillary components require significant attention too:
• Build mechanics originally inherited from ilcsoft. Still not found an elegant and robust

system that works for everyone (difficulty of trying to exist in multiple software projects).

• ROOT TEVE is a vital tool, but also source of nearly all difficulties with building or running
Pandora. Ability to able to turn PandoraMonitoring/ROOT on/off at build-time helpful.

• Attempts to provide globally reusable features:

• Truly generic geometry services extremely difficult. Current geometry still leans towards
collider detector, with LAr TPC-specific geometry plugins built into LAr algorithm library.

• Some properties of objects in the EDM arguably relevant only to collider use-case.
Ultimately must prune generic objects, and decorate with specific LC and LAr properties.

• Not managed to offer any truly generic algorithms, genuinely reusable by any client app.

• Remember “second order” effects:

• Promotion of unordered_containers is fine, but means that developers must think hard
about algorithm reproducibility. Problems arose (and were addressed) for LC and LAr reco.

Pandora Development Lessons 23

Lessons Learned

http://xkcd.com/138/

http://xkcd.com/138/

Pandora Development Lessons

Lessons Learned

24

• Extremely simple message: The Pandora project has tried hard to adopt some widely
recommended software engineering practices and believes they make a big difference!

• More difficult with wide user-base spread across the globe, but communication is vital:

• Package managers with “sense of ownership” maintain oversight and review pull requests.

• Proper code review dialogue, with multiple iterations before merges to master branch.

• Desirable to build applications where main thread uses clear services to achieve goals:

• Service interfaces are crucial; get these right and instils user confidence, improves user
implementation and goes a long way to solving documentation and testing issues.

• EDM should help to make development easier, and should have a simple/clean interface.

• Well-maintained learning libraries can help to demonstrate usage of key services.

Pandora Development Lessons 25

Thanks for your attention!

Contact details overleaf…

Pandora Development Lessons

Pandora LAr TPC Reconstruction

26

Framework development

LAr TPC algorithm development

Performance metrics and validation

John Marshall (marshall@hep.phy.cam.ac.uk) 
Mark Thomson (thomson@hep.phy.cam.ac.uk)

John Marshall  
Andy Blake (a.blake@lancaster.ac.uk)

John Marshall  
Andy Blake  
Lorena Escudero (escudero@hep.phy.cam.ac.uk) 
Joris Jan de Vries (jjd49@hep.phy.cam.ac.uk) 
Jack Weston (weston@hep.phy.cam.ac.uk)

Please visit https://github.com/PandoraPFA

Pandora is an open project and new contributors would be extremely welcome.
We’d love to hear from you and we will always try to answer your questions!

Contact details:

mailto:marshall@hep.phy.cam.ac.uk
mailto:thomson@hep.phy.cam.ac.uk
mailto:a.blake@lancaster.ac.uk
mailto:escudero@hep.phy.cam.ac.uk?subject=
mailto:jjd49@hep.phy.cam.ac.uk
mailto:weston@hep.phy.cam.ac.uk?subject=
https://github.com/PandoraPFA

Pandora Development Lessons

Pandora in LArSoft

27

Place some of the more recent Pandora developments in a LArSoft context:

LArSoft Pandora SDK Pandora Monitoring Pandora Algorithms

v04_25_00 v02_01_00 v02_01_00 v02_03_00

…

v04_36_00

v04_36_01 v02_04_00

…

v05_04_00 v02_02_00 v02_02_00 v02_05_00

…

v05_07_00 v02_03_00 v02_03_00 v02_06_00

v05_08_00 v02_07_00

…

v05_09_01 v02_07_01

…

v05_11_01 v02_07_03

Production
release

Production
release

Add Gap
Support

Sync. with
ILC versions

Vertex
improvements

Shower
improvements

Vertex gap
treatment

Improved gap
treatment

Algorithm
reproducibility

Improved
LArSoft

integration

