QFT vs Gravity:

Why do we need string theory?

Herman Verlinde
Simplicity II
Fermilab 9/9/16

*

The Standard Model is an effective QFT, that, as far we know, successfully describes all physics from the MeV scale all the way to the Planck scale.

But it is not UV complete.

If we run the RG back up to $M_{p l}$, the effective QFT description will inevitably break down, due to non-renormalizable interactions.

Quantum gravity takes over at

$$
M_{\text {planck }}=\frac{c^{3}}{\hbar G}
$$

Black Hole Entropy

Bound on the number of microscopic degrees of freedom inside the black hole

$$
S_{B H}=k_{B} \frac{A c^{3}}{4 G \hbar}
$$

The Planck Scale is the universal UV cut off

Entanglement Entropy

Quantifies the shared quantum information between A and B.

$$
S_{B H}=k_{B} \frac{A c^{3}}{4 G \hbar}
$$

$$
S_{A}=-\operatorname{tr}\left(\rho_{A} \log \rho_{A}\right) \quad \rho_{A}=\operatorname{tr}_{B}(|\psi\rangle\langle\psi|)
$$

Why do we need String Theory?

(1) 4 (d)

Large N QCD

defines a particular string theory, in a highly curved target space. In QCD, this string is strongly coupled.

PLANAR DIAGRAM

$$
\text { Gluon }=\left(\begin{array}{lll}
\mathbb{D} & \mathbb{1} & \mathbb{1} \\
\mathbb{D} & \mathbb{D} & \mathbb{1} \\
\mathbb{D} & \mathbb{D} & \mathbb{1}
\end{array}\right)=\text { Matrix }
$$

$$
\text { QCD String }=\text { MMMMMMMM }=(\text { (Matrix })^{n}
$$

Holographic Renormalization Group

- Introduce a cut-off scale $\Lambda_{c}=$ radial location r_{c}
- Integrate out UV $=$ everything at scales $>\Lambda_{c}=r_{c}$
- Wilsonian action $\mathrm{S}_{\text {eff }}\left(\Lambda_{c}\right)=$ gravity action $\mathrm{S}_{\text {class }}\left(\mathrm{r}_{\mathrm{c}}\right)$
- RG evolution eqn = radial Schrodinger eqn
Why is this true?

Renormalization Group $=$ Open/Closed String Duality

$$
\hbar \partial_{\Lambda} e^{-\frac{1}{\hbar} S_{\text {int }}(A, \Lambda)}=\hat{H}_{\text {gauge }} e^{-\frac{1}{\hbar} S_{\text {int }}(A, \Lambda)}
$$

$$
\hat{H}_{\text {gauge }}=\hbar^{2} \alpha^{i j} \operatorname{tr}\left(\frac{\partial^{2}}{\partial A^{i} \partial A^{j}}\right)
$$

$$
\delta_{\Lambda} e^{-\frac{1}{\hbar} S_{\text {int }}(A, \Lambda)}=\int \mathcal{D} a e^{-\frac{1}{\hbar}\left(\frac{\alpha_{i j}}{2 j \Lambda} \operatorname{tr}\left(a^{i} a^{j}\right)+S_{\text {int }}(A+a ; \Lambda)\right)}
$$

$$
\begin{gathered}
e^{-\frac{1}{\hbar} S_{\mathrm{int}}(A, \Lambda)}=\int \mathcal{D} \phi e^{-\frac{1}{\hbar}\left(S_{0}(A ; \phi)+S_{\text {grav }}(\phi ; \Lambda)\right)} \\
S_{0}(A ; \phi)=\sum_{\left(i_{1} \ldots i_{n}\right)} \phi_{\left(i_{1} \ldots i_{n}\right)} \operatorname{tr}\left(A^{i_{1}} \ldots A^{i_{n}}\right) \\
\hbar \partial_{\Lambda} e^{-\frac{1}{\hbar} S_{\text {grav }}(\phi, \Lambda)}=\hat{H}_{\text {grav }} e^{-\frac{1}{\hbar} S_{\text {grav }}(\phi, \Lambda)}
\end{gathered}
$$

$$
\check{H}_{\text {grav }}=\beta_{I} \frac{\partial}{\partial \phi_{I}}+g_{I J} \frac{\partial^{2}}{\partial \phi_{I} \partial \phi_{J}}
$$

Holographic RG eqn
=
Schrodinger evolution in the scale direction

$$
\mathcal{H}=\frac{1}{\sqrt{g}} g_{i j} g_{k l}\left(\pi^{i k} \pi^{j l}-\pi^{i j} \pi^{k l}\right)-\sqrt{g}(R-2 \Lambda)
$$

2+1 Gravity from 1+1 CFT with a TT deformation

$$
S=S_{\mathrm{CFT}}-\mu \int d x d \tau T \bar{T}
$$

Integrable QFT with a irrelevant interaction => UV cut off scale

$$
\langle\Theta\rangle=\frac{c}{24 \pi} R+2 \mu\langle T \bar{T}\rangle
$$

Trace anomaly equation with TT deformation

$$
\langle T \bar{T}\rangle=\langle T\rangle\langle\bar{T}\rangle-\langle\Theta\rangle\langle\Theta\rangle
$$

Remarkable result due to A.B. Zamolodchikov (2004)

$$
\langle\Theta\rangle=\frac{c}{24 \pi} R+2 \mu(\langle T\rangle\langle\bar{T}\rangle-\langle\Theta\rangle\langle\Theta\rangle) .
$$

This is theWheeler-deWitt equation in 2+1 Gravity!

$$
\langle n| T \bar{T}|n\rangle=\langle n| T|n\rangle\langle n| \bar{T}|n\rangle-\langle n| \Theta|n\rangle\langle n| \Theta|n\rangle
$$

$$
\begin{gathered}
\frac{\partial E_{n}(R, \mu)}{\partial \mu}+E_{n}(R, \mu) \frac{\partial E_{n}(R, \mu)}{\partial R}+\frac{J_{n}^{2}}{R}=0 \\
\text { Burgers equation! }
\end{gathered}
$$

$$
E(R)=\frac{R}{4 \mu}\left[1-\sqrt{1-\frac{\mu M}{R^{2}}+\frac{\mu^{2} J^{2}}{4 R^{4}}}\right]
$$

Total energy of a rotating black hole with radial cut-off!

Adiabatic expansion or contraction

$$
E(R)=\frac{R}{4 \mu}\left[1-\sqrt{1-\frac{\mu M}{R^{2}}+\frac{\mu^{2} J^{2}}{4 R^{4}}}\right]
$$

Isobaric expansion and contraction

$$
S=S_{\mathrm{CFT}}+\int d x d \tau\left[\frac{\xi \bar{\xi}}{\mu}+\bar{\xi} T+\xi \bar{T}\right] \quad \begin{aligned}
& d s^{2}=d x_{+} d x_{-}+\frac{\xi}{2} d x_{+}^{2}+\frac{\bar{\xi}}{2} d x_{-}^{2} \\
& \langle\xi\rangle=-\mu\langle T\rangle \quad\langle\bar{\xi}\rangle=-\mu\langle\bar{T}\rangle
\end{aligned}
$$

$$
d s^{2}=-\frac{\left(r^{2}-r_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)}{r^{2}} d t^{2}+\frac{r^{2}}{\left(r^{2}-r_{+}^{2}\right)\left(r^{2}-r_{-}^{2}\right)} d r^{2}+r^{2}\left(d \phi-\frac{r_{+} r_{-}}{r^{2}} d t\right)^{2}
$$

Metric of a rotating black hole in $2+1$ dimensions

$$
M=r_{+}^{2}+r_{-}^{2} \quad J=2 r_{+} r_{-} \quad \beta=\frac{2 \pi r_{+}}{r_{+}^{2}-r_{-}^{2}}
$$

RS Brane world cosmology

$$
\begin{aligned}
& d s_{n+2}^{2}=\frac{1}{h(a)} d a^{2}-h(a) d t^{2}+a^{2} d \Omega_{n}^{2} \\
& h(a)=\frac{a^{2}}{L^{2}}+1-\frac{\omega_{n+1} M}{a^{n-1}} \\
& \frac{1}{h(a)}\left(\frac{d a}{d \tau}\right)^{2}-h(a)\left(\frac{d t}{d \tau}\right)^{2}=-1
\end{aligned}
$$

$$
d s_{n+1}^{2}=-d \tau^{2}+a^{2}(\tau) d \Omega_{n}^{2}
$$

$$
H^{2}=-\frac{1}{a^{2}}+\frac{\omega_{n+1} M}{a^{n+1}}
$$

FRW from CFT

Matrix Theory

Early example of gravity arising from gauge theory: * Large N matrix quantum mechanics

* Eigenvalues are positions of particles
* Off-diagonal modes are open strings *Quantum fluctuations induce gravity:

$$
\mathrm{H}=\operatorname{tr}\left(P_{I}^{2}+\left[X_{l}, X_{J}\right]^{2}+\Psi^{*} X_{l} \Gamma^{\prime} \Psi\right)
$$

