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Fig 1. The 5-d geometry is bounded by two brane-like structures, the Planck and matter

brane. The physics near the Planck brane is assumed to be supersymmetric. The line of

separation between the matter brane and the 5-d bulk is indicated by the dashed line.

be protected by supersymmetry. This possible reappearance of supersymmetry at large
distance scales can be seen as related to the fact that – unlike in the conventional non-
compact set-up – the UV/IR mapping of the AdS/CFT correspondence now acts on one
single space-time that combines both the 4-d boundary field theory and the 5-d bulk gravity.
Via this UV/IR duality, the infra-red bulk region of the AdS-space near the Planck brane
becomes the natural home base for both the shortest and longest distance physics.

In the following, we will try to test the consistency of these two assumptions. To this
end, we will address the following obvious and most serious counter-argument. Intuitively,
one would expect that the low energy matter sector on the matter brane will produce some
quite arbitrary effective tension, that (without some unnatural or non-local fine-tuning) is
expected to induce a non-zero cosmological constant for the total 4-d effective field theory.
If indeed present, its backreaction would curve the Planck brane and consequently break its
supersymmetry.

A different version of the same objection is that the AdS/CFT dictionary tells us that
the normal variations of the local supergravity fields near the Planck brane in fact know
about low energy quantities of the dual field theory, such as vacuum expectation values,
etc. In particular, the normal variation of the bulk metric (or more precisely, the extrinsic
curvature at the Planck brane [11]) knows about the full vacuum energy produced by the
low energy field theory. It would seem quite unnatural to expect that the Planck brane
dynamics could be chosen such that, without any pre-knowledge of the IR dynamics, it
exactly cancels this matter contribution to the vacuum energy.

In the following sections we will describe a mechanism that will neutralize this counter-
argument. In the final section we address some other aspects of our proposal, and discuss
its relation with other recently proposed scenarios [12][13].
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Gravity with a running cut o� �

Consider a 4-d gravitational theory, given by the low energy e⇥ective field theory of some
consistent string compactification. We schematically write its action as

Sgrav(⇥) =
1
2G

IJ⇥I⇥J + V (⇥) . (5)

Here ⇥I denotes some complete collection of closed string fields, including the space-time
metric gµ� , and I is some multi-index that includes the space-time dependence of the fields.
Since we would not know how to solve the complete UV theory, we will choose to specify
this gravitational theory by following the Wilson prescription.

Sgrav(⇥ ;�) (6)

��e
� 1
h̄Sgrav(�,�) =

⇤
D⇤ e�

1
h̄

�
ĠIJ

2�� ⇥I⇥J � Sgrav(�+ ⇥ ;�)
⇥

(7)

ĠIJG
JK = 0 (8)

h̄⌅�e
� 1
h̄Sgrav(�,�) = Ĥgrav e

� 1
h̄Sgrav(�,�) (9)

Ĥgrav = h̄2ĠIJ
⌅2

⌅⇥I⌅⇥J
(10)
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The Standard Model is an effective QFT, that, as far we know, successfully 
describes all physics from the MeV scale all the way to the Planck scale.  

If we run the RG back up to Mpl,
the effective QFT description will
inevitably break down, due to
non-renormalizable interactions.

Quantum gravity takes over at

But it is not UV complete.
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Figure 1: Examples of bipartitioning for the entanglement entropy. A choice of the

subsystems A and B is shown for each of the two examples: (a) a spin chain, (b) a
quantum field theory.

points into two groups. Notice that physically we do not do anything to the system and

the cutting procedure is an imaginary process. Accordingly the total Hilbert space can
be written as a direct product of two spaces Htot = HA ⊗HB corresponding to those of

subsystems A and B. The observer who is only accessible to the subsystem A will feel as
if the total system is described by the reduced density matrix ρA

ρA = trB ρtot , (2.2)

where the trace is taken only over the Hilbert space HB.

Now we define the entanglement entropy of the subsystem A as the von Neumann
entropy of the reduced density matrix ρA

SA = −trA ρA log ρA . (2.3)

This quantity provides us with a convenient way to measure how closely entangled (or
how “quantum”) a given wave function |Ψ⟩ is.

In time-dependent backgrounds the density matrices ρtot and ρA are time dependent
as dictated by the von Neumann equation. Thus we need to specify the time t = t0 when

we measure the entropy. In this paper, we will always deal with static systems except in
Sec. 6.

It is also possible to define the entanglement entropy SA(β) at finite temperature
T = β−1. This can be done just by replacing (2.1) with the thermal one ρthermal = e−βH ,
where H is the total Hamiltonian. When A is the total system, SA(β) is clearly the same

as the thermal entropy. Also in general, if we take the high temperature limit β → 0, then
the difference SA1(β) − SA2(β) approaches the difference of thermal entropy between A1

and A2. This subtraction is necessary to cancel the ultraviolet divergences as explained
later.
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Fig 1. The 5-d geometry is bounded by two brane-like structures, the Planck and matter

brane. The physics near the Planck brane is assumed to be supersymmetric. The line of

separation between the matter brane and the 5-d bulk is indicated by the dashed line.

be protected by supersymmetry. This possible reappearance of supersymmetry at large
distance scales can be seen as related to the fact that – unlike in the conventional non-
compact set-up – the UV/IR mapping of the AdS/CFT correspondence now acts on one
single space-time that combines both the 4-d boundary field theory and the 5-d bulk gravity.
Via this UV/IR duality, the infra-red bulk region of the AdS-space near the Planck brane
becomes the natural home base for both the shortest and longest distance physics.

In the following, we will try to test the consistency of these two assumptions. To this
end, we will address the following obvious and most serious counter-argument. Intuitively,
one would expect that the low energy matter sector on the matter brane will produce some
quite arbitrary effective tension, that (without some unnatural or non-local fine-tuning) is
expected to induce a non-zero cosmological constant for the total 4-d effective field theory.
If indeed present, its backreaction would curve the Planck brane and consequently break its
supersymmetry.

A different version of the same objection is that the AdS/CFT dictionary tells us that
the normal variations of the local supergravity fields near the Planck brane in fact know
about low energy quantities of the dual field theory, such as vacuum expectation values,
etc. In particular, the normal variation of the bulk metric (or more precisely, the extrinsic
curvature at the Planck brane [11]) knows about the full vacuum energy produced by the
low energy field theory. It would seem quite unnatural to expect that the Planck brane
dynamics could be chosen such that, without any pre-knowledge of the IR dynamics, it
exactly cancels this matter contribution to the vacuum energy.

In the following sections we will describe a mechanism that will neutralize this counter-
argument. In the final section we address some other aspects of our proposal, and discuss
its relation with other recently proposed scenarios [12][13].
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1. The ‘emergence’ of strings.

How does confinement work? (Heuristically)

String  =

Gluon  = =  Matrix

=  (Matrix)
n

8

Large N QCD
defines a particular string 
theory, in a highly curved
target space. In QCD, this 
string is strongly coupled. 
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Maldacena’s argument

                   
                                    

A first subtlety is that the 5-d physics in the matter brane region is likely to be singular.
Thus far, however, we did not need to worry about this issue, because we chose to describe
the matter brane region by means of the dual low energy field theory. No special assumptions
about the properties of the singularity were needed, except that at some distance away from
it we can use the geometric supergravity language to derive the constraint (12). It is not
important for our argument, for example, whether there are discrete or continuously many
solutions to this constraint.

Regardless of this issue, it is clear that the matter brane effective action should be
allowed to be as arbitrary as possible. Nonetheless one would hope to naturally stabilize
its location by means of its interaction with the Planck brane. We will first describe two
possible mechanisms, which however both will fall short in that they either remain unstable
or need unnatural fine-tuning. We will then describe a third scenario that will resolve these
problems.

Attempt 1: Goldberger-Wise mechanism [17]

Suppose that, in spite of the fact that it describes a singular space-time region, we
would assume that the matter brane dynamics is well approximated by that of some classical
brane with some arbitrary tension Λ(φ). We can then look for a classically stable location for
matter brane as follows [19]. A static bulk solution, when matched onto the supersymmetric
boundary conditions set by the Planck brane, is described by scalar fields φ(r) and a metric

ds2 = a2(r) ηµνdxµdxν + dr2, (22)

satisfying the supersymmetric flow equations

a′

a
= −

1

6
W (φ) φ′ = ∂φW. (23)

From this one finds that the matching relations at the matter brane, that are required for
there to be a flat solution, are that (cf. eqn (20))

∂φΛ(φc) = ∂φW (φc) Λ(φc) = W (φc) (24)

for some critical value of φc for the scalar fields. The first equation generically gives at most
a discrete set of solutions for φc. The second relation, however, is then valid only if the
value of Λ at such a critical point φc is exactly equal to that of the superpotential W . This
amounts to an unnatural fine-tuning of the matter brane action. However, even if we would
choose Λ(φ) such that this condition is satisfied, the equations of motion (24) still fail to
stabilize the relative location of the Planck and matter brane, as they do not pick out one
particular preferred relative ratio for the scale factors a at the two branes.
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Fig 1. The 5-d geometry is bounded by two brane-like structures, the Planck and matter

brane. The physics near the Planck brane is assumed to be supersymmetric. The line of

separation between the matter brane and the 5-d bulk is indicated by the dashed line.

be protected by supersymmetry. This possible reappearance of supersymmetry at large
distance scales can be seen as related to the fact that – unlike in the conventional non-
compact set-up – the UV/IR mapping of the AdS/CFT correspondence now acts on one
single space-time that combines both the 4-d boundary field theory and the 5-d bulk gravity.
Via this UV/IR duality, the infra-red bulk region of the AdS-space near the Planck brane
becomes the natural home base for both the shortest and longest distance physics.

In the following, we will try to test the consistency of these two assumptions. To this
end, we will address the following obvious and most serious counter-argument. Intuitively,
one would expect that the low energy matter sector on the matter brane will produce some
quite arbitrary effective tension, that (without some unnatural or non-local fine-tuning) is
expected to induce a non-zero cosmological constant for the total 4-d effective field theory.
If indeed present, its backreaction would curve the Planck brane and consequently break its
supersymmetry.

A different version of the same objection is that the AdS/CFT dictionary tells us that
the normal variations of the local supergravity fields near the Planck brane in fact know
about low energy quantities of the dual field theory, such as vacuum expectation values,
etc. In particular, the normal variation of the bulk metric (or more precisely, the extrinsic
curvature at the Planck brane [11]) knows about the full vacuum energy produced by the
low energy field theory. It would seem quite unnatural to expect that the Planck brane
dynamics could be chosen such that, without any pre-knowledge of the IR dynamics, it
exactly cancels this matter contribution to the vacuum energy.

In the following sections we will describe a mechanism that will neutralize this counter-
argument. In the final section we address some other aspects of our proposal, and discuss
its relation with other recently proposed scenarios [12][13].
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Sgrav(⇥) =
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IJ⇥I⇥J + V (⇥) . (5)

Here ⇥I denotes some complete collection of closed string fields, including the space-time
metric gµ� , and I is some multi-index that includes the space-time dependence of the fields.
Since we would not know how to solve the complete UV theory, we will choose to specify
this gravitational theory by following the Wilson prescription.
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Holographic Renormalization Group

• Introduce a cut-off scale Λc =  radial location rc

• Integrate out UV  =  everything at scales  >  Λc = rc

• Wilsonian action Seff(Λc)  =  gravity action Sclass(rc)

• RG evolution eqn =  radial Schrodinger eqn

Why is this true?



Fig 3: In the zero slope limit α′ → 0, the open string loop diagram reduces to an ordinary planar
Feynman graph of the low energy gauge theory. The restriction (11) on the minimal geodesic length
of the non-contractible contour C then translates into a lower bound on the sum of the Schwinger
parameters ti of the propagators contained in C.

where the sum is over all propagators that make up the contour C. This restriction indeed renders

the integral UV finite.

We can now use a similar reasoning as above to try and extract the ϵ dependence, by explicitly

differentiating the total integral over all Schwinger parameters with respect to the UV cut-off (22).

The analog of the formula (15) should now be extracted from analysing the UV limit of the one-

loop gauge theory amplitude in a background large N gauge-field A, with couplings φi turned on;

equation (15) then corresponds to the fact that, to leading order in 1/N , this amplitude factorizes

into a sum over gauge invariant single trace-operators Oi.

Useful insight into how one should interpret the sigma model data contained in Φ is obtained

by considering the equation of motion of the total effective action (16). It is possible to write it

in the form of a recursion relation, by expanding the closed string background Φ in powers of the

string coupling λ

Φ =
∑

n≥1

λn Φn (23)

where Φn is assumed to be independent of λ. The equation of motion of Φn

δS

δΦn
= 0 (24)

now takes the following form

Q|Φn⟩ = [ 1 ]n +
∑

1≤m≤n−1

∑

∑

j
j kj=m

1

k1! · · · km!
[ (Φ1)

k1 . . . (Φm)km ]n−m. (25)

Here [. . .]n denotes the state associated to a surface as indicated in fig 4: the sphere with n holes

at the end of a tube with length 1/ϵ, and with operator insertions specified by the (. . .). The

above formula can be used to recursively construct Φn from the previous Φm’s with m < n.
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Fig 1a and 1b: A planar n loop open string diagram is given by the integral over all shapes of
a spherical Riemann surface Σ with n+1 holes. When a non-contractible contour C surrounding
some of the holes acquires a very small length ℓ(C) = ϵ, the surface degenerates into two separate
spherical surfaces Σ1 and Σ2 connected by a long tube of length 1/ϵ.

diagram arise when one or more of these geodesic lengths ℓ(C) tends to zero. We will therefore

introduce a UV regulator ϵ by requiring that the moduli integral is restricted to those conformal

structures for which

ℓ(C) ≥ ϵ (11)

for all non-contractible contours C. Hence the boundary of the regulated moduli space are degen-

erate surfaces for which the above bound (11) is saturated for one or more contours C.

Since in the end we need to compare this type of degeneration of the open string loop di-

agram with the sigma-model divergences, it seems most practical to regulate the sigma-model

expectation values in an analogous fashion. To this end, we explicitly expand the exponential in

eqn (7)

Γn(φ; ϵ) =
∑

k≥0

1

k!
⟨ Φ · · ·Φ

︸ ︷︷ ︸

k×

⟩n =
∑

k≥0

1

k!
⟨ (Φ)k⟩n (12)

with

Φ =
∑

i

∫

φi Oi . (13)

The k-th order term on the right-hand side is a correlator, defined in the φ = 0 sigma-model,

of k operators Φ on an n−1 loop open string diagram. The resulting amplitude is therefore

an integral over the moduli space of a sphere with n holes and k punctures. (See fig 2a.) We

can now apply the same construction as above, and use the unique minimal area metric on this

punctured surface to assign a given minimal geodesic length to all closed contours surrounding

a non-zero number of holes and/or punctures, and require that all such lengths must be larger

than the cut-off ϵ. In this way we have indeed introduced one uniform cut-off procedure for both

types of divergences.4

4Given the limited available tools for dealing with sigma-models with RR backgrounds, the procedure outlined

4

Renormalization Group = Open/Closed String Duality
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Ĥgauge = h̄2�ij tr

⇧
⌅2

⌅Ai⌅Aj

⌃

(14)

e�
1
h̄Sint(A,�) =

�
D⇤ e�

1
h̄

�
S0(A ; �) + I(� ;�)

⇥
(15)

�ijtr

⇧
⌅S0

⌅Ai

⌅S0

⌅Aj

⌃

= tr
⇤
Ai1 . . . Ain

⌅
(16)

�ijtr

⇧
⌅2S0

⌅Ai⌅Aj

⌃

= g(i1..in)(j1..jm)tr
⇤
Ai1 . . . Ain

⌅
tr
⇤
Aj1 . . . Ajm

⌅
(17)

v(i1...in) =
n⌥

m=0

(m+ 1) (n�m+ 1)�k�⇤ki1...im⇤�im+1...in (18)

g(i1..in)(j1..jm) = (n+m+ 2)�k�⇤ki1.. in�j1.. jm (19)
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� 1
h̄Sint(A,�) (13)
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Gravity with a running cut o� �

Consider a 4-d gravitational theory, given by the low energy e⇥ective field theory of some
consistent string compactification. We schematically write its action as

Sgrav(⇥) =
1
2G

IJ⇥I⇥J + V (⇥) . (5)

Here ⇥I denotes some complete collection of closed string fields, including the space-time
metric gµ� , and I is some multi-index that includes the space-time dependence of the fields.
Since we would not know how to solve the complete UV theory, we will choose to specify
this gravitational theory by following the Wilson prescription.
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Ĥgauge e
� 1
h̄S0(A,�) = Ȟgrav e
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Bottom-Up Approach to String Phenomenology
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Fig 1. The 5-d geometry is bounded by two brane-like structures, the Planck and matter

brane. The physics near the Planck brane is assumed to be supersymmetric. The line of

separation between the matter brane and the 5-d bulk is indicated by the dashed line.

be protected by supersymmetry. This possible reappearance of supersymmetry at large
distance scales can be seen as related to the fact that – unlike in the conventional non-
compact set-up – the UV/IR mapping of the AdS/CFT correspondence now acts on one
single space-time that combines both the 4-d boundary field theory and the 5-d bulk gravity.
Via this UV/IR duality, the infra-red bulk region of the AdS-space near the Planck brane
becomes the natural home base for both the shortest and longest distance physics.

In the following, we will try to test the consistency of these two assumptions. To this
end, we will address the following obvious and most serious counter-argument. Intuitively,
one would expect that the low energy matter sector on the matter brane will produce some
quite arbitrary effective tension, that (without some unnatural or non-local fine-tuning) is
expected to induce a non-zero cosmological constant for the total 4-d effective field theory.
If indeed present, its backreaction would curve the Planck brane and consequently break its
supersymmetry.

A different version of the same objection is that the AdS/CFT dictionary tells us that
the normal variations of the local supergravity fields near the Planck brane in fact know
about low energy quantities of the dual field theory, such as vacuum expectation values,
etc. In particular, the normal variation of the bulk metric (or more precisely, the extrinsic
curvature at the Planck brane [11]) knows about the full vacuum energy produced by the
low energy field theory. It would seem quite unnatural to expect that the Planck brane
dynamics could be chosen such that, without any pre-knowledge of the IR dynamics, it
exactly cancels this matter contribution to the vacuum energy.

In the following sections we will describe a mechanism that will neutralize this counter-
argument. In the final section we address some other aspects of our proposal, and discuss
its relation with other recently proposed scenarios [12][13].
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Gravity with a running cut o� �

Consider a 4-d gravitational theory, given by the low energy e⇥ective field theory of some
consistent string compactification. We schematically write its action as

Sgrav(⇥) =
1
2G

IJ⇥I⇥J + V (⇥) . (5)

Here ⇥I denotes some complete collection of closed string fields, including the space-time
metric gµ� , and I is some multi-index that includes the space-time dependence of the fields.
Since we would not know how to solve the complete UV theory, we will choose to specify
this gravitational theory by following the Wilson prescription.
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* cut-off the AdS space

* path integral over interior
defines a wave function

* wave fn = Wilsonian effective
* radial Schrodinger eqn =

RG evolution of 
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Holographic RG eqn
=   

Schrodinger evolution 
in the scale direction



In the chosen coordinates, the metric is given by

ds2 = N2dr2 � gij
⇣
dxi +N idr

⌘⇣
dxj +N jdr

⌘

with N the lapse, gij the metric on a radial slice (eq. 10), and N i the shift vector. (Roman
indices indicate induced quantities on the 2d radial slices and Greek indices indicate quantities
in the 3d spacetime.) The Einstein action in the ADM decomposition is given by [?]

Sgrav =

Z
dr

Z

T2

dxd⌧
⇣
⇡ij ġij �N iHi �NH

⌘
.

Here ⇡ij is a quadratic di↵erential canonically conjugate to the modulus, or equivalently ḡij =
e�2�gij , and N i and N are Lagrange multipliers enforcing Hi = H = 0, the momentum and
hamiltonian constraints, respectively.

Let’s write the hamiltonian constraint suggestively. In 2 + 1 dimensions, we can choose ⇡ij

such that the hamiltonian constraint is given by [?]

H =
1p
g
gijgkl

⇣
⇡ik⇡jl � ⇡ij⇡kl

⌘
�p

g (R� 2⇤) .

Here, R is the scalar curvature of a radial slice, and ⇤ the spacetime cosmological constant. In
our choice of coordinates, this is given by [?]

H = �1
2
R+ ⇤e2� +

e�2�

2

⇣
pijpij � ⇡2

⌘
= 0. (11)

This gives

�R+ 2⇤e2� + e�2�(pijpij � ⇡2) = 0. (12)

Take ⇤ = 1. To rewrite this in the form of a Hamilton-Jacobi equation, we perform a
canonical transformation, shifting the classical action Scl and therefore the momentum ⇡,

Scl ! Scl +

Z
e2�

⇡ ! ⇡ + 2e2�

The transformed hamiltonian constraint in eq. 12 becomes

�R+ e�2�(pijp
ij + ⇡2)� 2⇡ = 0.

Replacing ⇡ with �Scl
�� , we obtain a simple Hamilton-Jacobi equation, as claimed:

�Scl

��
= �R� e�2�

✓
�Scl

��

◆2

+ e�2�pijp
ij (13)

How do we read eq. 13? It is a functional equation that governs how the on-shell value of
the classical gravitational action depends on the scale factor � in the bulk. Since � depends
only on the radial coordinate r, and it is monotonic going into the bulk, e2� serves as a good
parametrization for the bulk radial direction. Eq. 13 thus tells us how to in principle determine
Scl using radial evolution from a boundary condition, such as at large �. Moreover, given this
solution, we can solve for the remaining components of the metric as a function of � using
dgµ⌫

d� = @H
@⇡µ⌫ , substituting the hamiltonian constraint H, and using ⇡µ⌫ = 1p

g
@Scl
@gµ⌫ .

5

2

[MM: I’m not sure about �.] and the light cone is given by:
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◆
. (1.7) vBTZ

Just to keep everything explicit, we note that to go between the two coordinate systems (1.1)

and (1.6) the appropriate coordinate transformation is:

z =
2q

r2 � r2
+

+
q
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r
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✓
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r2
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L = (r
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+
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2 .

(1.8) CoordTf

Taking a non-rotating BTZ BH (r� = 0) as an example provides a check on our conventions, as

there we get

hT i = hT̄ i =
r2
+

32⇡GN
=

(2⇡/�)2

48⇡/c
=

⇡ c

12�2

, (1.9) TTthermal

where I used the Brown-Henneaux result c = 3

2GN
. This result agrees with what is written in both

papers, so we are using the same normalizations as them.

On the CFT side, Cardy has performed the following computation for states that have a Eu-

clidean path integral representation. He introduces a T T̄ deformation that he trades for two

Hubbard-Stratonovich fields:

S = S
CFT
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µ
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�
, (1.10) Cardy

from which it follows that

h⇠i = �µhT i h⇠̄i = �µhT̄ i . (1.11) ExpVal

To linera order, one can regard (1.10) (before integrating over ⇠, ⇠̄) as the CFT coupled to a random

metric. Here I have a disagreement with Cardy. From (1.4) we can read o↵ the metric
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(1.12) dSTwoWays

2+1 Gravity from 1+1 CFT with a T T deformation

Integrable QFT with a irrelevant interaction => UV cut off scale 



3.2 T T̄ and the bulk radial direction

Factor of 2? µ = 12⇡
c ?

Consider now the right side of eq. ??, specifically with a T T̄ insertion:

Z =
D
e�

R
µTT̄

E

CFT
(14)

Here, e2� is the value of the scale factor on the boundary (that is, e2� for � ! 1). We’ll
determine the value of the coupling µ.

Denote the trace ⇥ = 2⇡T ⌫
⌫ = 2⇡Tzz̄. We define h⇥i in the theory deformed by T T̄ via Z,

h⇥iCFT ⌘ Z�1 �Z

��
(15)

The conformal anomaly equation gives

h⇥i = c

24⇡
R+ 2µ

⌦
T T̄

↵
(16)

with R equal to the scalar curvature of the boundary metric and c the central charge.
The next expression is due to Zamolodchikov [?]. He shows that, for a generic 2d QFT on

flat space,

⌦
T T̄

↵
= hT i

⌦
T̄
↵
� h⇥i h⇥i . (17)

This expression holds for deformed CFT since its derivation was generic. Although at finite but
large radii our CFT is not on flat space, its metric is flat to leading order, so that our remaining
expressions hold as long as we stay at large r compared to, say, `AdS . For simplicity, we take
hT i =

⌦
T̄
↵
= 0. (This assumption is equivalent to the assumption pij = 0 in the gravity theory

and can be relaxed.)
Plugging eq. 17 into eq. 16,

h⇥i = c

24⇡
R� 2µ h⇥i h⇥i . (18)

Now we use eq. ?? and the definition of ⇥,

h⇥i $ �↵
�Scl
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to compare with eq. 13:
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2
R� e�2�

✓
�Scl
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◆2

and conclude that consistency between eq. 18 and eq. 13 requires

c

24⇡↵
=

1
2

=) ↵ =
c

12⇡
(19)

2µ↵ = e�2� =) µ =
6⇡
c
e�2�. (20)

Thus AdS/CFT forces that the coupling of a T T̄ perturbation in the dual CFT equal an exact
value proportional to the scale factor of the CFT metric. In dual language, changing the coupling
to T T̄ induces a change in the CFT scale factor equivalent to changing the radial coordinate in
the bulk. To go into the bulk, turn on T T̄ !
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This is the Wheeler-de Witt equation in 2+1 Gravity!
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hence the metric that the CFT experiences is

ds2 = dx
+

dx� +
⇠

2
dx2

+

+
⇠̄

2
dx2� . (1.13) randomMetric

The light cones are then modified as

dx
+

= �h⇠̄i
2

dx� =
µhT̄ i
2

dx� or dx� =
µhT i
2

dx
+

. (1.14) LCCFT

Comparing to (1.5) and using the dictionary (1.3) we see that we get identical results in AdS and

CFT provided we identify

16⇡GN z2 = µ or z2 =
c µ

24⇡
, (1.15) identify

For a non-rotating, but finite temperature ensemble/state using (1.9) we get that the speed is

modified as:

v = ±
✓
1� ⇡ c µ

12�2

◆
, (1.16) vBTZ2

This is o↵ from what Cardy gets.

II. THE DEFORMED CFT SPECTRUM

Zamolodchikov derives that a forced inviscid Burgers’ equation describes the spectrum of the

family of T T̄ deformed theory. He uses R for the perimeter of the cylinder, not its radius. Instead,

I will use R to denote the radius of the cylinder. His T T̄ coupling is defined to be ↵ = µ/4,

where we took into account that T
Cardy

= 2⇡T
Zamolodchikov

. [MM: I’m not comfortable with the

compatibility of signs between the sections.] Let us sketch the derivation:

1. We start with the key equation

hn|T T̄ |ni = hn|T |nihn|T̄ |ni � hn|⇥|nihn|⇥|ni

=
1

4
(hn|Ttt|nihn|Txx|ni � hn|Ttx|nihn|Ttx|ni) ,

(2.1) Key

where ⇥ = T
+�, and we used simple algebra.

4

2. Now we can express the right hand side in terms of physical properties of the spectrum:

hn|Ttt|ni =
En(R,µ)

2⇡R

hn|Txx|ni =
@En(R,µ)

@(2⇡R)

hn|Ttx|ni =
iPn(R,µ)

2⇡R

(2.2) physical

where Pn = `n
R and `n 2 Z. [MM: Again, I’m not careful with the signs yet.]

3. Finally, using that

@

@µ
hn|e�H↵ T |ni = �T @En(R,µ)

@µ
e�En(R,↵)T

=

Z
D�

✓Z
dxd⌧ T T̄

◆
e�S = 2⇡RT e�En(R,↵)T hn|T T̄ |ni

(2.3) PathInt

we get

hn|T T̄ |ni = � 1

2⇡R

@En(R,µ)

@µ
, (2.4) LHS

and the equation follows

8⇡
@En(R,µ)

@µ
+ En(R,µ)

@En(R,µ)

@R
+

J2

n

R
= 0 . (2.5) Burgers

It is not hard to check that the equation is solved by

REn(µ̃) =
4⇡

µ̃

"
1�

r
1� µ̃

2⇡

⇣
�n + �̄n � c

12

⌘
+

µ̃2 `2n
16⇡2

#
, µ̃ ⌘ µ

R2

. (2.6) BurgersSol

Note that
�
�n + �̄n � c

12

�
is just an integration constant in this formulation. Because T T̄ can be

defined by a straightforward limiting procedure, I expect that it has canonical scaling dimension

throughout the family of T T̄ deformed theories. I think the fact that the result has a nice scaling

form and doesn’t depend on the UV cuto↵ (or in other words µ and R separately) is a consequence

of T T̄ having canonical scaling dimension.

Let us check the result (2.6). In the limit µ̃ ! 0 we get back the CFT result:

RE(CFT)

n = �n + �̄n � c

12
. (2.7) CFTSpectrum
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We note that from (2.6) the theory doesn’t have a ground state for µ̃ < 0.

An attempt at relating this formula to AdS/CFT is to compute the total quasilocal energy and

angular momentum of a BTZ black hole with a finite radial cuto↵. In the coordintes (1.6) we get:

E(R) =
R

4µ

"
1�

r
1� µM

R2

+
µ2J2

4R4

#
, (2.8) BTZcutoff

where we chose ✏
0

(rc) in the reference conveniently. If we multiply this result by rc just as in (2.6),

we obtain a dimensionless quantity, which is straightforward to match to (2.6):

M

8GN
= �n + �̄n � c

12
J

8GN
= `n

µ̃ =
16⇡GN

r2c
=

24⇡

c

1

r2c
.

(2.9) Match

The first two are completely standard in AdS/CFT. What we are getting from this derivation is µ.

Note that µ̃ = µ/R2, so presumably we have to choose R = 1 to get the relation we were aiming

for:

µ =
24⇡

c

1

r2
. (2.10) Match2

Burgers equation!

Total energy of a rotating black hole with radial cut-off!
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[MM: I’m not sure about �.] and the light cone is given by:

v ⇡ ±
✓
1� (r

+

⌥ r�)2

2r2

◆
+O

✓
1

r4

◆
. (1.7) vBTZ

Just to keep everything explicit, we note that to go between the two coordinate systems (1.1)

and (1.6) the appropriate coordinate transformation is:

z =
2q

r2 � r2
+

+
q

r2 � r2�

=
1

r
+O

✓
1

r2

◆

L = (r
+

� r�)
2 , L̄ = (r

+

+ r�)
2 .

(1.8) CoordTf

Taking a non-rotating BTZ BH (r� = 0) as an example provides a check on our conventions, as

there we get

hT i = hT̄ i =
r2
+

32⇡GN
=

(2⇡/�)2

48⇡/c
=

⇡ c

12�2

, (1.9) TTthermal

where I used the Brown-Henneaux result c = 3

2GN
. This result agrees with what is written in both

papers, so we are using the same normalizations as them.

On the CFT side, Cardy has performed the following computation for states that have a Eu-

clidean path integral representation. He introduces a T T̄ deformation that he trades for two

Hubbard-Stratonovich fields:

S = S
CFT

� µ

Z
dxd⌧ T T̄ ! S = S

CFT

+

Z
dxd⌧


⇠⇠̄

µ
+ ⇠̄ T + ⇠ T̄

�
, (1.10) Cardy

from which it follows that

h⇠i = �µhT i h⇠̄i = �µhT̄ i . (1.11) ExpVal

To linera order, one can regard (1.10) (before integrating over ⇠, ⇠̄) as the CFT coupled to a random

metric. Here I have a disagreement with Cardy. From (1.4) we can read o↵ the metric

�S = �1

2

Z
dxdt

�
T �g++ + T̄ �g��� = 2

Z
dxdt

�
T �g�� + T̄ �g

++

�

=) �g�� =
⇠̄

2
, �g

++

=
⇠

2
,

(1.12) dSTwoWays
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I. CHANGE IN THE LIGHT CONE

[MM: Do the translation between Euclidean and Lorentzian more carefully, and track down

signs.]

The general solution of pure gravity in AdS
3

can be written as:

ds2 = �
✓

1

z2
+ z2

L(x
+

)L̄(x�)

16

◆
dx

+

dx� +
1

4

�
L(x

+

)dx2
+

+ L̄(x�)dx
2

�
�
+

dz2

z2
, (1.1) generalSol

where the AdS radius was scaled out L = 1, x± = t ± x, the boundary is at z = 0, and the

asymptotic behavior of the metric is:

ds2
���
dz=0

= � 1

z2
dx

+

dx� +
1

4

�
L(x

+

)dx2
+

+ L̄(x�)dx
2

�
�
, (1.2) Asymp

leading to the following stress tensor expectation values:

hT
++

i ⌘ hT i = L(x
+

)

32⇡GN
hT̄ i = L̄(x�)

32⇡GN
. (1.3) Texp

The stress tensor is normalized as follows:

�S = �1

2

Z
p
g Tµ⌫�g

µ⌫ (1.4) Tdef

At a fixed but small z the light cones are determined by:

dx
+

=
z2

4
L̄ dx� or dx� =

z2

4
Ldx� . (1.5) LCAdS

One can work out the explicit result for a rotating BTZ black hole dual to a CFT state at finite

temperature and angular chemical potential. The metric in the usual coordinates is:

ds2 = �
(r2 � r2

+

)(r2 � r2�)

r2
dt2 +

r2

(r2 � r2
+

)(r2 � r2�)
dr2 + r2

⇣
d�� r

+

r�
r2

dt
⌘
2

M = r2
+

+ r2� J = 2r
+

r�

� =
2⇡r

+

r2
+

� r2�
� =

2⇡r�
r2
+

� r2�
,

(1.6) BTZ
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Metric of a rotating black hole in 2+1 dimensions
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Figure 1: Penrose diagram of an AdSn+2-Schwarzschild black hole with the trajectory of the brane.

The brane originates in the past singularity, expands to a certain size and subsequently falls into

the future singularity as it re-collapses. The dots indicate the moments when the brane crosses the

black hole horizon.

In the following we will tune the (n+1)-dimensional cosmological constant to zero by setting
κ = 1/L. Combining (9) with (7) leads to an equation that looks suspiciously like the
Friedmann equation for a radiation dominated universe,

H2 = −
1

a2
+

ωn+1M

an+1
. (10)

In this equation, H ≡ ȧ/a is the Hubble ‘constant’ and the dot denotes differentiation with
respect to the cosmological time τ . For future purpose, we also give the equation for the time
derivative of H ,

Ḣ =
1

a2
−

(n + 1)

2

ωn+1M

an+1
, (11)

which is simply obtained by differentiating (10).

3. CFT on the brane
We now want to identify the equation of motion (10) with the (n+1)-dimensional Fried-

mann equation. In particular, we will argue that the radiation can be identified with the finite
temperature CFT that is dual to the AdS-geometry. To do so, we interpret the last term on
the r.h.s. as the contribution of the energy density ρ of the CFT times the (n+1)-dimensional
Newton constant GN . In the brane-world scenario the relation between the Newton constant
GN in the bulk and the Newton constant GN on the brane is given by

GN =
GNL

(n − 1)
. (12)
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Ḣ =
1

a2
−

(n + 1)

2

ωn+1M

an+1
, (11)

which is simply obtained by differentiating (10).

3. CFT on the brane
We now want to identify the equation of motion (10) with the (n+1)-dimensional Fried-

mann equation. In particular, we will argue that the radiation can be identified with the finite
temperature CFT that is dual to the AdS-geometry. To do so, we interpret the last term on
the r.h.s. as the contribution of the energy density ρ of the CFT times the (n+1)-dimensional
Newton constant GN . In the brane-world scenario the relation between the Newton constant
GN in the bulk and the Newton constant GN on the brane is given by

GN =
GNL

(n − 1)
. (12)

3

RS Brane world cosmology

FRW from CFT

Here K ≡ K i
i is the trace of the extrinsic curvature, κ is a parameter related to the tension

of the brane, GN is the (n+2)-dimensional bulk Newton constant, g is the determinant of
the induced metric and ∂M denotes the surface of the brane. The equation of motion of the
brane that follows from this Lagrangian is

Kij =
κ

n
ginduced

ij . (2)

This equation implies that ∂M is a surface of constant extrinsic curvature.
The bulk action is given by the (n+2)-dimensional Einstein action with cosmological term.

The AdS-Schwarzschild metric provides a solution of the bulk equations of motion and can
be written in the following form,

ds2
n+2 =

1

h(a)
da2 − h(a)dt2 + a2dΩ2

n , (3)

h(a) =
a2

L2
+ 1 −

ωn+1M

an−1
, (4)

where

ωn+1 =
16πGN

nVol(Sn)
. (5)

In these equations, L is the curvature radius of AdS. The pre-factor ωn+1 is chosen such that
M is the mass of the black hole as measured by an observer who uses t as his time coordinate.

Our aim is to find the spherically symmetric solutions corresponding to a homogeneous
and isotropic induced metric on the brane. Let us parameterize the location of the brane
by giving a as a function of the AdS-time t. Equivalently, we may introduce a new time
parameter τ and specify the functions

a = a(τ), t = t(τ). (6)

We will choose the time parameter τ such that the following relation is satisfied,

1

h(a)

(

da

dτ

)2

− h(a)

(

dt

dτ

)2

= −1. (7)

This condition ensures that the induced metric on the brane takes the standard Robertson-
Walker form,

ds2
n+1 = −dτ 2 + a2(τ)dΩ2

n . (8)

We note that the size of the (n+1)-dimensional universe is determined by the radial distance,
a, from the center of the black hole.

The extrinsic curvature, Kij, of the brane can be straightforwardly calculated and ex-
pressed in term of the functions a(τ) and t(τ). One then finds that the equation of motion (2)
translates into

dt

dτ
=

κa

h(a)
. (9)
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Fig 1. The 5-d geometry is bounded by two brane-like structures, the Planck and matter

brane. The physics near the Planck brane is assumed to be supersymmetric. The line of

separation between the matter brane and the 5-d bulk is indicated by the dashed line.

be protected by supersymmetry. This possible reappearance of supersymmetry at large
distance scales can be seen as related to the fact that – unlike in the conventional non-
compact set-up – the UV/IR mapping of the AdS/CFT correspondence now acts on one
single space-time that combines both the 4-d boundary field theory and the 5-d bulk gravity.
Via this UV/IR duality, the infra-red bulk region of the AdS-space near the Planck brane
becomes the natural home base for both the shortest and longest distance physics.

In the following, we will try to test the consistency of these two assumptions. To this
end, we will address the following obvious and most serious counter-argument. Intuitively,
one would expect that the low energy matter sector on the matter brane will produce some
quite arbitrary effective tension, that (without some unnatural or non-local fine-tuning) is
expected to induce a non-zero cosmological constant for the total 4-d effective field theory.
If indeed present, its backreaction would curve the Planck brane and consequently break its
supersymmetry.

A different version of the same objection is that the AdS/CFT dictionary tells us that
the normal variations of the local supergravity fields near the Planck brane in fact know
about low energy quantities of the dual field theory, such as vacuum expectation values,
etc. In particular, the normal variation of the bulk metric (or more precisely, the extrinsic
curvature at the Planck brane [11]) knows about the full vacuum energy produced by the
low energy field theory. It would seem quite unnatural to expect that the Planck brane
dynamics could be chosen such that, without any pre-knowledge of the IR dynamics, it
exactly cancels this matter contribution to the vacuum energy.

In the following sections we will describe a mechanism that will neutralize this counter-
argument. In the final section we address some other aspects of our proposal, and discuss
its relation with other recently proposed scenarios [12][13].
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Gravity with a running cut o� �

Consider a 4-d gravitational theory, given by the low energy e⇥ective field theory of some
consistent string compactification. We schematically write its action as

Sgrav(⇥) =
1
2G

IJ⇥I⇥J + V (⇥) . (5)

Here ⇥I denotes some complete collection of closed string fields, including the space-time
metric gµ� , and I is some multi-index that includes the space-time dependence of the fields.
Since we would not know how to solve the complete UV theory, we will choose to specify
this gravitational theory by following the Wilson prescription.

Sgrav(⇥ ;�) (6)

��e
� 1
h̄Sgrav(�,�) =

⇤
D⇤ e�

1
h̄

�
ĠIJ

2�� ⇥I⇥J � Sgrav(�+ ⇥ ;�)
⇥

(7)

ĠIJG
JK = 0 (8)

h̄⌅�e
� 1
h̄Sgrav(�,�) = Ĥgrav e

� 1
h̄Sgrav(�,�) (9)

Ĥgrav = h̄2ĠIJ
⌅2

⌅⇥I⌅⇥J
(10)
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* path integral over interior
defines a wave function
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* radial Schrodinger eqn =

RG evolution of 

Wednesday, March 5, 2014

Bottom-Up Approach to String Phenomenolog

Standard Model Matter localized at CY singularity

.

D-brane on Warped Calabi-Yau Singularity

Standard 

Model

D-brane

1 10 10 10 10 10 10
3 6 9 12 15 18

GeV

22-c

MSSM = Decoupling Limit of String Theory?
9

?
?
?
?
?

Text

Bottom-Up Approach to String Phenomenology

Standard Model Matter localized at CY singularity

...

Wijnholt, H.V.

...

.

Warped Compactification

Standard 

Model

D-brane

1 10 10 10 10 10 10
3 6 9 12 15 18

GeV

22-b

Decouple the String Landscape!

8

string    
compact-
ification

Wednesday, March 5, 2014




