The LIGO Discovery and Massive Compact Dark Matter

Ely D. Kovetz

Johns Hopkins University

What is Dark Matter? WIMPs? MACHOs?

What is Dark Matter? WIMPs? MACHOs?

Willing to bet?

What is Dark Matter? WIMPs? MACHOs?

Willing to bet?
Careful, physicists have mixed betting records:

What is Dark Matter? WIMPs? MACHOs?

Willing to bet?
Careful, physicists have mixed betting records:

2011 Copenhagen Conference
Wager on Supersymmetry

What is Dark Matter? WIMPs? MACHOs?

Willing to bet?
Careful, physicists have mixed betting records:

2011 Copenhagen Conference
Wager on Supersymmetry

What is Dark Matter? WIMPs? MACHOs?

Willing to bet?
Careful, physicists have mixed betting records:

2011 Copenhagen Conference
Wager on Supersymmetry

1 Year Ago: Detection!

1 Year Ago: Detection!

1 Year Ago: Detection! First event: $29,36 M_{\odot}$

1 Year Ago: Detection! First event: $29,36 M_{\odot}$

Could these be primordial black holes?

Outline

Outline

- Gravitational waves from PBH mergers

Outline

- Gravitational waves from PBH mergers
- Distinguishing between GW progenitors

Outline

- Gravitational waves from PBH mergers
- Distinguishing between GW progenitors
- Probing MACHOS with lensing of FRBs

Outline

- Gravitational waves from PBH mergers
- Distinguishing between GW progenitors
- Probing MACHOS with lensing of FRBs
- Summary and observational outlook

Outline

Outline

- Gravitational waves from PBH mergers

Outline

- Gravitational waves from PBH mergers

"Did LIGO Detect Dark Matter?"
Bird, Cholis, Muñoz, Ali-Haïmoud, Kamionkowski, EDK, Raccanelli \& Riess, Phys. Rev. Lett. 116 (2016)

PBH Binaries: Formation and Coalescence

PBH Binaries: Formation and Coalescence

(Bird et al., PRL 116 (2016))
How do the binaries form?

PBH Binaries: Formation and Coalescence

(Bird et al., PRL 116 (2016))
How do the binaries form?
Capture mechanism:

PBH Binaries: Formation and Coalescence

(Bird et al., PRL 116 (2016))
How do the binaries form?
Capture mechanism: GW emission in close encounter

PBH Binaries: Formation and Coalescence

(Bird et al., PRL 116 (2016))
How do the binaries form?
Capture mechanism: GW emission in close encounter
Binary formed if:

$$
\delta E_{\mathrm{GW}}>\frac{1}{2} \mu v_{\mathrm{pbh}}^{2}
$$

(v_{pbh} is the relative velocity)

PBH Binaries: Formation and Coalescence

(Bird et al., PRL 116 (2016))
How do the binaries form?
Capture mechanism: GW emission in close encounter
Binary formed if:

$$
\delta E_{\mathrm{GW}}>\frac{1}{2} \mu v_{\mathrm{pbh}}^{2}
$$

(v_{pbh} is the relative velocity)
Cross-section: $\sigma \propto R_{s}^{2}\left(\frac{v_{\mathrm{pbh}}}{c}\right)^{-18 / 7}$

$$
\left(R_{s}=2 G M_{\mathrm{pbh}} / c^{2}\right. \text { is the Schwarzschild radius) }
$$

PBH Binaries: Formation and Coalescence

(Bird et al., PRL 116 (2016))
How do the binaries form?
Capture mechanism: GW emission in close encounter
Binary formed if:

$$
\delta E_{\mathrm{GW}}>\frac{1}{2} \mu v_{\mathrm{pbh}}^{2}
$$

(v_{pbh} is the relative velocity)
Cross-section: $\sigma \propto R_{s}^{2}\left(\frac{v_{\mathrm{pbh}}}{c}\right)^{-18 / 7}$

$$
\left(R_{s}=2 G M_{\mathrm{pbh}} / c^{2}\right. \text { is the Schwarzschild radius) }
$$

Initial conditions: $\left(b, v_{\mathrm{pbh}}\right)$

PBH Binaries: Formation and Coalescence

(Bird et al., PRL 116 (2016))
How do the binaries form?
Capture mechanism: GW emission in close encounter

Binary formed if:

$$
\delta E_{\mathrm{GW}}>\frac{1}{2} \mu v_{\mathrm{pbh}}^{2}
$$

(v_{pbh} is the relative velocity)
Cross-section: $\sigma \propto R_{s}^{2}\left(\frac{v_{\mathrm{pbh}}}{c}\right)^{-18 / 7}$

$$
\left(R_{s}=2 G M_{\mathrm{pbh}} / c^{2}\right. \text { is the Schwarzschild radius) }
$$

Initial conditions: $\left(b, v_{\mathrm{pbh}}\right) \longleftrightarrow\left(a_{0}, e_{0}\right)$ semi-major axis; eccentricity

PBH Binaries: Formation and Coalescence

(Bird et al., PRL 116 (2016))
How do the binaries form?
Capture mechanism: GW emission in close encounter
Binary formed if:

$$
\delta E_{\mathrm{GW}}>\frac{1}{2} \mu v_{\mathrm{pbh}}^{2}
$$

(v_{pbh} is the relative velocity)
Cross-section: $\sigma \propto R_{s}^{2}\left(\frac{v_{\mathrm{pbh}}}{c}\right)^{-18 / 7}$

$$
\left(R_{s}=2 G M_{\mathrm{pbh}} / c^{2} \text { is the Schwarzschild radius }\right)
$$

Initial conditions: $\left(b, v_{\mathrm{pbh}}\right) \longleftrightarrow\left(a_{0}, e_{0}\right)$ semi-major axis; eccentricity
Merger time: $\tau_{m} \propto \frac{a_{0}^{4}}{M_{\mathrm{PBH}}^{3}}\left(1-e_{0}^{2}\right)^{7 / 2}$

PBH Binaries: Formation and Coalescence

(Bird et al., PRL 116 (2016))
How do the binaries form?
Capture mechanism: GW emission in close encounter
Binary formed if:

$$
\delta E_{\mathrm{GW}}>\frac{1}{2} \mu v_{\mathrm{pbh}}^{2}
$$

(v_{pbh} is the relative velocity)
Cross-section: $\sigma \propto R_{s}^{2}\left(\frac{v_{\mathrm{pbh}}}{c}\right)^{-18 / 7}$

$$
\left(R_{s}=2 G M_{\mathrm{pbh}} / c^{2} \text { is the Schwarzschild radius }\right)
$$

Initial conditions: $\left(b, v_{\mathrm{pbh}}\right) \longleftrightarrow\left(a_{0}, e_{0}\right)$ semi-major axis; eccentricity
Merger time: $\tau_{m} \propto \frac{a_{0}^{4}}{M_{\mathrm{PBH}}^{3}}\left(1-e_{0}^{2}\right)^{7 / 2} \xrightarrow[e_{0} \longrightarrow 1]{ }$

PBH Binaries: Formation and Coalescence

(Bird et al., PRL 116 (2016))
How do the binaries form?
Capture mechanism: GW emission in close encounter
Binary formed if:

$$
\delta E_{\mathrm{GW}}>\frac{1}{2} \mu v_{\mathrm{pbh}}^{2}
$$

(v_{pbh} is the relative velocity)
Cross-section: $\sigma \propto R_{s}^{2}\left(\frac{v_{\mathrm{pbh}}}{c}\right)^{-18 / 7}$

$$
\left(R_{s}=2 G M_{\mathrm{pbh}} / c^{2} \text { is the Schwarzschild radius }\right)
$$

Initial conditions: $\left(b, v_{\mathrm{pbh}}\right) \longleftrightarrow\left(a_{0}, e_{0}\right)$ semi-major axis; eccentricity
Merger time: $\tau_{m} \propto \frac{a_{0}^{4}}{M_{\mathrm{PBH}}^{3}}\left(1-e_{0}^{2}\right)^{7 / 2} \underset{e_{0} \longrightarrow 1}{\longrightarrow}$ minutes to $\mathcal{O}\left(10^{3}\right)$ years.

PBH Binaries: Formation and Coalescence

(Bird et al., PRL 116 (2016))
How do the binaries form?
Capture mechanism: GW emission in close encounter
Binary formed if:

$$
\delta E_{\mathrm{GW}}>\frac{1}{2} \mu v_{\mathrm{pbh}}^{2}
$$

(v_{pbh} is the relative velocity)
Cross-section: $\sigma \propto R_{s}^{2}\left(\frac{v_{\mathrm{pbh}}}{c}\right)^{-18 / 7}$

$$
\text { (} R_{s}=2 G M_{\mathrm{pbh}} / c^{2} \text { is the Schwarzschild radius) }
$$

Initial conditions: $\left(b, v_{\mathrm{pbh}}\right) \longleftrightarrow\left(a_{0}, e_{0}\right)$ semi-major axis; eccentricity
Merger time: $\tau_{m} \propto \frac{a_{0}^{4}}{M_{\mathrm{PBH}}^{3}}\left(1-e_{0}^{2}\right)^{7 / 2} \underset{e_{0} \longrightarrow 1}{\longrightarrow}$ minutes to $\mathcal{O}\left(10^{3}\right)$ years.
Three-body interactions/captures: less relevant, much longer timescales.

GWs from PBH Mergers: Event Rate Calculation

GWs from PBH Mergers: Event Rate Calculation

(Bird et al., PRL 116 (2016))
To calculate the event rate:

GWs from PBH Mergers: Event Rate Calculation

(Bird et al., PRL 116 (2016))
To calculate the event rate:

- The PBH merger rate within each halo:

GWs from PBH Mergers: Event Rate Calculation

(Bird et al., PRL 116 (2016))
To calculate the event rate:

- The PBH merger rate within each halo:

$$
\mathcal{R}=4 \pi \int_{0}^{R_{\mathrm{vir}}} r^{2} \frac{1}{2}\left(\frac{\rho_{\mathrm{nfw}}(r)}{M_{\mathrm{pbh}}}\right)^{2}\left\langle\sigma v_{\mathrm{pbh}}\right\rangle d r
$$

GWs from PBH Mergers: Event Rate Calculation

(Bird et al., PRL 116 (2016))
To calculate the event rate:

- The PBH merger rate within each halo:

$$
\mathcal{R}=4 \pi \int_{0}^{R_{\mathrm{vir}}} r^{2} \frac{1}{2}\left(\frac{\rho_{\mathrm{nfw}}(r)}{M_{\mathrm{pbh}} \uparrow}\right)^{2}\left\langle\sigma v_{\mathrm{pbh}}\right\rangle d r
$$

GWs from PBH Mergers: Event Rate Calculation

(Bird et al., PRL 116 (2016))
To calculate the event rate:

- The PBH merger rate within each halo:

$$
\mathcal{R}=4 \pi \int_{0}^{R_{\mathrm{vir}}} r^{2} \frac{1}{2}\left(\frac{\rho_{\mathrm{nfw}}(r)}{\left.M_{\mathrm{pbh}}\right)^{2}}\right)_{\substack{\text { Navarro-Frenk-White } \\
\text { density profile }}}^{\left\langle\sigma v_{\mathrm{pbh}}\right\rangle d r \mid} \begin{gathered}
\text { MB distribution velocity } \\
\text { Menter }
\end{gathered}
$$

GWs from PBH Mergers: Event Rate Calculation

(Bird et al., PRL 116 (2016))
To calculate the event rate:

- The PBH merger rate within each halo:

GWs from PBH Mergers: Event Rate Calculation

(Bird et al., PRL 116 (2016))
To calculate the event rate:

- The PBH merger rate within each halo:

$$
\mathcal{R}=4 \pi \int_{0}^{R_{\mathrm{vir}}} r^{2} \frac{1}{2}\left(\frac{\rho_{\mathrm{nfw}}(r)}{\left.M_{\mathrm{pbh}}\right)^{2}}\right)^{2}\left\langle\sigma v_{\mathrm{pbh}}\right\rangle d r
$$

- Total merger rate as a function of halo mass:

$$
\mathcal{V}_{\mathrm{pbh}}=\int \frac{d n}{d M}(M) \mathcal{R}(M) d M
$$

GWs from PBH Mergers: Event Rate Calculation

(Bird et al., PRL 116 (2016))
To calculate the event rate:

- The PBH merger rate within each halo:

$$
\left.\mathcal{R}=4 \pi \int_{0}^{R_{\mathrm{vir}}} r^{2} \frac{1}{2}\left(\frac{\rho_{\mathrm{nfw}}(r)}{\left.M_{\mathrm{pbh}}\right)^{2}}\right)^{2}\left\langle\sigma v_{\mathrm{pbh}}\right\rangle d r \right\rvert\,\left(\left.\begin{array}{c}
\text { Relative velocity } \\
\text { MBarro-Frenk-White } \\
\text { density profile }
\end{array} \quad \right\rvert\, \begin{array}{c}
\text { MB distribution }
\end{array}\right.
$$

- Total merger rate as a function of halo mass:

$$
\mathcal{V}_{\mathrm{pbh}}=\int \frac{d n}{d M}(M) \mathcal{R}(M) d M
$$

GWs from PBH Mergers: Event Rate Calculation

(Bird et al., PRL 116 (2016))
To calculate the event rate:

- The PBH merger rate within each halo:

$$
\left.\mathcal{R}=4 \pi \int_{0}^{R_{\mathrm{vir}}} r^{2} \frac{1}{2}\left(\frac{\rho_{\mathrm{nfw}}(r)}{\left.M_{\mathrm{pbh}}\right)^{2}}\right)^{2}\left\langle\sigma v_{\mathrm{pbh}}\right\rangle d r \right\rvert\,\left(\begin{array} { c }
{ \text { Relative velocity } } \\
{ \text { MB distribution } } \\
{ \text { density profile } }
\end{array} \quad \left\langle\begin{array}{c}
\text { MBite }
\end{array}\right.\right.
$$

GWs from PBH Mergers: Event Rate Calculation

(Bird et al., PRL 116 (2016))
To calculate the event rate:

- The PBH merger rate within each halo:

$$
\mathcal{R}_{\substack{\text { Navarro-Frenk-White } \\
\text { density profile }}}^{R_{\mathrm{vir}}} r^{2} \frac{1}{2}\left(\frac{\rho_{\mathrm{nfw}}(r)}{M_{\mathrm{pbh}} \uparrow}\right)^{2}\langle\underbrace{\left\langle\sigma v_{\mathrm{pbh}}\right\rangle d r}_{\begin{array}{c}
\text { Relative velocity } \\
\text { MB distribution }
\end{array}}
$$

GWs from PBH Mergers: Subtleties

(Bird et al., PRL 116 (2016))

GWs from PBH Mergers: Subtleties

(Bird et al., PRL 116 (2016))

GWs from PBH Mergers: Subtleties

(Bird et al., PRL 116 (2016))

Simulation range

GWs from PBH Mergers: Subtleties

(Bird et al., PRL 116 (2016))

GWs from PBH Mergers: Subtleties

(Bird et al., PRL 116 (2016))
Q: Low mass cutoff?

GWs from PBH Mergers: Subtleties

(Bird et al., PRL 116 (2016))
Q: Low mass cutoff?

- Accretion compensates in matter domination.

GWs from PBH Mergers: Subtleties

(Bird et al., PRL 116 (2016))
Q: Low mass cutoff?

- Accretion compensates in matter domination.
- In dark-energy domination, require:
$t_{\text {evap }} \approx(14 \mathcal{N} / \ln \mathcal{N})\left[R_{\text {vir }} /\left(C v_{\mathrm{dm}}\right)\right]>3 \mathrm{Gyr}$
Binney \& Tremaine

GWs from PBH Mergers: Subtleties

(Bird et al., PRL 116 (2016))
Q: Low mass cutoff?

- Accretion compensates in matter domination.
- In dark-energy domination, require:
$t_{\text {evap }} \approx(14 \mathcal{N} / \ln \mathcal{N})\left[R_{\text {vir }} /\left(C v_{\mathrm{dm}}\right)\right]>3 \mathrm{Gyr}$
Binney \& Tremaine
Extrapolation
Simulation range
$\longrightarrow M_{\text {halo }}>400 M_{\odot}$ do not evaporate.

GWs from PBH Mergers: Subtleties

(Bird et al., PRL 116 (2016))
Q: Low mass cutoff?

- Accretion compensates in matter domination.
- In dark-energy domination, require:
$t_{\text {evap }} \approx(14 \mathcal{N} / \ln \mathcal{N})\left[R_{\text {vir }} /\left(C v_{\mathrm{dm}}\right)\right]>3 \mathrm{Gyr}$
Binney \& Tremaine
Extrapolation
Simulation range
$\longrightarrow M_{\text {halo }}>400 M_{\odot}$ do not evaporate.

GWs from PBH Mergers: Subtleties

(Bird et al., PRL 116 (2016))
Q: Low mass cutoff?

- Accretion compensates in matter domination.
- In dark-energy domination, require:
$t_{\text {evap }} \approx(14 \mathcal{N} / \ln \mathcal{N})\left[R_{\text {vir }} /\left(C v_{\mathrm{dm}}\right)\right]>3 \mathrm{Gyr}$
Binney \& Tremaine
Extrapolation
Simulation range
$\longrightarrow M_{\text {halo }}>400 M_{\odot}$ do not evaporate.

GWs from PBH Mergers: Subtleties

(Bird et al., PRL 116 (2016))
Q: Low mass cutoff?

- Accretion compensates in matter domination.
- In dark-energy domination, require:
$t_{\text {evap }} \approx(14 \mathcal{N} / \ln \mathcal{N})\left[R_{\text {vir }} /\left(C v_{\mathrm{dm}}\right)\right]>3 \mathrm{Gyr}$
Binney \& Tremaine
Extrapolation Simulation range
$\longrightarrow M_{\text {halo }}>400 M_{\odot}$ do not evaporate.

GWs from PBH Mergers: Subtleties

(Bird et al., PRL 116 (2016))
Q: Low mass cutoff?

- Accretion compensates in matter domination.
- In dark-energy domination, require:
$t_{\text {evap }} \approx(14 \mathcal{N} / \ln \mathcal{N})\left[R_{\text {vir }} /\left(C v_{\mathrm{dm}}\right)\right]>3 \mathrm{Gyr}$
Binney \& Tremaine
Extrapolation Simulation range
$\longrightarrow M_{\text {halo }}>400 M_{\odot}$ do not evaporate.

GWs from PBH Mergers: Results

(Bird et al., PRL 116 (2016))

GWs from PBH Mergers: Results

(Bird et al., PRL 116 (2016))
We get a total LIGO event rate of:

$$
\mathcal{V}_{\mathrm{pbh}}=2 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}
$$

GWs from PBH Mergers: Results

(Bird et al., PRL 116 (2016))
We get a total LIGO event rate of:

$$
\mathcal{V}_{\mathrm{pbh}}=2 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}
$$

Within the LIGO estimated event rate (based on GW150914):

GWs from PBH Mergers: Results

(Bird et al., PRL 116 (2016))
We get a total LIGO event rate of:

$$
\mathcal{V}_{\mathrm{pbh}}=2 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}
$$

Within the LIGO estimated event rate (based on GW150914):

$$
\mathcal{V}_{\mathrm{LIGO}}=2-53 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}
$$

GWs from PBH Mergers: Results

(Bird et al., PRL 116 (2016))
We get a total LIGO event rate of:

$$
\mathcal{V}_{\mathrm{pbh}}=2 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}
$$

Within the LIGO estimated event rate (based on GW150914):

$$
\mathcal{V}_{\mathrm{LIGO}}=0.5-12 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}
$$

GWs from PBH Mergers: Results

(Bird et al., PRL 116 (2016))
We get a total LIGO event rate of:

$$
\mathcal{V}_{\mathrm{pbh}}=2 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}
$$

Within the LIGO estimated event rate (based on GW150914):

$$
\mathcal{V}_{\mathrm{LIGO}}=0.5-12 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}
$$

Note: this could have been orders of magnitude in either direction!!!

GWs from PBH Mergers: Results

(Bird et al., PRL 116 (2016))
We get a total LIGO event rate of:

$$
\mathcal{V}_{\mathrm{pbh}}=2 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}
$$

Within the LIGO estimated event rate (based on GW150914):

$$
\mathcal{V}_{\mathrm{LIGO}}=0.5-12 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}
$$

Note: this could have been orders of magnitude in either direction!!!

Uncertainties in our rate:

GWs from PBH Mergers: Results

(Bird et al., PRL 116 (2016))
We get a total LIGO event rate of:

$$
\mathcal{V}_{\mathrm{pbh}}=2 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}
$$

Within the LIGO estimated event rate (based on GW150914):

$$
\mathcal{V}_{\text {LIGO }}=0.5-12 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}
$$

Note: this could have been orders of magnitude in either direction!!!
Uncertainties in our rate:
$\sim 50 \%$ for different choices of

GWs from PBH Mergers: Results

(Bird et al., PRL 116 (2016))
We get a total LIGO event rate of:

$$
\mathcal{V}_{\mathrm{pbh}}=2 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}
$$

Within the LIGO estimated event rate (based on GW150914):

$$
\mathcal{V}_{\text {LIGO }}=0.5-12 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}
$$

Note: this could have been orders of magnitude in either direction!!!
Uncertainties in our rate:
$\sim 50 \%$ for different choices of $\left\{\begin{array}{l}\text { - halo profiles } \\ \end{array}\right.$

GWs from PBH Mergers: Results

(Bird et al., PRL 116 (2016))
We get a total LIGO event rate of:

$$
\mathcal{V}_{\mathrm{pbh}}=2 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}
$$

Within the LIGO estimated event rate (based on GW150914):

$$
\mathcal{V}_{\mathrm{LIGO}}=0.5-12 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}
$$

Note: this could have been orders of magnitude in either direction!!!

Uncertainties in our rate:
$\sim 50 \%$ for different choices of $\left\{\begin{array}{l}\text { - halo profiles } \\ \text { - concentration-mass relations } \\ \end{array}\right.$

GWs from PBH Mergers: Results

(Bird et al., PRL 116 (2016))
We get a total LIGO event rate of:

$$
\mathcal{V}_{\mathrm{pbh}}=2 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}
$$

Within the LIGO estimated event rate (based on GW150914):

$$
\mathcal{V}_{\mathrm{LIGO}}=0.5-12 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}
$$

Note: this could have been orders of magnitude in either direction!!!

Uncertainties in our rate:
$\sim 50 \%$ for different choices of $\left\{\begin{array}{l}\text { - halo profiles } \\ \text { - concentration-mass relations } \\ \text { - halo mass functions }\end{array}\right.$

GWs from PBH Mergers: Results

(Bird et al., PRL 116 (2016))
We get a total LIGO event rate of:

$$
\mathcal{V}_{\mathrm{pbh}}=2 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}
$$

Within the LIGO estimated event rate (based on GW150914):

$$
\mathcal{V}_{\mathrm{LIGO}}=0.5-12 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}
$$

Note: this could have been orders of magnitude in either direction!!!

Uncertainties in our rate:
$\sim 50 \%$ for different choices of $\left\{\begin{array}{l}\text { - halo profiles } \\ \text { - concentration-mass relations } \\ \text { - halo mass functions } \\ \text { - cosmological parameters }\end{array}\right.$

GWs from PBH Mergers: Results

(Bird et al., PRL 116 (2016))
We get a total LIGO event rate of:

$$
\mathcal{V}_{\mathrm{pbh}}=2 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}
$$

Within the LIGO estimated event rate (based on GW150914):

$$
\mathcal{V}_{\mathrm{LIGO}}=0.5-12 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}
$$

Note: this could have been orders of magnitude in either direction!!!
Uncertainties in our rate:
$\sim 50 \%$ for different choices of $\left\{\begin{array}{l}\text { - halo profiles } \\ - \text { concentration-mass relations } \\ - \text { halo mass functions } \\ - \text { cosmological parameters }\end{array}\right.$
\longrightarrow Total uncertainty: a factor of $\mathcal{O}(3)$ in each direction.

GWs from PBH Mergers: Testing the Model

GWs from PBH Mergers: Testing the Model

(Bird et al., PRL 116 (2016))
Testable predictions:

GWs from PBH Mergers: Testing the Model

(Bird et al., PRL 116 (2016))
Testable predictions:

- No EM or neutrino counterparts

GWs from PBH Mergers: Testing the Model

(Bird et al., PRL 116 (2016))
Testable predictions:

- No EM or neutrino counterparts
- A Stochastic GW background

GWs from PBH Mergers: Testing the Model

(Bird et al., PRL 116 (2016))
Testable predictions:

- No EM or neutrino counterparts
- A Stochastic GW background
- Originate in low mass halos

GWs from PBH Mergers: Testing the Model

(Bird et al., PRL 116 (2016))
Testable predictions:

- No EM or neutrino counterparts
- A Stochastic GW background
- Originate in low mass halos
- Traces of high eccentricities

GWs from PBH Mergers: Testing the Model

(Bird et al., PRL 116 (2016))
Testable predictions:

- No EM or neutrino counterparts
- A Stochastic GW background
- Originate in low mass halos
- Traces of high eccentricities
- Potential peak in mass spectrum

GWs from PBH Mergers: Testing the Model

(Bird et al., PRL 116 (2016))
Testable predictions:

- No EM or neutrino counterparts
\longrightarrow None have been found so far (~ 70 follow-ups to date)
- A Stochastic GW background
- Originate in low mass halos
- Traces of high eccentricities
- Potential peak in mass spectrum

GWs from PBH Mergers: Testing the Model

(Bird et al., PRL 116 (2016))
Testable predictions:

- No EM or neutrino counterparts
\longrightarrow None have been found so far (~ 70 follow-ups to date)
- A Stochastic GW background \longrightarrow Low S/N (lost in astrophysical signal) Mundic et al. arXiv:1608.06699
- Originate in low mass halos
- Traces of high eccentricities
- Potential peak in mass spectrum

GWs from PBH Mergers: Testing the Model

(Bird et al., PRL 116 (2016))
Testable predictions:

- No EM or neutrino counterparts
\longrightarrow None have been found so far (~ 70 follow-ups to date)
- A Stochastic GW background \longrightarrow Low S/N (lost in astrophysical signal) Mundic et al. arXiv:1608.06699
- Originate in low mass halos
- Traces of high eccentricities
- Potential peak in mass spectrum

Outline

- Gravitational waves from PBH mergers

Outline

- Gravitational waves from PBH mergers

- Distinguishing between GW progenitors

Outline

- Gravitational waves from PBH mergers
- Distinguishing between GW progenitors
"Determining the Progenitors of Merging Black Hole Binaries"
Raccanelli, EDK, Bird, Cholis \& Muñoz, Phys.Rev. D94 (2016)

Outline

- Gravitational waves from PBH mergers

- Distinguishing between GW progenitors

"Determining the Progenitors of Merging Black Hole Binaries"
Raccanelli, EDK, Bird, Cholis \& Muñoz, Phys.Rev. D94 (2016)
"Orbital Eccentricities in Primordial Black Hole Binaries"
Cholis, EDK, Ali-Haïmoud, Bird, Kamionkowski, Muñoz \& Raccanelli, arXiv:1606.07437

Outline

- Gravitational waves from PBH mergers

- Distinguishing between GW progenitors

"Determining the Progenitors of Merging Black Hole Binaries"
Raccanelli, EDK, Bird, Cholis \& Muñoz, Phys.Rev. D94 (2016)
"Orbital Eccentricities in Primordial Black Hole Binaries"
Cholis, EDK, Ali-Haïmoud, Bird, Kamionkowski, Muñoz \& Raccanelli, arXiv:1606.07437
"The Black Hole Mass Function from Gravitational Wave Measurements"
EDK, Cholis \& Breysse, in preparation.

Determining the Progenitors: Host Properties

Determining the Progenitors: Host Properties

Recall:

Determining the Progenitors: Host Properties

Recall:

PBH mergers reside primarily in low mass halos.

Determining the Progenitors: Host Properties

Recall:

PBH mergers reside primarily in low mass halos.
These are low-biased tracers of the underlying dark-matter mass distribution.

Determining the Progenitors: Host Properties

Recall:

PBH mergers reside primarily in low mass halos.
These are low-biased tracers of the underlying dark-matter mass distribution.
\longrightarrow Cross-correlate with galaxy catalogues!

Determining the Progenitors: Host Properties

Recall:

PBH mergers reside primarily in low mass halos.
These are low-biased tracers of the underlying dark-matter mass distribution.
\longrightarrow Cross-correlate with galaxy catalogues!
Distinguish between $b_{\text {Stellar }} \sim 1.4$ and $b_{\mathrm{PBH}} \sim 0.5$

Localization of Gravitational Wave Sources

Localization of Gravitational Wave Sources

Where do the GWs originate from?

Localization of Gravitational Wave Sources

Where do the GWs originate from?
GW150914: $230 \mathrm{deg}^{2}$ LVT151012: $1600 \mathrm{deg}^{2}$
GW151226: $850 \mathrm{deg}^{2}$

Localization of Gravitational Wave Sources

Where do the GWs originate from?
GW150914: $230 \mathrm{deg}^{2}$ LVT151012: $1600 \mathrm{deg}^{2}$
GW151226: $850 \mathrm{deg}^{2}$

Localization of Gravitational Wave Sources

Where do the GWs originate from?
GW150914: 230 deg 2 LVT151012: 1600 deg2
GW151226: 850 deg 2

Localization of Gravitational Wave Sources

Where do the GWs originate from?
GW150914: $230 \mathrm{deg}^{2}$ LVT151012: $1600 \mathrm{deg}^{2}$
GW151226: $850 \mathrm{deg}^{2}$

Localization of Gravitational Wave Sources

Where do the GWs originate from?
GW150914: $230 \mathrm{deg}^{2}$ LVT151012: 1600 deg 2
GW151226: 850 deg 2

Localization of Gravitational Wave Sources

Where do the GWs originate from?
Expect: LIGO net: ~2-5 deg²

GW150914: 230 deg 2 LVT151012: $1600 \mathrm{deg}^{2}$ GW151226: 850 deg² 2

Localization of Gravitational Wave Sources

Where do the GWs originate from?
Expect: LIGO net: ~2-5 deg²
ET: <1 deg ${ }^{2}$

Cross-Correlating GWs and Galaxies

(Raccanelli et al., PRD94 (2016))

Cross-Correlating GWs and Galaxies

(Raccanelli et al., PRD94 (2016))
Angular power spectra of GW locations:

Cross-Correlating GWs and Galaxies

(Raccanelli et al., PRD94 (2016))
Angular power spectra of GW locations:

Amplitude proportional to bias: $A_{c} \propto b^{\mathrm{GW}}$

Cross-Correlating GWs and Galaxies

(Raccanelli et al., PRD94 (2016))
Angular power spectra of GW locations:

Amplitude proportional to bias: $A_{c} \propto b^{\mathrm{GW}}$

Goal: reach $\Delta A_{c}=b_{\mathrm{Stellar}}^{\mathrm{GW}}-b_{\mathrm{PBH}}^{\mathrm{GW}} \sim 0.9$

Cross-Correlating GWs and Galaxies

(Raccanelli et al., PRD94 (2016))
Angular power spectra of GW locations:

Amplitude proportional to bias: $A_{c} \propto b^{\mathrm{GW}}$

$$
\text { Goal: reach } \Delta A_{c}=b_{\mathrm{Stellar}}^{\mathrm{GW}}-b_{\mathrm{PBH}}^{\mathrm{GW}} \sim 0.9
$$

With advanced GW detectors, some prospects:

Cross-Correlating GWs and Galaxies

(Raccanelli et al., PRD94 (2016))
Angular power spectra of GW locations:

Amplitude proportional to bias: $A_{c} \propto b^{\mathrm{GW}}$

$$
\text { Goal: reach } \Delta A_{c}=b_{\mathrm{Stellar}}^{\mathrm{GW}}-b_{\mathrm{PBH}}^{\mathrm{GW}} \sim 0.9
$$

With advanced GW detectors, some prospects:

Cross-Correlating GWs and Galaxies

(Raccanelli et al., PRD94 (2016))
Angular power spectra of GW locations:

Amplitude proportional to bias: $A_{c} \propto b^{\mathrm{GW}}$

$$
\text { Goal: reach } \Delta A_{c}=b_{\mathrm{Stellar}}^{\mathrm{GW}}-b_{\mathrm{PBH}}^{\mathrm{GW}} \sim 0.9
$$

With advanced GW detectors, some prospects:

Determining the Progenitors: Initial Conditions

(Cholis et al., arXiv:1606.07437)

Determining the Progenitors: Initial Conditions

(Cholis et al., arXiv:1606.07437)
Orbits HIGHLY eccentric at encounter:

Determining the Progenitors: Initial Conditions

(Cholis et al., arXiv:1606.07437)
Orbits HIGHLY eccentric at encounter:

Determining the Progenitors: Initial Conditions

(Cholis et al., arXiv:1606.07437)
Orbits HIGHLY eccentric at encounter:

Determining the Progenitors: Initial Conditions

(Cholis et al., arXiv:1606.07437)

Orbits HIGHLY eccentric at encounter:

Goal: detect deviation from $e=0$

Determining the Progenitors: Initial Conditions

(Cholis et al., arXiv:1606.07437)
Orbits HIGHLY eccentric at encounter:

Goal: detect deviation from $e=0$

Final eccentricity:

Determining the Progenitors: Initial Conditions

(Cholis et al., arXiv:1606.07437)
Orbits HIGHLY eccentric at encounter:

Goal: detect deviation from $e=0$

Final eccentricity:
$\sim 1 \%$ of PBH GW events with detectable final eccentricity:

Orbital Eccentricities in PBH Binaries

(Cholis et al., arXiv:1606.07437)

Orbital Eccentricities in PBH Binaries

(Cholis et al., arXiv:1606.07437)
GW signal (+ noise):

Orbital Eccentricities in PBH Binaries

(Cholis et al., arXiv:1606.07437)
GW signal (+ noise):

Orbital Eccentricities in PBH Binaries

(Cholis et al., arXiv:1606.07437)
GW signal (+ noise):

Orbital Eccentricities in PBH Binaries

(Cholis et al., arXiv:1606.07437)
GW signal (+ noise):

Orbital Eccentricities in PBH Binaries

(Cholis et al., arXiv:1606.07437)
GW signal (+ noise):

$$
\log _{10}\left(\left(h_{c}+h_{n}\right) \times 10^{21}\right)
$$

Binary BHs, $m_{1}=m_{2}=30 \mathrm{M}_{\odot}$

Orbital Eccentricities in PBH Binaries

(Cholis et al., arXiv:1606.07437)
GW signal (+ noise):

Environment	$R_{m}(0)^{e_{14}>0.2}$	$N^{e_{14}>0.2}$	$N^{e_{14}>0.1}$	$N^{e_{14}>0.1}$
$M_{\text {vir }}\left(M_{\odot} / h\right)$	$\left(\mathrm{Gpc}^{3} \mathrm{yr}^{-1}\right)$	LIGO 6yr	ET 10 yr	ET 10 yr (optimistic)
PBHs in 10^{6}	$(0.2-4) \times 10^{-4}$	$(0.05-1) \times 10^{-1}$	$0.04-1$	$0.08-2$
PBHs in 10^{9}	$(0.1-2.5) \times 10^{-5}$	$(0.2-5) \times 10^{-3}$	$(0.2-4) \times 10^{-2}$	$(0.5-10) \times 10^{-2}$
PBHs in 10^{12}	$(0.7-20) \times 10^{-7}$	$(0.15-3) \times 10^{-5}$	$(0.25-5) \times 10^{-3}$	$(0.04-0.8) \times 10^{-2}$
PBHs in $>10^{2.5}$	$(1-20) \times 10^{-3}$	$0.3-5$	$1.5-30$	$3-60$
BHs in GC $^{2 b o d y}$	$(0.2-2) \times 10^{-5}$	$(1-10) \times 10^{-3}$	$0.1-1$	$0.3-5$

Binary BHs, $m_{1}=m_{2}=30 \mathrm{M}_{\odot}$

$\log _{10}\left(\left(h_{c}+h_{n}\right) \times 10^{21}\right)$

Determining the Progenitors: Mass Function

Determining the Progenitors: Mass Function

Black Holes of Known Mass

The Black-Hole Mass Function from GWs

(EDK, Cholis \& Breysse, in preparation)

The Black-Hole Mass Function from GWs

(EDK, Cholis \& Breysse, in preparation)
Mass function in a few years:

The Black-Hole Mass Function from GWs

(EDK, Cholis \& Breysse, in preparation)
Mass function in a few years:

$$
p(m) \propto m^{-\alpha}
$$

The Black-Hole Mass Function from GWs

(EDK, Cholis \& Breysse, in preparation)
Mass function in a few years:
Stellar IMF

$\alpha=2.35$

The Black-Hole Mass Function from GWs

(EDK, Cholis \& Breysse, in preparation)
Mass function in a few years:
Stellar IMF

$$
p(m) \propto m^{-\alpha} \mathcal{H}\left(m-m_{\mathrm{Gap}}\right)
$$

The Black-Hole Mass Function from GWs

(EDK, Cholis \& Breysse, in preparation)
Mass function in a few years:

$$
\text { Stellar IMF } \quad \text { NS vs. BH }
$$

$$
p(m) \propto m^{-\alpha} \mathcal{H}\left(m-m_{\mathrm{Gap}}\right)
$$

The Black-Hole Mass Function from GWs

(EDK, Cholis \& Breysse, in preparation)
Mass function in a few years:

> Stellar IMF $\alpha=2.35$$\quad \begin{aligned} & \text { NS vs. BH } \\ & M_{\text {Gap }} \sim 5 ?\end{aligned}$

$$
p(m) \propto m^{-\alpha} \mathcal{H}\left(m-m_{\mathrm{Gap}}\right) e^{-m / m_{\mathrm{Cap}}}
$$

The Black-Hole Mass Function from GWs

(EDK, Cholis \& Breysse, in preparation)
Mass function in a few years:

$$
p(m) \propto m^{-\alpha} \mathcal{H}\left(m-m_{\mathrm{Gap}}\right) e^{-m / m_{\mathrm{Cap}}}
$$

The Black-Hole Mass Function from GWs

(EDK, Cholis \& Breysse, in preparation)

Mass function in a few years:
Stellar IMF

$$
p(m) \propto m^{-\alpha} \mathcal{H}\left(m-m_{\mathrm{Gap}}\right) e^{-m / m_{\mathrm{Cap}}}
$$

Binned Mass distribution of BBHs: Astrphysical + Primordial

The Black Hole Mass Function from GWs

(EDK, Cholis \& Breysse, in preparation)

Mass function with Dark Matter PBHs:

The Black Hole Mass Function from GWs

(EDK, Cholis \& Breysse, in preparation)

Mass function with Dark Matter PBHs:

$$
M_{\mathrm{PBH}} \sim \mathcal{N}\left(30 M_{\odot}, \sigma_{M}^{2}\right)
$$

The Black Hole Mass Function from GWs

(EDK, Cholis \& Breysse, in preparation)

Mass function with Dark Matter PBHs:

$$
M_{\mathrm{PBH}} \sim \mathcal{N}\left(30 M_{\odot}, \sigma_{M}^{2}\right)
$$

Binned Mass distribution of BBHs: Astrphysical + Primordial

The Black Hole Mass Function from GWs

(EDK, Cholis \& Breysse, in preparation)

Mass function with Dark Matter PBHs:

$$
M_{\mathrm{PBH}} \sim \mathcal{N}\left(30 M_{\odot}, \sigma_{M}^{2}\right)
$$

The Black Hole Mass Function from GWs

(EDK, Cholis \& Breysse, in preparation)

The Black Hole Mass Function from GWs

(EDK, Cholis \& Breysse, in preparation)
Probing the MF parameters:

The Black Hole Mass Function from GWs

(EDK, Cholis \& Breysse, in preparation)
Probing the MF parameters:

$$
p(m) \propto m^{-\alpha} \mathcal{H}\left(m-m_{\mathrm{Gap}}\right) e^{-m / m_{\mathrm{Cap}}}
$$

The Black Hole Mass Function from GWs

(EDK, Cholis \& Breysse, in preparation)
Probing the MF parameters:

$$
p(m) \propto m^{-\alpha} \mathcal{H}\left(m-m_{\mathrm{Gap}}\right) e^{-m / m_{\mathrm{Cap}}}
$$

Constraints on parameters using the 1D BH-Mass PDF

The Black Hole Mass Function from GWs

(EDK, Cholis \& Breysse, in preparation)
Probing the MF parameters:
Heavier mass: $\quad p(m) \propto m^{-\alpha} \mathcal{H}\left(m-m_{\text {Gap }}\right) e^{-m / m_{\text {Cap }}}$

Constraints on parameters using the 1D BH-Mass PDF

The Black Hole Mass Function from GWs

(EDK, Cholis \& Breysse, in preparation)
Probing the MF parameters:
Heavier mass: $\quad p(m) \propto m^{-\alpha} \mathcal{H}\left(m-m_{\text {Gap }}\right) e^{-m / m_{\text {Cap }}}$
Lighter mass: $\quad p\left(m^{\prime}\right) \propto\left(m^{\prime} / m\right)^{\beta}$

Constraints on parameters using the 1D BH-Mass PDF

The Black Hole Mass Function from GWs

(EDK, Cholis \& Breysse, in preparation)
Probing the MF parameters:
Heavier mass: $\quad p(m) \propto m^{-\alpha} \mathcal{H}\left(m-m_{\text {Gap }}\right) e^{-m / m_{\text {Cap }}}$
Lighter mass: $\quad p\left(m^{\prime}\right) \propto\left(m^{\prime} / m\right)^{\beta} \quad \begin{gathered}\text { Mass Ratio } \\ \beta=0 ?\end{gathered}$
Constraints on parameters using the 1D BH-Mass PDF

The Black Hole Mass Function from GWs

(EDK, Cholis \& Breysse, in preparation)
Probing the MF parameters:
Heavier mass: $\quad p(m) \propto m^{-\alpha} \mathcal{H}\left(m-m_{\text {Gap }}\right) e^{-m / m_{\text {Cap }}}$
Lighter mass: $\quad p\left(m^{\prime}\right) \propto\left(m^{\prime} / m\right)^{\beta} \quad \begin{gathered}\text { Mass Ratio } \\ \beta=0 ?\end{gathered}$
Constraints on parameters using the 1D BH-Mass PDF

The Black Hole Mass Function from GWs

(EDK, Cholis \& Breysse, in preparation)
Probing the MF parameters:
Heavier mass: $\quad p(m) \propto m^{-\alpha} \mathcal{H}\left(m-m_{\text {Gap }}\right) e^{-m / m_{\text {Cap }}}$
Lighter mass: $\quad p\left(m^{\prime}\right) \propto\left(m^{\prime} / m\right)^{\beta} \quad \begin{gathered}\text { Mass Ratio } \\ \beta=0 ?\end{gathered}$
Constraints on parameters using the 1D BH-Mass PDF

The Black Hole Mass Function from GWs

(EDK, Cholis \& Breysse, in preparation)
Probing the MF parameters:
Heavier mass: $\quad p(m) \propto m^{-\alpha} \mathcal{H}\left(m-m_{\text {Gap }}\right) e^{-m / m_{\text {Cap }}}$
Lighter mass: $\quad p\left(m^{\prime}\right) \propto\left(m^{\prime} / m\right)^{\beta} \quad \begin{gathered}\text { Mass Ratio } \\ \beta=0 ?\end{gathered}$
Constraints on parameters using the 1D BH-Mass PDF

The Black Hole Mass Function from GWs: 2D

(EDK, Cholis \& Breysse, in preparation)
Probing the MF parameters:
Heavier mass: $\quad p(m) \propto m^{-\alpha} \mathcal{H}\left(m-m_{\text {Gap }}\right) e^{-m / m_{\text {Cap }}}$
Lighter mass: $\quad p\left(m^{\prime}\right) \propto\left(m^{\prime} / m\right)^{\beta} \quad \begin{gathered}\text { Mass Ratio } \\ \beta=0 ?\end{gathered}$

The Black Hole Mass Function from GWs: 2D

(EDK, Cholis \& Breysse, in preparation)
Probing the MF parameters:
Heavier mass: $\quad p(m) \propto m^{-\alpha} \mathcal{H}\left(m-m_{\text {Gap }}\right) e^{-m / m_{\text {Cap }}}$
Lighter mass: $\quad p\left(m^{\prime}\right) \propto\left(m^{\prime} / m\right)^{\beta} \quad \begin{gathered}\text { Mass Ratio } \\ \beta=0 ?\end{gathered}$

The Black Hole Mass Function from GWs: 2D

(EDK, Cholis \& Breysse, in preparation)
Probing the MF parameters:
Heavier mass: $\quad p(m) \propto m^{-\alpha} \mathcal{H}\left(m-m_{\text {Gap }}\right) e^{-m / m_{\text {Cap }}}$
Lighter mass: $\quad p\left(m^{\prime}\right) \propto\left(m^{\prime} / m\right)^{\beta} \quad \begin{gathered}\text { Mass Ratio } \\ \beta=0 \text { ? }\end{gathered}$

The Black Hole Mass Function from GWs: 2D

(EDK, Cholis \& Breysse, in preparation)
Probing the MF parameters:
Heavier mass:

$$
\begin{aligned}
& p(m) \propto m^{-\alpha} \mathcal{H}\left(m-m_{\mathrm{Gap}}\right) e^{-m / m_{\mathrm{Cap}}} \\
& p\left(m^{\prime}\right) \propto\left(m^{\prime} / m\right)^{\beta} \quad \begin{array}{l}
\text { Mass Ratio } \\
\beta=0 ?
\end{array}
\end{aligned}
$$

The Black Hole Mass Function from GWs: 2D

(EDK, Cholis \& Breysse, in preparation)
Probing the MF parameters:
Heavier mass: $\quad p(m) \propto m^{-\alpha} \mathcal{H}\left(m-m_{\text {Gap }}\right) e^{-m / m_{\text {Cap }}}$
Lighter mass:

$$
p\left(m^{\prime}\right) \propto\left(m^{\prime} / m\right)^{\beta} \quad \begin{gathered}
\text { Mass Ratio } \\
\beta=0 ?
\end{gathered}
$$

2D Binned Mass Distribution of BBH Mergers: $\beta=-1$

2D Binned Mass Distribution of BBH Mergers: $\beta=0$

2D Binned Mass Distribution of BBH Mergers: $\beta=1$

The Black Hole Mass Function from GWs: 2D

(EDK, Cholis \& Breysse, in preparation)
Probing the MF parameters:
Heavier mass: $\quad p(m) \propto m^{-\alpha} \mathcal{H}\left(m-m_{\text {Gap }}\right) e^{-m / m_{\text {Cap }}}$
Lighter mass: $\quad p\left(m^{\prime}\right) \propto\left(m^{\prime} / m\right)^{\beta} \quad \begin{gathered}\text { Mass Ratio } \\ \beta=0 ?\end{gathered}$
The mass ratio is a sensitive probe of the progenitor model!

2D Binned Mass Distribution of BBH Mergers: $\beta=-1$

2D Binned Mass Distribution of BBH Mergers: $\beta=0$

2D Binned Mass Distribution of BBH Mergers: $\beta=1$

The Black Hole Mass Function from GWs: 2D

(EDK, Cholis \& Breysse, in preparation)
Probing the MF parameters:
Heavier mass: $\quad p(m) \propto m^{-\alpha} \mathcal{H}\left(m-m_{\text {Gap }}\right) e^{-m / m_{\text {Cap }}}$
Lighter mass: $\quad p\left(m^{\prime}\right) \propto\left(m^{\prime} / m\right)^{\beta} \quad \begin{gathered}\text { Mass Ratio } \\ \beta=0 ?\end{gathered}$
The mass ratio is a sensitive probe of the progenitor model!

The Black Hole Mass Function from GWs: 2D

(EDK, Cholis \& Breysse, in preparation)
Probing the MF parameters:
Heavier mass: $\quad p(m) \propto m^{-\alpha} \mathcal{H}\left(m-m_{\text {Gap }}\right) e^{-m / m_{\text {Cap }}}$
Lighter mass: $\quad p\left(m^{\prime}\right) \propto\left(m^{\prime} / m\right)^{\beta} \quad \begin{gathered}\text { Mass Ratio } \\ \beta=0 ?\end{gathered}$
The mass ratio is a sensitive probe of the progenitor model!

Outline

- Gravitational waves from PBH mergers
- Distinguishing between GW progenitors

Outline

- Gravitational waves from PBH mergers
- Distinguishing between GW progenitors
- Probing MACHOS with lensing of FRBs

Outline

- Gravitational waves from PBH mergers
- Distinguishing between GW progenitors
- Probing MACHOS with lensing of FRBs
"Lensing of Fast Radio Bursts as a Probe of Compact Dark Matter" Muñoz, EDK, Dai \& Kamionkowski, Phys. Rev. Lett. 117 (2016)

Primordial-Black-Hole Dark-Matter: Constraints

Primordial-Black-Hole Dark-Matter: Constraints

Primordial-Black-Hole Dark-Matter: Constraints

Primordial-Black-Hole Dark-Matter: Constraints

Primordial-Black-Hole Dark-Matter: Constraints

Primordial-Black-Hole Dark-Matter: Constraints

Primordial-Black-Hole Dark-Matter: Constraints

Primordial-Black-Hole Dark-Matter: Constraints

Primordial-Black-Hole Dark-Matter: Constraints

Microlensing: Illustration

Fast Radio Bursts

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))

Fast Radio Bursts

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))

Fast Radio Bursts

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))
What are they?

Fast Radio Bursts

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))
What are they?

- Literally:

Fast Radio Bursts

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))
What are they?

- Literally:

Fast
$\mathcal{O}(1) \mathrm{ms}$

Fast Radio Bursts

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))
What are they?

- Literally:

Fast
Radio
$\mathcal{O}(1) \mathrm{ms} \quad \sim 1 \mathrm{GHz}^{2}$

Fast Radio Bursts

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))
What are they?

- Literally:

Fast
Radio
Bursts
$\mathcal{O}(1) \mathrm{ms} \quad \sim 1 \mathrm{GHz} \quad \mathcal{O}(1) \mathrm{Jy}$

Fast Radio Bursts

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))
What are they?

- Literally:
Fast
Radio
Bursts

$$
\mathcal{O}(1) \mathrm{ms} \quad \sim 1 \mathrm{GHz} \quad \mathcal{O}(1) \mathrm{Jy}
$$

- Distance: cosmological?

Fast Radio Bursts

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))
What are they?

- Literally:

Fast
Radio
$\mathcal{O}(1) \mathrm{ms} \quad \sim 1 \mathrm{GHz}$

Bursts

$$
\begin{aligned}
& \mathcal{O}(1) \mathrm{Jy} \\
& \quad @ 1 \mathrm{Gpc}
\end{aligned}
$$

- Distance: cosmological?

Fast Radio Bursts

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))
What are they?

- Literally:

Fast
$\mathcal{O}(1) \mathrm{ms} \quad \sim 1 \mathrm{GHz}$

- Distance: cosmological?

$$
\begin{array}{lc}
\text { Radio } & \text { Bursts } \\
1 \mathrm{GHz} & \mathcal{O}(1) \mathrm{Jy} \\
& \left(\begin{array}{l}
\mathrm{O} \\
\\
\end{array}\right. \\
& \left.10^{39}\right) \mathrm{ergs}
\end{array}
$$

Fast Radio Bursts

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))
What are they?

- Literally:

Fast
$\mathcal{O}(1) \mathrm{ms} \quad \sim 1 \mathrm{GHz}$

- Distance: cosmological?

Radio
1 GHz
Bursts
\mathcal{O} (1) Jy
(@1Gpc
$\mathcal{O}\left(10^{39}\right)$ ergs

- Estimated rate: $\mathcal{O}\left(10^{4}\right)$ sky $^{-1}$ day $^{-1}$ (based on handful observed)

Fast Radio Bursts: Cosmological?

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))

Fast Radio Bursts: Cosmological?

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))

Fast Radio Bursts: Cosmological?

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))
The Dispersion Measure: $\quad D M=\int_{0}^{L} d l n_{e}(l)\left[\mathrm{cm}^{-3} \mathrm{pc}\right]$

Fast Radio Bursts: Cosmological?

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))
The Dispersion Measure: $\quad D M=\int_{0}^{L} d l n_{e}(l)\left[\mathrm{cm}^{-3} \mathrm{pc}\right]$

Fast Radio Bursts: Cosmological?

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))
The Dispersion Measure: $\quad D M=\int_{0}^{L} d l n_{e}(l)\left[\mathrm{cm}^{-3} \mathrm{pc}\right]$

Fast Radio Bursts: Cosmological?

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))

The Dispersion Measure:

$$
D M=\int_{0}^{L} d l n_{e}(l) \quad\left[\mathrm{cm}^{-3} \mathrm{pc}\right]
$$

Fast Radio Bursts: Cosmological!

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))

Fast Radio Bursts: Cosmological!

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))

Constraining MACHO Dark Matter: FRB Lensing

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))

Constraining MACHO Dark Matter: FRB Lensing

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))

Muñoz et al. PRL 117 (2016)

Constraining MACHO Dark Matter: FRB Lensing

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))

Muñoz et al. PRL 117 (2016)

Constraining MACHO Dark Matter: FRB Lensing

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))

Muñoz et al. PRL 117 (2016)

Constraining MACHO Dark Matter: FRB Lensing

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))

Muñoz et al. PRL 117 (2016)

Constraining MACHO Dark Matter: FRB Lensing

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))

Source FRB
M

Muñoz et al. PRL 117 (2016)
\rightarrow time

Constraining MACHO Dark Matter: FRB Lensing

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))

Source FRB
M
flux \sim (1)
Muñoz et al. PRL 117 (2016)
\rightarrow time

Constraining MACHO Dark Matter: FRB Lensing

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))

Source FRB
M
flux \uparrow
Muñoz et al. PRL 117 (2016)

> time

Constraining MACHO Dark Matter: FRB Lensing

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))

Constraining MACHO Dark Matter: FRB Lensing

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))
The observables?

Constraining MACHO Dark Matter: FRB Lensing

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))
The observables?

Flux ratio $\frac{F_{1}}{F_{2}}$

Constraining MACHO Dark Matter: FRB Lensing

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))
The observables?

Flux ratio $\frac{F_{1}}{F_{2}}$

Time delay Δt

Constraining MACHO Dark Matter: FRB Lensing

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))
The observables?

Flux ratio $\frac{F_{1}}{F_{2}}$

Time delay Δt

Constraining MACHO Dark Matter: FRB Lensing

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))
The observables?

time

Flux ratio $\frac{\boldsymbol{F}_{1}}{\boldsymbol{F}_{2}}=g(y)$

Time delay Δt

Constraining MACHO Dark Matter: FRB Lensing

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))
The observables?

Flux ratio $\frac{\boldsymbol{F}_{1}}{\boldsymbol{F}_{2}}=g(y)$

Time delay $\Delta t=4 M_{L} f(y) \sim 1 \mathrm{~ms} \times \frac{\mathrm{M}_{\mathrm{L}}}{30 \mathrm{M}_{\odot}}$

Constraining MACHO Dark Matter: FRB Lensing

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))
The observables?

Flux ratio $\frac{\boldsymbol{F}_{\mathbf{1}}}{\boldsymbol{F}_{2}}=g(y) \longrightarrow y<y_{\max } \quad$ (both images need be detectable)
Time delay $\Delta t=4 M_{L} f(y) \sim 1 \mathrm{~ms} \times \frac{\mathrm{M}_{\mathrm{L}}}{30 \mathrm{M}_{\odot}}$

Constraining MACHO Dark Matter: FRB Lensing

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))
The observables?

Flux ratio $\frac{\boldsymbol{F}_{\mathbf{1}}}{\boldsymbol{F}_{2}}=g(y) \longrightarrow y<y_{\max } \quad$ (both images need be detectable)
Time delay $\Delta t=4 M_{L} f(y) \sim 1 \mathrm{~ms} \times \frac{\mathrm{M}_{\mathrm{L}}}{30 \mathrm{M}_{\odot}} \xrightarrow{>\Delta t_{\text {int }}} y>y_{\text {min }}\left(M_{L}, z_{s}\right)$

Constraining MACHO Dark Matter: FRB Lensing

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))
The observables?

Flux ratio $\frac{\boldsymbol{F}_{\mathbf{1}}}{\boldsymbol{F}_{\mathbf{2}}}=g(y) \longrightarrow y<y_{\max } \quad$ (both images need be detectable)
Time delay $\Delta t=4 M_{L} f(y) \sim 1 \mathrm{~ms} \times \frac{\mathrm{M}_{\mathrm{L}}}{30 \mathrm{M}_{\odot}} \xrightarrow{>\Delta t_{\text {int }}} y>y_{\min }\left(M_{L}, z_{s}\right)$

Constraining MACHO Dark Matter: FRB Lensing

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))
The observables?

Flux ratio $\frac{\boldsymbol{F}_{\mathbf{1}}}{\boldsymbol{F}_{2}}=g(y) \longrightarrow y<y_{\max } \quad$ (both images need be detectable)
Time delay $\Delta t=4 M_{L} f(y) \sim 1 \mathrm{~ms} \times \frac{\mathrm{M}_{\mathrm{L}}}{30 \mathrm{M}_{\odot}} \xrightarrow{>\Delta t_{\text {int }}} y>y_{\text {min }}\left(M_{L}, z_{s}\right)$

Constraining MACHO Dark Matter: FRB Lensing

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))
The observables?

Flux ratio $\frac{\boldsymbol{F}_{\mathbf{1}}}{\boldsymbol{F}_{2}}=g(y) \longrightarrow y<y_{\max } \quad$ (both images need be detectable)
Time delay $\Delta t=4 M_{L} f(y) \sim 1 \mathrm{~ms} \times \frac{\mathrm{M}_{\mathrm{L}}}{30 \mathrm{M}_{\odot}} \xrightarrow{>\Delta t_{\text {int }}} y>y_{\min }\left(M_{L}, z_{s}\right)$

Constraining MACHO Dark Matter: FRB Lensing

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))
The observables?

Flux ratio $\frac{\boldsymbol{F}_{\mathbf{1}}}{\boldsymbol{F}_{2}}=g(y) \longrightarrow y<y_{\max } \quad$ (both images need be detectable)
Time delay $\Delta t=4 M_{L} f(y) \sim 1 \mathrm{~ms} \times \frac{\mathrm{M}_{\mathrm{L}}}{30 \mathrm{M}_{\odot}} \xrightarrow{>\Delta t_{\text {int }}} y>y_{\min }\left(M_{L}, z_{s}\right)$

Strong Lensing of FRBs: Optical depth

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))

Strong Lensing of FRBs: Optical depth

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))
Optical depth: $\tau\left(M_{L}, z_{S}\right)$

z_{S}

Strong Lensing of FRBs: Optical depth

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))
Optical depth: $\tau\left(M_{L}, z_{S}\right)=\frac{3}{2} f_{\mathrm{DM}} \Omega_{c} \int_{0}^{z_{S}} d z_{L} \frac{H_{0}^{2}}{c H\left(z_{L}\right)} \frac{D_{L} D_{L S}}{D_{S}} \times\left(1+z_{L}\right)^{2}\left[y_{\max }^{2}-y_{\min }^{2}\left(M_{L}, z_{L}\right)\right]$

0.0	0.2	0.4	0.6	0.8	1.0	1.2
		z_{S}				

Strong Lensing of FRBs: Optical depth

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))
Optical depth: $\tau\left(M_{L}, z_{S}\right)=\frac{3}{2} f_{\mathrm{DM}} \Omega_{c} \int_{0}^{z_{S}} d z_{L} \frac{H_{0}^{2}}{c H\left(z_{L}\right)} \frac{D_{L} D_{L S}}{D_{S}} \times\left(1+z_{L}\right)^{2}\left[y_{\max }^{2}-y_{\min }^{2}\left(M_{L}, z_{L}\right)\right]$

Strong Lensing of FRBs: Redshift Distribution

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))

Strong Lensing of FRBs: Redshift Distribution

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))
Convolve the optical depth with an FRB redshift distribution:

Strong Lensing of FRBs: Redshift Distribution

Convolve the optical depth with an FRB redshift distribution:

Strong Lensing of FRBs: Redshift Distribution

Convolve the optical depth with an FRB redshift distribution:

Strong Lensing of FRBs

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))

Strong Lensing of FRBs

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))
Integrated optical depth: $\bar{\tau}\left(M_{L}\right)$

Strong Lensing of FRBs

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))
Integrated optical depth: $\bar{\tau}\left(M_{L}\right)$

Strong Lensing of FRBs

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))

Strong Lensing of FRBs

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))
CHIME experiment: expected rate of $\mathcal{O}\left(10^{4}\right)$ FRBs per year

Strong Lensing of FRBs

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))
CHIME experiment: expected rate of $\mathcal{O}\left(10^{4}\right)$ FRBs per year

$$
N_{\text {lensed }}=\bar{\tau} N_{\mathrm{FRB}}
$$

Strong Lensing of FRBs

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))
CHIME experiment: expected rate of $\mathcal{O}\left(10^{4}\right)$ FRBs per year

$$
N_{\text {lensed }}=\bar{\tau} N_{\text {FRB }} \quad \longrightarrow N_{\text {lensed }}=10-100 \mathrm{yr}^{-1}
$$

Strong Lensing of FRBs

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))
CHIME experiment: expected rate of $\mathcal{O}\left(10^{4}\right)$ FRBs per year

$$
N_{\text {lensed }}=\bar{\tau} N_{\text {FRB }} \longrightarrow N_{\text {lensed }}=10-100 \mathrm{yr}^{-1}
$$

A null detection will close the "window":

Strong Lensing of FRBs

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))
CHIME experiment: expected rate of $\mathcal{O}\left(10^{4}\right)$ FRBs per year

$$
N_{\text {lensed }}=\bar{\tau} N_{\mathrm{FRB}} \quad \longrightarrow N_{\text {lensed }}=10-100 \mathrm{yr}^{-1}
$$

A null detection will close the "window":

Strong Lensing of FRBs: Unique Feature

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))

Strong Lensing of FRBs: Unique Feature

(Muñoz, EDK, Dai, Kamionkowski, PRL 117 (2016))
Joint PDF of time delay and flux ratio indicates correlation:

Outline

- Gravitational waves from PBH mergers
- Distinguishing between GW progenitors
- Probing MACHOS with lensing of FRBs

Outline

- Gravitational waves from PBH mergers
- Distinguishing between GW progenitors
- Probing MACHOS with lensing of FRBs
- Summary and observational outlook

PBH Dark Matter Window: More Constraints

PBH Dark Matter Window: More Constraints

Recently, dynamical constraints were inferred from the lack of disruption of:
Brandt arXiv:1605.03665

PBH Dark Matter Window: More Constraints

Recently, dynamical constraints were inferred from the lack of disruption of:
Brandt arxiv:1605.03665 - Eridanus II star cluster

PBH Dark Matter Window: More Constraints

Recently, dynamical constraints were inferred from the lack of disruption of:
Brandt arXiv:1605.03665 • Eridanus II star cluster • Ultra-faint dwarf galaxies

PBH Dark Matter Window: More Constraints

Recently, dynamical constraints were inferred from the lack of disruption of:
Brandt arxiv:1605.03665 - Eridanus II star cluster • Ultra-faint dwarf galaxies

Solution: Extended PBH Mass Function?

Solution: Extended PBH Mass Function?

The constraints may be evaded if the PBHs have an extended mass function:

Solution: Extended PBH Mass Function?

The constraints may be evaded if the PBHs have an extended mass function:

Solution: Extended PBH Mass Function?

The constraints may be evaded if the PBHs have an extended mass function:

Needs to be done carefully: constraints assume delta-function mass function.

Other Windows for PBH Dark Matter

Scenario C

Scenario B

Scenario D

Observational Outlook

Observational Outlook

Gravitational waves:

Observational Outlook

Gravitational waves:

Observational Outlook

Gravitational waves:

Fast Radio Bursts:

Observational Outlook

Gravitational waves:

Fast Radio Bursts: Lots of instruments, including CHIME, HIRAX...

Observational Outlook: Experiment Timeline

Observational Outlook: Experiment Timeline

2015
2020
2025
2030
beyond

Observational Outlook: Experiment Timeline

| Experiment 2015 | 2020 | 2025 | $2030 \quad$ beyond \longrightarrow |
| :--- | :--- | :--- | :--- | :--- |

Observational Outlook: Experiment Timeline

Experiment	2015	2020	2025	2030	beyond \longrightarrow
LIGO (O1+)					
aLIGO (design)					

Observational Outlook: Experiment Timeline

Experiment	2015	2020	2025	2030	beyond \longrightarrow
LIGO (O1+)					
aLIGO (design)					
ET					

Observational Outlook: Experiment Timeline

Experiment 2015
LIGO (O1+) 2020
aLIGO (design)
ET
DECIGO

Observational Outlook: Experiment Timeline

Experiment	2015	2020	2025	2030	beyond
LIGO (01+)					
aLIGO (design)					
ET					
DECIGO					

Observational Outlook: Experiment Timeline

CHIME-FRB

Observational Outlook: Experiment Timeline

Experiment	2015	2020	2025	2030	beyond
LIGO (01+)					
aLIGO (design)					
ET					
DECIGO					

CHIME-FRB

HIRAX

Conclusion:

Conclusion: We Can Test if PBHs are Dark Matter

Conclusion: We Can Test if PBHs are Dark Matter

Theory

Conclusion: We Can Test if PBHs are Dark Matter

Theory

Conclusion: We Can Test if PBHs are Dark Matter

Theory

$\sqrt[F R B]{ }$

MACHO

Conclusion: We Can Test if PBHs are Dark Matter

Theory

Experiment

Conclusion: We Can Test if PBHs are Dark Matter

Theory

Experiment

Conclusion: We Can Test if PBHs are Dark Matter

Theory

Experiment

Conclusion: We Can Test if PBHs are Dark Matter

Theory

Experiment

Conclusion: We Can Test if PBHs are Dark Matter

Theory

Experiment

Thank you!

Ely D. Kovetz
Johns Hopkins University

Thank you!

Ely D. Kovetz
Johns Hopkins University

