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The context

The focus of this talk is on large Schwarzschild black holes with mass
M > m_ , m, the Planck mass, formed by spherically symmetric

gravitational collapse in an asymptotically flat spacetime, such
that in the distant past the spacetime is approximately
Minkowskian. The collapse leads to the formation of trapped
surfaces and an apparent horizon at r =2M that persists for
many dynamical times. There may or may not be an event

horizon.

Quantum fields are considered as small perturbations on a classical
background spacetime, whose metric is a solution of the classical
Einstein equations. There is every reason to think that this semi-
classical approximation is extraordinarily well justified for the
black holes known to exist astrophysically, for which the quantum
corrections are of order m> /M* <107 for M >1M . The semi-

classical approximation does break down in the deep interior of
the black hole, and will eventually break down around the horizon
as the black hole evaporates.

My unitsare G=c=1, hi=m..



Outline

1. Review of calculations of semi-classical stress-energy tensor (SCSET)
for Schwarzschild black holes from the 1980's and 1990's.
A. assumptions and methods
B. fits to numerical results
C. physical interpretation -where is Hawking radiation created?
D. backreaction

2. Implications for the black hole information paradox.
A. black hole horizons versus Rindler horizons
B. storage of quantum information in a "stretched horizon"?

C. entanglement entropy versus Bekenstein-Hawking entropy
D. can firewalls exist?
E. Resolutions?



The semi-classical energy-momentum tensor

Analytic estimates and numerical results are known for conformally

coupled spin 0 and spin 1 fields on a Schwarzschild background
outside the horizon at r=2M..

The four independent physical components in a static frame are:
energy flux F=—(1-2M/r) 'T’,

radial stress P.=T, transverse stress P =T, =T, p

energy density E=-T/'

t?

Conservation equations VvTﬂV =0, assuming no t-dependence:
energy conservation d,| r*(1-2M /r)F |=0,
M /r 1

+-0,(r’P,)-2P, =0.

momentum conservation (E - PF)W
- ror

The trace anomaly arising from the renormalization of classically

conformally invariant quantum fields is (with x=2M /r)
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q,=1, q,=-13, q, =212, for Ricci-flat spacetimes.




Applying the conservation laws
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T,=—% k =1436, k =6.4924, k, =0.7404. The singularity on

the horizon is because the static frame moves outward at light
speed relative to any inertial frame there, infinitely blueshifting
ingoing radiation (and infinitely redshifting outgoing radiation).

Momentum conservation:
A particular solution for radially streaming radiation is

E=P o«<x’/(1-x), P =0. For the SCSET to be nonsingular in a

falling frame at the horizon, the singular components must be
purely ingoing, E*" = P™™ = —F,

The "regular” parts E** = E+F and P*™ =P +F satisfy
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P;eg+P,—lT“) X B ape_op o,
2 % )1-x dx

Solve for P given P, (x) from numerically calculated data.
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A simple ansatz is that P, is a polynomial of the form P = hSPOZtnx”,

where 4 is the number of helicities for spin s, 1 for spin 0 and 2

for spin 1. Terms of the form x"log(x)/(1—x) would also have

been consistent with regularity at x=1.

For a polynomial P, and using the trace anomaly, the solution of the

momentum conservation equation for P** is:
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A known value of 7, is a constraint on P, and vice versa. For N =6,

to =—10r,+96(q, / h,)—30t, +5t,—5t, /6.
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Hartle-Hawking (HH) state

The HH state is a static thermal state for an eternal black hole, with zero
energy flux in the static frame everywhere. Atlarge r the SCSET
approaches that of thermal radiation in equilibrium in the
gravitational field, with a temperature equal to the Hawking
termperature. The SCSET is non-singular on the horizon, and as
r—> oo,

P=P=E/3=hP(1-x)" =hP(1+2x+3x" +...).
Deviation from the thermal expansion and departures from
pressure isotropy may occur at order x°, due to geodesic
deviation associated with the background curvature, but it should
hold at lower orders, with 7, =1, ¢, =2, t, = 3, and the same for

the r,. The value r, = 3 constrains the higher-order z,.

While not appropriate for isolated black holes formed by gravitational
collapse, the HH state simplifies the renormalization calculations
of the SCSET tangential stress, and is an important intermediate
step in most calculations of the SCSET for the Unruh state.



The Unruh state

The Unruh state is the state that evolves from the Minkowski vacuum in
the distant past, before the collapse that formed the black hole.
After the transient effects of the collapse have dissipated, the
SCSET becomes approximately stationary. There is no incoming
radiation at past null infinity and the SCSET is regular in a falling
frame at the (future) horizon. At future null infinity there is
outgoing radiation with the Hawking luminosity for each field of

spin s,
2 2
m
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The Hawking energy flux
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is an outward flow of positive energy at large r, so

3k
E,P 5>+F=E" P®™ 52F=r, :Z—S.
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The tangential stress has #, =¢,=t, =0, and r, =10.77 for spin 0, 2.435
for spin 1, constraining the nonzero ¢, .



Results

Analytic approximations:
For spin 0 HH, Page (1982):
P, =P, (1+2x+3x" +4x"+5x" + 6x° —9x°).
For spin 1 HH, Jensen and Ottewill (1989):
P, =2P,(1+2x+3x" +44x’ = 305x* + 66x° — 579x°).

For spin 0 and spin 1 Unruh, Matyjasek(1998):
P =P, (8.75x" +6x° —9x°), 2P, (~119.5x"* —83.3x° = 579x°).

Numerical results based on point-splitting renormalization:
For spin 0 HH, Howard (1984) and Anderson, et al (1993).
For spin 1 HH, Jensen and Ottewill (1989).
For spin 0 and spin 1 Unrubh, Jensen, et al (1991).
Table of HH and Unruh spin 0 data preserved in Visser (1997).

Polynomial fits to numerical results:
For spin 0 HH, N =8 Matyjasek (1996) and N =6 Bardeen.
For spin 0 Unruh, N =6 Visser (1997) and N =6 Bardeen..
For spin 1 HH, N =6, and Unruh, N =7, Bardeen.
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Fits

Spin 0 HH (Bardeen), max error ~ 0.07%,
P =P, (14+2x+3x> +3.650x" +14.398x" —48.170x" + 34.392x°).

Spin 0 Unruh (Visser), max error ~ 0.7%,
P, = P,(26.5652x* —59.0214x" + 38.2068x° ),

Spin 0 Unruh (Bardeen), max error ~0.2%,
P, = P,(0.264x" +25.438x" — 57.460x +37.503x° ).

Spin 1 HA - H (Bardeen), max error ~ 5%,
~A)=2P, [6.89x3 —106.20x" +389.17x° — 289.86x6:|,

Spin 1 HH (Bardeen), max error ~0.5%,
P =2P, (1+ 2x+3x” +37.11x° —198.80x"* —323.17x° - 289.14x6).

Spin 1 Unruh (Bardeen), max error ~ 1%,
P, =2P,(5731x’ —593.12x"* +696.98x° —1268.71x° + 326.10x7),

2.435x* -112.185x" +566.90 x*
Prreg — 2[)0 .
—490.87x +666.21x° —326.10x’



In units of P = 20TH4/3

Spin 0 Unruh state components of the SCSET
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In units of P = 20'TH4/3

Spin 1 Unruh state SCSET components
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Interpretation

An often-expressed mythology about Hawking radiation is that it is
created very close to the horizon by pair creation or tunneling. A
Hawking partner with negative Killing energy is left inside the
horizon, decreasing the mass of the black hole. If so, positive
energy should propagate outward from close to the horizon. This
is inconsistent with the Unruh state SCSET.

Define the "outward" part of the energy flux by

out 1 1 re re _1
F =Z(E+R+2F)=Z(E ELp g)=5(1—x)zs(x).

For spin 0,
Z,=P,(10.77x* +21.276x + 31.914x* +23.399x°).
The fraction of the net flux that is outgoing is
F*"/F=(1-x)"Z, /(rzxz),

which decreases monotonically from1lat x=0 toOat x=1.

The alternative, as argued originally by Unruh (1977) and Fulling
(1977), is that the Hawking radiation originates from vacuum
fluctuations well outside the horizon, in the general vicinity of
r=3M.
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The SCSET in the free-fall frame

The velocity of a FF frame falling from rest at large r, relative to the

static frame, is v= —\/; . The Lorentz transformation to the FF
frame gives

2 f—
g E+By szFzzzs_Heg_ (1 x)Fz’
1-v (1++x)
2 [—
P — Ev’+P zva 0aZ + P - (1 x)F2 ’
I-v (1+\/;)
—v(E+P)+(1+V*)F —
FFF— V( 1r) 2( % ) :2\/;ZS+M-
-V

(1+vx)

What if | had defined E™ = E—F and P™* = P.— F ? This has no effect

on the form of the momentum conservation equation relating P*®
to P. The difference is that now the "singular” part of the SCSET
is an outgoing flow of positive energy and by itself contains the
asymptotic Hawking radiation, so », =0. The only changes in the
Lorentz transformation to the FF frame are the signs of some

terms and replacing 1+ Jx by 1— Jx. Why isn't this a good model
for Hawking radiation being generated very close to the horizon?



Hawking radiation is not created close to the horizon

The formal singularity of this alternate SCSET in a falling frame at x =1
is not the primary issue. Close to is not "at", and the divergence
would be cut off somewhere around a Planck distance from the
apparent horizon.

As noted earlier, the value of r, is a constraint on the ¢,. The spin 0
value r, =10.77 was consistent with an excellent fit to the
numerical results for P. Letting r, be an additional free
parameter in the fit gives , =10.8 £0.3, which is not at all

consistent with the zero value required if the outgoing flow of
positive energy starts close to the horizon.

The most compelling reason is that there is no energy source for the
very large energy the Hawking particle has to have in a FF frame
close to the horizon to compensate for the redshift factor of order

(1- x)2 in propagating out to large r. There is no gravitational

potential energy in a FF frame, so the fact that the Killing energy
may be small is irrelevant. The Hawking partner must have a
correspondingly large positive energy in the FF frame, even
though it is inside the apparent horizon. Furthermore, to have
negative Killing energy the partner, like Hawking particle, must be
propagating outward in the local FF frame, which violates
conservation of momentum as well as conservation of energy.



What of the many calculations that associate outgoing modes just

outside the apparent horizon with outgoing modes just inside the
apparent horizon to derive the existence and spectrum of the
Hawking radiation? Visser (Int. ]. Mod. Phys., 2003) has given a
clear discussion of this kind of derivation using Painleve-
Gullstrand coordinates. In a WKB approximation, the phase of an

outgoing mode of frequency w is _Ti(a)t —Jk(r’)dr’), where near

the horizon k= @ /|:K(r —71, ) + i£:|, K the surface gravity of the

horizon. Any physical excitation is a wave packet, integrated over
arange of frequencies. The rapid oscillation of phase near the
horizon means any such wave packet will have very small
amplitude close to the horizon due to destructive interference
between neighboring frequencies.

The proper interpretation of a quantum field in the Unruh state is that

close to the apparent horizon the fluctuations associated with
outgoing modes are just vacuum fluctuations, carrying no energy.
It is only well outside the horizon that they take on the character
of physical particles. The "outgoing" modes inside the horizon
also are vacuum fluctuations near the horizon and may (or may
not) become Hawking "partners" as they propagate deeper into
the interior. Itis ingoing vacuum fluctuations that carry negative
energy into the black hole (Unruh (1977), Fulling (1977)).



Backreaction

The general spherically symmetric metric in advanced Eddington-
Finkelstein coordinates is

ds® =—=¢ (1-2m/r)dv’ +2¢" dvdr +r* (d6” +sin’ 0dg’ ).

The inverse metric has
¢’ =0, g"=€", g"=1-2m/r.

The stress-energy tensor in terms of the static frame components is
T'=—E-F=—E", T =P +F=P",

: 3
Tv’ :_(I_X)F:_gksp()xz’ T99:T¢(p:})l’

T'=(1-x) (E+P+2F)=(1-x) (E™+P"™)=2Z,.

The Einstein equations give, with the initial value equations
(0m/or) =—-4nr’T) =47r’E™ and
(0¥ /0r) =—4mrT =—8mrZ, plus the evolution equation

(dm/9v) =—(3/2)mk,(2M )’ P,
The fact that (dm/dv) is independent of r means that as long as [y| <1
for all r 22m the geometry remains Schwarzschild to an excellent
approximation. The boundary condition for y is that w — 0 as
r — oo, so roughly y = —log(r, /r)(2M)’ B,, where r, is the radius

of the future light cone from the formation event.



A black hole information paradox?

The properties of black hole event horizons were derived from classical
general relativity. They rely on energy conditions that are
violated by the SCSET. While the existence of trapped surfaces
and apparent horizons is robust, there are no compelling reasons
to think that quantum black holes have an event horizon or
interior singularities.

An observer uniformly accelerating forever in Minkowski spacetime has
an event horizon, called a Rindler horizon. A Rindler observer
will lose track of quantum information crossing his event horizon,
but this does not mean the information is destroyed or that there
is any violation of unitarity. Locally, the horizon of a quiescent
black hole is indistinguishable from a Rindler horizon.

Information is really lost in the case of black holes only if there is a
singularity in the interior that prevents indefinite evolution of
quantum fields entangled with degrees of freedom outside the
black hole. Whether quantum gravity allows such a singularity to
exist is an open question.

But what if the black hole evaporates completely, leaving no remnant?



Can quantum information be stored in a "stretched horizon"?

The stretched horizon is a concept from classical general relativity to
describe how black hole perturbations decay and how a black
hole interacts with fields due to external sources. There is no
reason to interpret this decay as "scrambling” or "thermalization”
that somehow preserves quantum information.

The location of the black hole event horizon, it it exists, is only knowable
precisely if one knows the entire future history of the black hole.
The apparent horizon is a quasi-local quantity, but is a spacelike
hypersurface for an accreting black hole. Quantum information
at the apparent horizon ends up well inside later apparent
horizons, in general. For a quiescent black hole, what propagates
along the horizon are just vacuum fluctuations.

Can these vacuum fluctuations carry at least some quantum
information? Hawking, Perry, and Strominger have argued "yes".
Infalling disturbances do perturb affine parameters along the null
generators of the event horizon. However, the same is true for
neighboring null hypersurfaces that go off to infinity or into the
black hole. They can't all be carrying the same quantum
information, and there is no way to know which is the actual
event horizon without knowing the black hole's future history.



Entropies

What is the entropy of a black hole? A black hole is not a conventional
quantum system, and a fairly young black hole is really just a
rather empty region of spacetime. It has an entanglement (von
Neumann) entropy S, , renormalized so as not to include the

short-range correlations of the vacuum across the horizon. The
entanglement entropy is the number of entangled degrees of
freedom involved in the initial collapse and any subsequent
accretion, plus the trapped vacuum fluctuations or Hawking
"partners” entangled with gbits of the emitted Hawking radiation.

The Bekenstein-Hawking entropy is Sy, = A/(4h)= 47r(M2 /mlf), where

A is the area of the apparent horizon. As the black hole
evaporates, S  increases and S, decreases. They become equal
at the Page time, when the black hole has lost about 1/2 of its
original mass. While technically the semi-classical approximation
is no longer valid at that point, since the accumulated
backreaction is no longer small, there is no obvious reason for the
evaporation to stop. Continuing evaporation violates the entropy
bound unless subsequent Hawking particles are entangled with
earlier Hawking particles. This seems impossible unless quantum
information can be transferred faster than light, or quantum
information can be cloned. Either is a serious violation of
conventional quantum mechanics.



Possible resolutions?

1.) Evaporation continues, with quantum information remaining
trapped, until the black hole approaches the Planck scale, when it
dissolves into vacuum fluctuations containing all the trapped
information. Unruh and Wald have argued that there are no compelling
reasons to reject this scenario, though theirs is a minority opinion.

2) The entropy bound is enforced by quantum gravitational
backreaction that never lets the amount of entanglement across a 2-
surface exceed one qubit per Planck area. This is suggested by the
Bousso covariant entropy bound as applied in the interior of the black
hole, assuming there is no » =0 singularity. The quantum information
trapped by the black hole ends up within an inner apparent horizon,
whose radius grows with the increase in entanglement entropy. By the
Page time the inner apparent horizon merges with the outer apparent
horizon, resulting either in a degenerate horizon with zero Hawking
temperature or in the disappearence of all horizons. I suggested a toy
model of this type in arXiv:1406.4098.

3) A phase transition to a "fuzzball" (Mathur) or to a "bose
condensate of gravitons"” (Dvali), or some other breakdown of a
spacetime described by GR, occurring perhaps around the Page time. It
does not seem plausible that such a breakdown would occur in a
"young", i.e., any astrophysical, black hole.



Loose ends

Adam Levi and Amos Ori have recently embarked on a program to
greatly improve the accuracy and range of calculations of SCSETs
for black holes. They extend the point-splitting renormalization
technique from the separations in ¢ of earlier calculations to
separations in the 0 and ¢ directions, in order to accommodate
axisymmetric and evolving geometries. Preliminary results, for a
minimally coupled scalar field in Schwarzschild, were presented
in arXiv:1608.03806. They confirm the need for an asymptotic x’
falloff of the tangential stress by calculating out to r =40M , and
calculate directly all components of the SCSET to confirm the
ingoing flow of negative energy at the horizon.

Find a reasonable anomaly effective action, which can be used to find an
anomaly stress-energy tensor. Earlier proposals by Brown and
Ottewill (1985), by Mottola and Vaulin (2006), and by Mottola
(2016) have severe deficiencies.

Can the ER=EPR proposal of Susskind, be applied to entanglement of
individual gbits between the interior of the black holt and the
exterior? If so, it may provide a mechanism for large backreaction
on the macroscopic geometry as the density of Planck scale
Einstein-Rosen bridges crossing a two-surface approaches one
per Planck area.

Develop a complete theory of quantum gravity.



