How do rotations and local inertial frames emerge from Planck scale quantum geometry?

Ohkyung Kwon
KAIST / Fermilab Holometer Collaboration

Simplicity II
September 07, 2016
arXiv:1607.03048 [gr-qc] with C. J. Hogan, J. Richardson

The Fermilab Holometer Collaboration

Aaron S. Chou, ${ }^{1}$ Richard Gustafson, ${ }^{2}$ Craig Hogan, ${ }^{1,3}$ Brittany Kamai, ${ }^{3,4}$ Ohkyung Kwon, ${ }^{3,5}$ Robert Lanza, ${ }^{3,6}$ Lee McCuller, ${ }^{3,6}$ Stephan S. Meyer, ${ }^{3}$ Jonathan Richardson, ${ }^{2,3}$ Chris Stoughton, ${ }^{1}$ Raymond Tomlin, ${ }^{1}$ Samuel Waldman, ${ }^{7}$ and Rainer Weiss ${ }^{6}$

SCl FNAL DOE KICP
${ }^{1}$ Fermi National Accelerator Laboratory
${ }^{2}$ University of Michigan
${ }^{3}$ University of Chicago
${ }^{4}$ Vanderbilt University
John Templeton
Foundation
NSF
${ }^{5}$ Korea Advanced Institute of Science and Technology (KAIST)
${ }^{6}$ Massachusetts Institute of Technology ${ }^{7}$ SpaceX

The Fermilab Holometer

MP8 Meson Beamline

The Fermilab Holometer

The Fermilab Holometer

Absolute Space and Rotation

- Newton said space is absolute.
- How to measure it?
- Relative to a distant body.
- Locally, using a rotating vessel of water.
- Mach asked why local rotation agrees with distant stars.

Rotation in General Relativity

- Complete theory of absolute space. Well-defined local inertial frames.
- Local and global frames are connected.
- Frame dragging: Distant matter directly affects local space.
- Local inertial frame is "dragged" by dynamical space-time.
- Local frame rotates with respect to the distant universe.
- Drag is measured in the solar system.
- Drag becomes extreme in spinning black holes.

Apache Point Observatory lunar laser ranging

Rotation in Quantum Mechanics

- Standard elementary particles, or quantum matter, live in classical spacetime- absolute and determinate; not a quantum system.
- Spin is defined with respect to the local inertial frame.
- Rotation is defined even for infinitesimal distances.

Planck Scale: GR meets QM

Geometry has to be fundamentally different at the Planck scale.

Local rotation cannot be defined below the Planck length

Planck length $\sim 10^{-35}$ meters

$$
l_{P} \equiv c t_{P} \equiv \sqrt{\hbar G / c^{3}}
$$

Planck mass $\sim 10^{19}$ proton masses

$$
m_{P}=\sqrt{\hbar c / G}
$$

C. J. Hogan, arXiv:1509.07997 [gr-qc]

No Absolute Rotation at the Planck Scale

- Dynamical space-time must be a quantum system.
- Consider Wheeler's spacetime foam with Kerr black holes and Lense-Thirring effect.
- Or, extrapolate Newton's bucket to the Planck scale:
- Gravity and frame dragging ~ black hole
- Indeterminacy and spin ~ quantum particle
- Indeterminate spin gravitationally drags the inertial frame.
- The local inertial frame is a quantum superposition of spin states.
- The indeterminate quantum spin of any measurement device is gravitationally inherited by the space-time.
- No definite local nonrotating frame can be measured or defined.
C. J. Hogan, arXiv:1509.07997 [gr-qc]

Inertial Frames in a Quantum System of Geometry

- The local inertial frame does not exist at small scales.
- Space-time woven together relationally from entanglement amongst quantum subsystems.
- A measurement projects onto a subspace. A measurement of one subsystem projects all the others.
- Rotation and direction emerge statistically- and frames become nearly classical-in larger systems.
- A quantum theory must predict- and only predicts- correlations among observables.
- In QM, no locality. Nothing "happens" at a definite location or time, but correlations obey causality.
- Small, exotic quantum-gravitational rotational correlations must exist. Radically different from standard theory, which assumes absolute background space-time.

Reasons to Consider Large Scales

- Quantum geometric correlations are confined to the microscopic in standard QFT, as well as UV completions such as string theory.
- Might be because of assumed classical locality, with fixed backgrounds.

Infrared Paradoxes (Cohen Kaplan Nelson 1999)

- A standard QFT in a volume of size R with UV cutoff scale $k=m c / \hbar$ has $(R k)^{3}$ independent modes.
- Its general state is a superposition of excitations.
- A state with mean occupation ~ 1 has $(m c / \hbar)^{3}$ particles per volume.
- Exceeds the gravitational binding energy at idealized Chandrasekhar radius:

$$
R_{C} / l_{P} \approx\left(m / m_{P}\right)^{-2}
$$

- This field state is incompatible with GR at large R.
- Exotic correlations with geometry on large scales could solve this.
- Directional entanglement reduces independent degrees of freedom.

A Covariant Statistical Model for How Directions in Space-Time Emerge from the Planck Scale - Building a QM of Special Relativity

The statistical covariances follow causal symmetry and Planck coherence scale.

Exotic Rotational Fluctuations on Spacelike Surfaces

- Transverse displacement (from spin algebra) is constant along causal surfaces originating from observer's world-line.
- Random $\sim l_{P}$ displacement on each light cone $\sim t_{P}$ apart.

"Twists" of Inertial Frame

- On a constant-time hypersurface, each "shell" jitters relative to the ones adjacent to it- relational space-time from Planck scale elements.
- Planckian random walk in transverse position.
- Mean rotation vanishes, mean square does not.

Planck Diffraction Scale: Inertial Frames and Directional Resolution

- Directional fluctuations on large scales get smaller:

$$
\left\langle X_{\perp}^{2}\right\rangle_{R}=\ell_{P} R \quad\left\langle\Delta \theta^{2}\right\rangle_{R} \approx\left\langle X_{\perp}^{2}\right\rangle_{R} / R^{2}=\ell_{P} / R
$$

- Rotational fluctuations on large scales get slower:

$$
\left\langle\omega^{2}\right\rangle_{R} \approx c^{2} \ell_{P} / R^{3}
$$

- A "paraxial" solution for the Wheeler-De Witt equation for a pendulum in the low-frequency nearly-free limit, with Planck mass cutoff.
- The world line "diffracts" at the de Broglie wavelength of the body.
- Like normal modes of light in a laser cavity, with Planck wavelength.

Quantum Geometry Entangles Field States on Large Scales

- Geometrical correlations at the Planck diffraction scale.
- Field phase is affected by geometrical phase.
- Extended field states become less distinct from each other at large R, reducing number of independent modes from standard theory.
- Exotic correlation length $R^{1 / 2} \approx$ Inverse particle mass m^{-1}

C. J. Hogan, arXiv:1509.07997 [gr-qc]

The Right Amount of Exotic Correlation...

C. J. Hogan, arXiv:1509.07997 [gr-qc]

Consistent with Experimental Bounds and Detectable!

C. J. Hogan, arXiv:1509.07997 [gr-qc]

How Do Planck Subsystems Collapse Consistently?

"spooky" entanglement of tangent light cones: nearby observers see the same rotational twists, slightly displaced in measured time

Let's Calculate Some Statistical Signatures!

- In an interferometer, the extended nonlocal photon states collapse upon measurement at the beamsplitter.
- Projection onto future light cone time, with respect to the observer:

$$
\mathbb{T} \equiv t-\frac{|\mathbf{x}|}{c}
$$

- The covariance structure:

$$
\operatorname{cov}\left(\frac{d X_{\perp}}{d \mathbb{T}}\left(\mathbb{T}^{\prime}\right), \frac{d X_{\perp}}{d \mathbb{T}}\left(\mathbb{T}^{\prime \prime}\right)\right)= \begin{cases}\left(\frac{\ell_{P}}{t_{P}}\right)^{2}, & \left|\mathbb{T}^{\prime}-\mathbb{T}^{\prime \prime}\right|<\frac{1}{2} t_{P} \\ 0, & \text { otherwise }\end{cases}
$$

Interferometer Light Paths in 2D and $1+1 \mathrm{D}$

Examples of Predicted Spectra

The Bent Michelson Design

Time domain

Frequency domain

The Bent Michelson Design

> Two co-located interferometers.

Sensitivity Proven in Simple Michelson Configuration

- Designed to test an earlier naive model of transverse uncertainty (correlations related by shear transformations).
- 145 hours of data, 3.8 kHz resolution (arXiv:1512.01216 [gr-qc], PRL):

Reconfiguration from Simple Michelson (Null Configuration)

Bent arm configuration in construction.
Hope to run in the fall.

Ohkyung Kwon
Simplicity II
Sept 07, 2016

Construction in Progress

A Possible Explanation for the Cosmological Constant?

- "Centrifugal acceleration" from rotational fluctuations statistically mimics cosmic acceleration at the scale where:

$$
\begin{gathered}
\left\langle\omega^{2}\right\rangle_{R_{\Lambda}} \approx c^{2} l_{P} / R_{\Lambda}^{3} \approx H_{\Lambda}^{2}=\Lambda / 3 \\
m_{\Lambda} / m_{P} \approx\left(R_{\Lambda} / l_{P}\right)^{-1 / 2} \approx\left(H_{\Lambda} t_{P}\right)^{1 / 3}
\end{gathered}
$$

\sim strong interaction scale: $m_{\Lambda} \sim 200 \mathrm{MeV}, R_{\Lambda} \sim 60 \mathrm{~km}$.

- Coincidence of scales pointed out by Zeldovich 1968, Bjorken 2003, etc.
- Of course, there is no physical movement or energy involved herethe phenomena is understood as phase shifts in quantum geometry.
- "Twists" of the strong interaction vacuum "shake space apart" below confinement scale.
- Cosmic acceleration timescale is set by \sim the same combination of constants that determine a stellar lifetime.
C. J. Hogan, arXiv:1509.07997 [gr-qc]

Thank you!

Tour today! Meet in front of Wilson Hall by 5:30pm.

