How do rotations and local inertial frames emerge from Planck scale quantum geometry?

Ohkyung Kwon KAIST / Fermilab Holometer Collaboration

Simplicity II September 07, 2016

arXiv:1607.03048 [gr-qc] with C. J. Hogan, J. Richardson

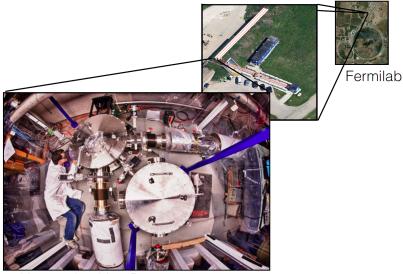
The Fermilab Holometer Collaboration

Aaron S. Chou,¹ Richard Gustafson,² Craig Hogan,^{1,3} Brittany Kamai,³⁴ Ohkyung Kwon,^{3,5} Robert Lanza,³⁶ Lee McCuller,³⁶ Stephan S. Meyer,³ Jonathan Richardson,^{2,3} Chris Stoughton,¹ Raymond Tomlin,¹ Samuel Waldman,⁷ and Rainer Weiss⁶

sci Fnal Doe Kicp	¹ Fermi National Accelerator Laboratory ² University of Michigan ³ University of Chicago ⁴ Vanderbilt University ⁵ Korea Advanced Institute of Science and Technology ⁶ Massachusets Institute of Technology ⁷ SpaceX	John Templeton Foundation NSF NASA
----------------------------	--	---

Ohkyung Kwon

The Fermilab Holometer


Fermilab

MP8 Meson Beamline

The Fermilab Holometer

Vertex - Looking Down

The Fermilab Holometer

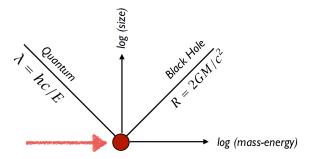
Absolute Space and Rotation

- Newton said space is absolute.
- How to measure it?
 - Relative to a distant body.
 - Locally, using a rotating vessel of water.
- Mach asked why local rotation agrees with distant stars.

Rotation in General Relativity

- Complete theory of absolute space. Well-defined local inertial frames.
- Local and global frames are connected.
- Frame dragging: Distant matter directly affects local space.
 - Local inertial frame is "dragged" by *dynamical* space-time.
 - Local frame rotates with respect to the distant universe.
- Drag is measured in the solar system.
- Drag becomes extreme in spinning black holes.

Apache Point Observatory lunar laser ranging


Gravity Probe- B

• Standard elementary particles, or quantum matter, live in classical spacetime— absolute and determinate; not a quantum system.

- Spin is defined with respect to the local inertial frame.
- Rotation is defined even for infinitesimal distances.

Planck Scale: GR meets QM

Geometry has to be fundamentally different at the Planck scale.

Local rotation cannot be defined below the Planck length

Planck length ~ 10⁻³⁵ meters
$$l_P \equiv c t_P \equiv \sqrt{\hbar G/c^3}$$

Planck mass ~ 10^{19} proton masses

$$m_P = \sqrt{\hbar c/G}$$

No Absolute Rotation at the Planck Scale

- Dynamical space-time must be a quantum system.
- Consider Wheeler's spacetime foam with Kerr black holes and Lense–Thirring effect.
- Or, extrapolate Newton's bucket to the Planck scale:
 - $\, \bullet \,$ Gravity and frame dragging \sim black hole
 - $\, \bullet \,$ Indeterminacy and spin \sim quantum particle
 - Indeterminate spin gravitationally drags the inertial frame.
 - The local inertial frame is a quantum superposition of spin states.
- The indeterminate quantum spin of any measurement device is gravitationally inherited by the space-time.
- No definite local nonrotating frame can be measured or defined.

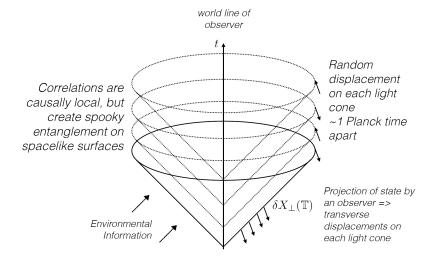
Inertial Frames in a Quantum System of Geometry

- The local inertial frame does not exist at small scales.
- Space-time woven together *relationally* from entanglement amongst quantum subsystems.
 - A measurement projects onto a subspace. A measurement of one subsystem projects all the others.
- Rotation and direction emerge statistically— and frames become nearly classical— in larger systems.
- A quantum theory must predict— and only predicts— correlations among observables.
 - In QM, no locality. Nothing "happens" at a definite location or time, but correlations obey causality.
- Small, exotic quantum-gravitational rotational correlations must exist. Radically different from standard theory, which assumes absolute background space-time.

Reasons to Consider Large Scales

- Quantum geometric correlations are confined to the microscopic in standard QFT, as well as UV completions such as string theory.
- Might be because of assumed classical locality, with fixed backgrounds.

Infrared Paradoxes (Cohen Kaplan Nelson 1999)

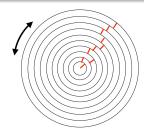

- A standard QFT in a volume of size R with UV cutoff scale $k=mc/\hbar$ has $(Rk)^3$ independent modes.
- Its general state is a superposition of excitations.
- A state with mean occupation ~ 1 has $(mc/\hbar)^3$ particles per volume.
- Exceeds the gravitational binding energy at idealized Chandrasekhar radius:

$$R_C/l_P \approx (m/m_P)^{-2}$$

- This field state is incompatible with GR at large R.
- Exotic correlations with geometry on large scales could solve this.
- Directional entanglement reduces independent degrees of freedom.

A Covariant Statistical Model for How Directions in Space-Time Emerge from the Planck Scale — Building a QM of Special Relativity

The statistical covariances follow causal symmetry and Planck coherence scale.



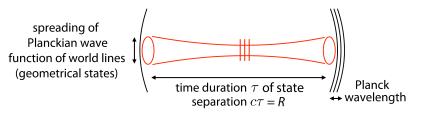
Exotic Rotational Fluctuations on Spacelike Surfaces

- Transverse displacement (from spin algebra) is constant along causal surfaces originating from observer's world-line.
- Random $\sim l_P$ displacement on each light cone $\sim t_P$ apart.

"Twists" of Inertial Frame

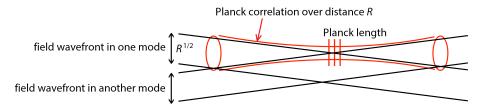
- On a constant-time hypersurface, each "shell" jitters relative to the ones adjacent to it— relational space-time from Planck scale elements.
- Planckian random walk in transverse position.
 - Mean rotation vanishes, mean square does not.

Planck Diffraction Scale: Inertial Frames and Directional Resolution

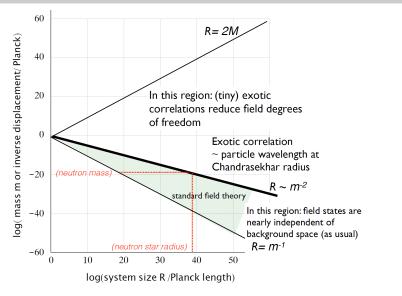

• Directional fluctuations on large scales get smaller:

$$\left\langle X_{\perp}^{2}\right\rangle_{R} = \ell_{P}R \qquad \left\langle \Delta\theta^{2}\right\rangle_{R} \approx \left\langle X_{\perp}^{2}\right\rangle_{R}/R^{2} = \ell_{P}/R$$

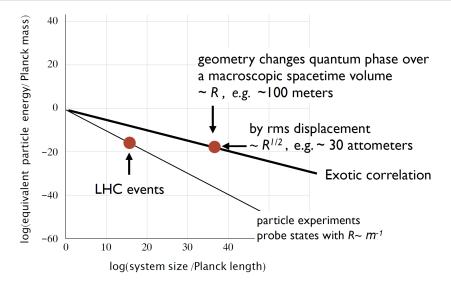
• Rotational fluctuations on large scales get slower:

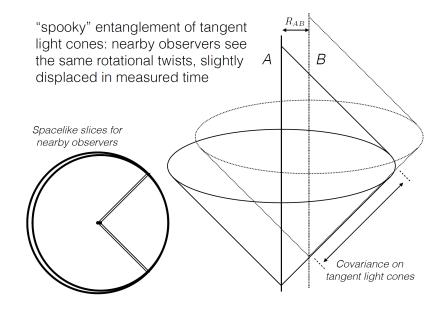

$$\left\langle \omega^2 \right\rangle_R \approx c^2 \ell_P / R^3$$

- A "paraxial" solution for the Wheeler-De Witt equation for a pendulum in the low-frequency nearly-free limit, with Planck mass cutoff.
 - The world line "diffracts" at the de Broglie wavelength of the body.
 - Like normal modes of light in a laser cavity, with Planck wavelength.



Quantum Geometry Entangles Field States on Large Scales

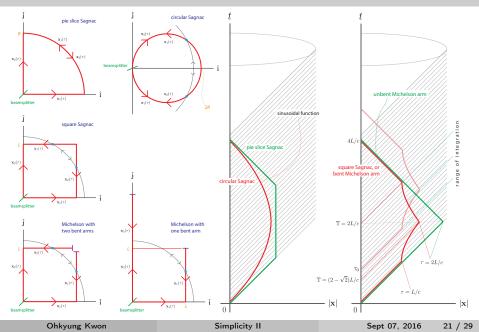

- Geometrical correlations at the Planck diffraction scale.
- Field phase is affected by geometrical phase.
- Extended field states become less distinct from each other at large R, reducing number of independent modes from standard theory.
 - Exotic correlation length $R^{1/2}\approx$ Inverse particle mass m^{-1}


The Right Amount of Exotic Correlation...

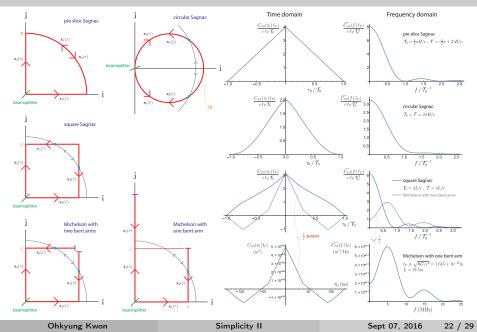
Consistent with Experimental Bounds and Detectable!

How Do Planck Subsystems Collapse Consistently?

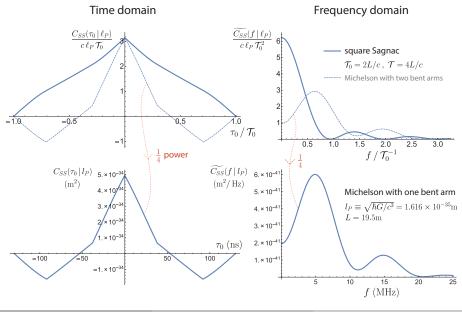
Let's Calculate Some Statistical Signatures!


- In an interferometer, the extended nonlocal photon states collapse upon measurement at the beamsplitter.
- Projection onto future light cone time, with respect to the observer:

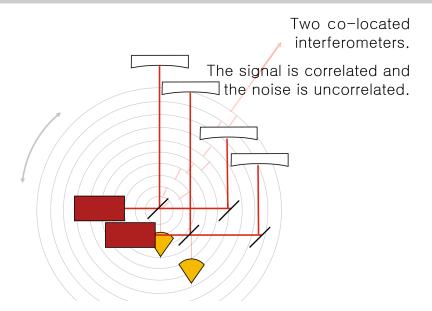
$$\mathbb{T} \equiv t - \frac{|\mathbf{x}|}{c}$$


• The covariance structure:

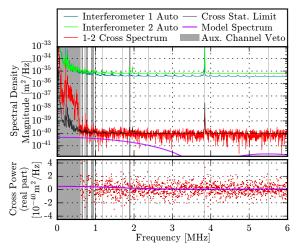
$$\operatorname{cov}\left(\frac{dX_{\perp}}{d\mathbb{T}}(\mathbb{T}'), \frac{dX_{\perp}}{d\mathbb{T}}(\mathbb{T}'')\right) = \begin{cases} \left(\frac{\ell_P}{t_P}\right)^2, & |\mathbb{T}' - \mathbb{T}''| < \frac{1}{2}t_P\\ 0, & \text{otherwise} \end{cases}$$


Interferometer Light Paths in 2D and 1+1D

Examples of Predicted Spectra



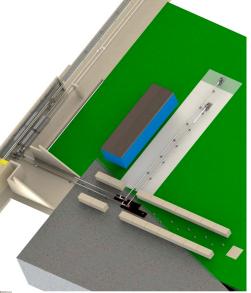
The Bent Michelson Design


Ohkyung Kwon

The Bent Michelson Design

Sensitivity Proven in Simple Michelson Configuration

- Designed to test an earlier naive model of transverse uncertainty (correlations related by shear transformations).
- 145 hours of data, 3.8 kHz resolution (arXiv:1512.01216 [gr-qc], PRL):



Ohkyung Kwon

Reconfiguration from Simple Michelson (Null Configuration)

Bent arm configuration in construction. Hope to run in the fall.

Ohkyung Kwon

Construction in Progress

A Possible Explanation for the Cosmological Constant?

• "Centrifugal acceleration" from rotational fluctuations statistically mimics cosmic acceleration at the scale where:

$$\left\langle \omega^2 \right\rangle_{R_\Lambda} \approx c^2 l_P / R_\Lambda^3 \approx H_\Lambda^2 = \Lambda/3$$

 $m_\Lambda / m_P \approx (R_\Lambda / l_P)^{-1/2} \approx (H_\Lambda t_P)^{1/3}$

 \sim strong interaction scale: $m_\Lambda\sim 200$ MeV, $R_\Lambda\sim 60$ km.

- Coincidence of scales pointed out by Zeldovich 1968, Bjorken 2003, etc.
- Of course, there is no physical movement or energy involved here the phenomena is understood as phase shifts in quantum geometry.
- "Twists" of the strong interaction vacuum "shake space apart" below confinement scale.
- $\bullet\,$ Cosmic acceleration timescale is set by $\sim\,$ the same combination of constants that determine a stellar lifetime.

Thank you!

Tour today! Meet in front of Wilson Hall by 5:30pm.