Hilbert Series for
Effective Field Theory

Adam Martin
(amarti4d1@nd.edu)

v_l_ UNIVERSITY OF

NOTRE DAME

based on 1503.07537, 1510.00372 AM, L.Lehman,
also Henning et al 1512.03433, 1507.07240

Simplicity I, Fermilab, Sept 8th, 2016


mailto:amarti41@nd.edu

Wilsonian picture of field theory
4
L = /d L E C; O@
()

take all degrees of freedom, form local operators
of increasing dimension

all operators consistent with symmetries must be
iIncluded

lowest mass dimension operators dominate IR physics



SM is a poster child EFT: SMEFT

degrees of freedom are: Q, uc, de¢, L, e¢, H, gauge fields
symmetry is: Lorentz ® SU(3)ceSU(2)we® U(1)Y

low-dimension operators are easy, but quickly gets more
complicated

dim <4: Standard Model

dim 5: 1 operator (neutrino mass) [Weinberg 79
, . [Buchmuller, Wyler '86,
dim 6: 63 terms (neglecting flavor) Grzadkowski et al 10]
[Lehman "14]

dim 7: 20 terms

dim 8: no complete set known (as of Oct. 2015)



Can this be extended?

1.) to dimension-87
2.) to all orders?

3.) to other EFTs?

higher dimension operators are complicated because there
are more fields = number ways to contract indices grows
rapidly!
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Can this be extended?

1.) to dimension-87 can we get the form (= Field
content) of operators in

2.) to all orders? o
addition to total #?

3.) to other EFTs?

higher dimension operators are complicated because there
are more fields = number ways to contract indices grows
rapidly!

Yes, using algebraic technique known as
Hilbert Series



Outline

motivation for d > 6 in the SMEFT

iIntroduction to Hilbert series, simple example

towards full SMEFT, no derivatives

adding derivatives: EOM and IBP troubles

final’ form: d = 8,9,10... in SMEFT



Why?

precision: LHC, HL-LHC, etc. will soon test SM to
unprecedented precision = sensitivity to effects from even

higher dimension
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Why?

precision: LHC, HL-LHC, etc. will soon test SM to
unprecedented precision = sensitivity to effects from even
higher dimension

new effects: lower dim. operators have accidenta
symmetries (i.e. baryon #, lepton #). Higher dim. operators
are the first place violation of these symmetries occurs




Why?

precision: LHC, HL-LHC, etc. will soon test SM to
unprecedented precision = sensitivity to effects from even
higher dimension

new effects: lower dim. operators have accidenta
symmetries (i.e. baryon #, lepton #). Higher dim. operators
are the first place violation of these symmetries occurs

cool



How?

Consider a simple setup: ¢, ¢* with charge +1, -1

all invariants are of the form (¢ ¢*)", and for each n
there Is only one invariant



How?

Consider a simple setup: ¢, ¢* with charge +1, -1

all invariants are of the form (¢ ¢*)", and for each n
there Is only one invariant

Hilbert series is defined as: h = Z Knt"
ns
i

number of tnvariants of degree u vartants

for us:

degree = mass dimension, t = symmetry-invariant operators
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degree = mass dimension, t = symmetry-invariant operators

he =1+ (66") + (¢9")° + (p¢™)” + - -

only one invariant at each order: ki = 1

treat @, ¢* as complex #, modulus 1 rather than quantum fields
(call it a "spurion’)... then we can formally sum series

1

h. =
71— (g9




rewrite

1 do
2y (1—¢e)(1—¢re )

hg

change to z = %

o 1 dz 1
" omi T 2 (1 _ _ ¢
zl=1 2 (1 —¢2)(1 - %)

overly complicated for simple example, but will be
generalizable to more fields, symmetries
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rewrite

1 [T df
21 Jo (1 —¢ei?)(1 — gre—if)

he =

change to z = %

hy

overly complicated for simple example, but will be
generalizable to more fields, symmetries




L 11 (66T) + (667 + (667N 4 -

(1—¢2)(1—2)
+2(¢ + d(p9*) + d(9d™)* + d(pd*)> + - -)

S (07 + 67 (067) + 67 (66°) + 67 (66°) + )

generates all possible combinations of ¢, ¢*. Combinations
can be grouped according to their charge

only the combinations at O(1) (charge zero) are picked out
by the contour integral dz/z



manipulate further

- )1(1_£) :exp(—log(1—¢z)—log(1 f))
(S ()Y

this will be the most useful (= generalizable) form

generating function written as “Plethystic exponential” = PE



manipulate further

- )1(1 — = exp ( — log(1 — ¢z) — log(1 ¢: ))
o (S 1(@))
ob)ects

this will be the most useful (= generalizable) form

generating function written as “Plethystic exponential” = PE



manipulate further

- )1(1 — = exp ( — log(1 — ¢z) — log(1 ¢: ))
o (51 1@
obects ‘charge’

this will be the most useful (= generalizable) form

generating function written as “Plethystic exponential” = PE



Plethystic exponential

Hilbert series

h = / d(measure)



more complicated example:

¢17 ¢>{7 ¢27 ¢§
charge: —+1, -1, +2, =2

now there are four invariants
(gblgbi)? (§b2§b§)7 (¢%¢§)7 ( T2§b2)

based on last example, may guess that

1

R gy = (1 — (d107))(1 — (¢P200%))(1 — (¢%¢§))(1 - (¢>{2¢2))

generates all invariants



not correct! misses relations among invariants:

(0703)(d1°02) = (0107)° (P203)

correct series Is

. 1 — 7 P1° P’
702 (1= (1)1 — (6205))(1 = (#763))(1 — (9262))




not correct! misses relations among invariants:

(263)(7260) = (1060)% (agy) 2 007

correct series Is

. 1 — 7 P1° P’
702 (1= (1)1 — (6205))(1 = (#763))(1 — (9262))




not correct! misses relations among invariants:

(263)(7260) = (1060)% (agy) 2 007

correct series Is

) B 1 — 7 P1° P’
90 = T (a1 — (0205 (1 — (6103 (1 — (5%2)

however, If we work with the PE, we get this automatically.
extend

e ({7 L(%) + () ))

r=1




1 dz 1

*

i Jisp=1 2 (1= ¢n2)(1 = (1 = d222)(1 = 33)

multiple poles, but not all reside in |z| < 1 (®1, ¢, are also
mod <1)
o 1/¢1

Molien form = PE
® O
B VR [2] = 1 developed to capture

invariants correctly
O
d1

o —x/l/(bg +V1/¢2 ¢

[Melia]



all invariants, keeping track of redundancies captured by
the PE approach. We want to use this to generate all EFT
operators; ¢ — Q, uc, d¢, H, F.y, etc.

Need to:
1.) expand to other larger groups

2.) deal with anticommuting objects

3.) Incorporate derivatives ; brings ditficulty
of equations of motion (EOM) and
integration by parts (IBP)



Other groups:

o (S {82 ()4 2 13y

r=1

for a ‘field’ in a representation R of a group G,

z = Xr(zi), the character of the representation R

character?

f. under G ¢i — Dgrij®; then XR = tr(Dg)

Xr are functions of j complex numbers, j = rank of G

(1 for SU(2), 2 for SU(3), etc..)



ex:
U(1), charge Q: xq = z©

o ({24 ) 2 )

1
SU(2), doublet: x = (z + ;)
1
: _ o 2
triplet: x = (1 + 2° A 22)
: Z9 1
SU(3), triplet:  x = (21 - —)
al Z9

charged under multiple groups: total character is
poroduct of each group characters



Other groups:

1 dz
— . >/du Haar measure

271

aar measure: volume of compact group expressed as
an integral over the | complex variables = Cartan
subalgebra variables

1 2 —1
SU(Z)Z /d,USU(Q) = — dz (Z )

271 2z

SU(3): /d,uSU(g) = ( ! %dzl dzo (L= 212) (1 — Z—l) (1 _ 2

27T’i)2 Z1 <9



Peter-Weyl theorem: characters of compact Lie groups
form an orthonormal basis set for functions of the | complex
variables

/G A xor (20) X (22) = Snrw

and we can expand any function of z; as a linear
combination of xm(zi)

F(z;) = Z Anr X (%)

—

coefficient, indep. of z;

can project out any Awm using orthonormality



exactly like Fourier series:

f(0) = i Ap e’

n=—oo

= Ay + Z A,, cos(nf) + Z B,, sin(n#)

poroject out individual coefficient

L7 a0 5(0) = 4

21 J_ .



exactly like Fourier series:

f(0) = i Ap e’

n=—oo

= Ay + Z A,, cos(nf) + Z B,, sin(n#)

poroject out individual coefficient

L7 a0 5(0) = 4

21 ) _

in fact: set z = e©
Fourier series = character orthonormality for U(1)



Generalizes to multiple symmetry groups

1.) form the PE: PE[]1(x1(z1), Xo(z2)...) +2(X1'(21),X 2(22)) + ...]

2.) PE is a function of the complex variables parameterizing
the groups, z. can be expanded in terms of characters

PE = H (Z AM XM 2 ) (com(oo 075 all reps 075 all 9rouPS)

3.) Integrate over Haar measure

/HduGH (Z A X5 (2 ) HAG

only piece that survives is Ag, coetficient of overall singlet/
invariant irrep



Ex: doublet scalar with Higgs charges under SU(2)w@U(1)y

1 1 1 1
PE[H HT(0. =, =
[ (0727 2)_|_ (07272)]

1 1
PE[H(er —)u_1/2 + HT (z + —)ul/Q]
2 z

(2;,)2 75 d—;‘]{dz <Z2Z_ Y ppim, i




Ex: doublet scalar with Higgs charges under SU(2)w@U(1)y

1 1 1 1
PE[H gt L1
[ (07 27 2) _I_ (07 27 2)]

1 1
PE[H(Z—'—_)u—l/Q_I_HT(Z_I__)ul/Q]
< <

(2;.)2 7{ d—;idz <22Z_ 1)PE[H, )

1+ (H'H) + (H'H)? + (H'H)* + - -



Fermions:

asymmetric, plus they transform under Lorentz group

Asymmetry:

Plethystic Exponential (PE) [Hanany "14]

— Fermionic Plethystic Exponential (PEF)

PEF[] = exp { Y (=)™

r=1

(v X(Zz))r}

character
Lorentz group:

LH, RH fermions are in 2D reps of the Lorentz group
just two more groups: SO(3,1) = SO(4) = SU(2)r ® SU(2)L
ex: Q, uc, dc~ (0, 1/2)
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example: QQQL operators, Nf = 3
PEF(3Q(0,1/2;3,2,1/6) +3L(0,1/2;1,2,—1/2)]

X, y for SU(2)r x SU(2)L; (w1, w2) for SU(3), z for SU(2)w, u for U(1)y

PEF[SQ(?J+1)(Z+1)(?U1 2 : )u1/6

Yy < w1 Wwo

1 1
i D)o e
Y &

/ d,uLorentz (33, y) d:uSU(S) (wla w2)d,uSU(2) (Z)d,LLU(l) (U) PEFBQ? SL]

1 +570LQ% + 4818 L2 Q% + 162774 L3 Q° + - --



derivatives:

general EFT expansion can have derivatives on fields
as well as fields

LDo", (0,0)"¢™, etc

since PE generates all combinations, we need to add d,¢ to PE
.. and also 02,0 , 03,0 ..



derivatives:

general EFT expansion can have derivatives on fields
as well as fields

LDo", (0,0)"¢™, etc

since PE generates all combinations, we need to add d,¢ to PE
.. and also 02,0 , 03,0 ..

ou ~ (1/2, 1/2) of Lorentz, so doesn’t look too terrible

but even at 02 there are two possibilities:

8{/¢,1/}¢7 ¢
(1,1), (0,0)




but any polynomial containing any Ll¢ formed by the PE

e, oL

always reduces via the EOM

b = m2d? + \p° (for ®* theory)

form of RHS of EOM is not important. We only care that Llg can
always be replaced by terms with fewer derivatives

SO: PE|¢,U¢|pom = PE|9)




but any polynomial containing any Ll¢ formed by the PE

e, oL

always reduces via the EOM

b = m2d? + \p° (for ®* theory)

form of RHS of EOM is not important. We only care that Llg can
always be replaced by terms with fewer derivatives

SO: PE|¢,U¢|pom = PE|9)

(a“ polynomials tn ¢ and 32<i> = all polynomals tu <i>)



by same logic, at higher derivative order, only keep the fully
symmetric term

PE[¢] — PE[$(0,0) + D ¢(1/2,1/2) + D* ¢(1,1) + - - -]

similar story for fermions and field strengths



by same logic, at higher derivative order, only keep the fully
symmetric term

PE[¢] — PE[$(0,0) + D ¢(1/2,1/2) + D* ¢(1,1) + - - -]

similar story for fermions and field strengths

therefore: .

PEF[Y] = PEF[(0, 3) + Du(5,1) + D*(1,5) + -]



Integration by parts (IBP)
derivative-extended PE still contains redundancy from IBP:

ex.)
D,HD'HH"™, D,H'D*H'H? D, ,HD'H'(H'H)

are not all independent

ex.)
Dy A HIDWYH completely reduces by IBP + EOM

options:



Integration by parts (IBP)

derivative-extended PE still contains redundancy from IBP:
ex.)

D,HD'HH"™, D,H'D*H'H? D, ,HD'H'(H'H)

are not all independent

ex.)
Dy A HIDWYH completely reduces by IBP + EOM

options:
1.) brute force.. may suffice for dim 8

2.) better idea”



Lehman, AM 1510.00372
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Lehman, AM 1510.00372

all O(D™¢") must come from D x O(D™ '¢™)

if we can count the number of  O(D™'¢")  thats a
set of constraints on the O(D™¢")

can get # O(D™ *¢™) using character orthogonality

net result:

/(HdﬂGi)(l_D(%’%» PE[¢+D¢(;7;) U




cross-checks:
easlily extended to multiple scalars, complex scalars

fermion-scalar theory

works with gauge theory, D — covariant derivative

gets SM dim 6 correct, Nr = 1, 3
gets SM dim 7 correct, predicts dim-8+



some dim-8, according to this algorithm:

(did.)(ele)FE (ubu)(ele)FE  2(dld.)(ulu)FE  (dld.) (Lt L)FE
(wlue)(LYD)FE (ele )(LTL)FE (ele)(QTQFE  (deQ)(el LT FE
(dQ) (el LHFE  2(LIL)(QTQ)FY  2(dld.)(QTQ)FY 2 (uluc)(Qf Q)FF
3 (Tec L)(uc Q)F- 3T(uc d.) Q2 F- (d}d,) (LT LywL (e% e.) (LT LYWL
(ele) @ QW™ (uluc) (L L)WL (Lt L)?w (el LT)(d. Q)W 0
(e L)(dLQHWE  2(dl d)(Qf QW Lo2(ulu)(@ QW 3(LTL)(QT QW 112 af O(D )
2Q1QPWE  3(ecL)(ue QWL 3(ucde) Q*WE (df)? a2 Gt
(ub)? w2 GE (d*d Vebe) GE (uhue)(ebe) GE 4 (dld)(ul ue) GE
(QTQ)(ele.) G <d*d>< 'L Gt (ulu)(LTL)GE 2(QT Q)LL) G*
4<didc><@ Q)GF  4(ulu)(Q TQ) 22 Q*GE (d.Q)(elLT)GE
(de Q)(el LGP 3(ec L)(uc Q) G 6 (deuc) Q* G*
D(did)(LHe)  Dele)(LHe)  3D(LTL)(LHe,) (d d)(@Hd)
3D< Lee)(QHd:) 6D(L'L)(QHd) 6D(QTQ)(LHe) 6D(QTQ)QHd.)
3D (dlu.)(LH e,) 6D (dld.)(QHu.) 3 (e;{.ec)(QHTuc) D (LT L)Y(Q H' u,)
6D(QTQYQH w.) 3Duiu)(LHe.) 6D wiu)QHd.) 3D (ulbu)(QH'u.)

181 at O(D)
535 total (931 counting +h.c. separately)



cross-checks:
easlily extended to multiple scalars, complex scalars

fermion-scalar theory

works with gauge theory, D — covariant derivative

gets SM dim 6 correct, Nr = 1, 3
gets SM dim 7 correct, predicts dim-8+

But, fails if constraints not independent..
(happens more often for higher D)

also, seems ad hoc...



Henning, Lu, Melia, Murayama 1512.03433
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Henning, Lu, Melia, Murayama 1512.03433

works, free of iIssues

e extend d=8 SMEFT set to 992 (+62 from Lehman, AM)
e count d=9,10,11,12 SMEFT operators (560, 15456, 11962..)

e possible compact ‘all orders’ form



Why (1 - D(; %) + D?((0,1) + (1,0)) — DS(%, %) + D4) ?

Start with irreps of conformal symmetry SO(4,2)
operators in conformal theory: primary O, descendents 9,,O
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Why (1 - D(; %) +D?((0,1) + (1,0)) — DS(%, %) +D4) 7

Start with irreps of conformal symmetry SO(4,2)
operators in conformal theory: primary O, descendents 9,,O

removing IBP redundancy = eliminating all operators that are
descendants of other ops.

accomplished by keeping only the highest conformal weight of
operator products

integration over SO(4,2)/SO(3,1) (dilations, conformal trans) +
highest weight projection conspire to give 1 - D...prefactor



What now?

* knowing all dim-8 SMEFT, we can study which
operators have an impact at LHC. Specifically,
dim-8 important to understand uncertainty on dim-6

Asar + A + As|? D |Asu|? + 2 Re(Asas Ag) + |Ag|® + 2 Re(AsarAg) - -

[pp — hV, Lehman, AM in progress]

e analytic properties?

e application to EFT with nonlinear fields?



conclusions:

# and form of all
invariant (Lorentz &
gauge) operators,
accounts for IBP
EOM

given symmetry

roup G, . -
fleldg ®i pllh X;L.R 'Hl{b-QYIL Series

* generates all possible combinations of operators, uses
character orthonormality to pick out invariants

e derivatives tricky, but issues recently overcome

lots of interesting directions to explore!



THAN KE




/ (d/'LSO(4,2)(q,a:,y) X d:ugauge) ( Z anrn,0,0] (Q7 L, y)) X
n=1

HPEM?LX[l,O,O](q)way)qui,gauge] HPEF[%' X[3/2,0,1/2] (q7xvy)X¢j,gaU96]
i J



