Hilbert Series for Effective Field Theory

Adam Martin
(amarti41@nd.edu)

(舄 NOTRE DAME

based on 1503.07537, 1510.00372 AM, L.Lehman, also Henning et al 1512.03433, 1507.07240

Simplicity II, Fermilab, Sept 8th, 2016

Wilsonian picture of field theory

$$
\mathcal{L}=\int d^{4} x \sum_{i} c_{i} \mathcal{O}_{i}
$$

take all degrees of freedom, form local operators of increasing dimension
all operators consistent with symmetries must be included
lowest mass dimension operators dominate IR physics

SM is a poster child EFT: SMEFT

degrees of freedom are: $Q, u^{c}, d^{c}, L, e^{c}, H$, gauge fields symmetry is: Lorentz $\otimes S U(3) c \otimes S U(2) w \otimes U(1) Y$
low-dimension operators are easy, but quickly gets more complicated
dim ≤ 4 : Standard Model
dim 5: 1 operator (neutrino mass)
dim 6: 63 terms (neglecting flavor)
dim 7: 20 terms
[Weinberg '79]
[Büchmuller, Wyler '86, Grzadkowski et al '10] [Lehman '14]
dim 8: no complete set known (as of Oct. 2015)

Can this be extended?

1.) to dimension-8?
2.) to all orders?
3.) to other EFTs?
higher dimension operators are complicated because there are more fields = number ways to contract indices grows rapidly!

Can this be extended?

1.) to dimension-8?
2.) to all orders?
3.) to other EFTs?

can we get the form (= field content) of operators in addition to total \#?

higher dimension operators are complicated because there are more fields = number ways to contract indices grows rapidly!

Can this be extended?

1.) to dimension-8?
2.) to all orders?
3.) to other EFTs?

can we get the form (= field content) of operators in addition to total \#?

higher dimension operators are complicated because there are more fields = number ways to contract indices grows rapidly!

Yes, using algebraic technique known as Hilbert Series

Outline

- motivation for $d>6$ in the SMEFT
- introduction to Hilbert series, simple example
- towards full SMEFT, no derivatives
- adding derivatives: EOM and IBP troubles
- 'final' form: $d=8,9,10 \ldots$ in SMEFT

Why?

precision: LHC, HL-LHC, etc. will soon test SM to unprecedented precision = sensitivity to effects from even higher dimension
1507.04548v1

Why?

precision: LHC, HL-LHC, etc. will soon test SM to unprecedented precision = sensitivity to effects from even higher dimension
1507.04548v1

Why?

precision: LHC, HL-LHC, etc. will soon test SM to unprecedented precision = sensitivity to effects from even higher dimension
new effects: lower dim. operators have accidental symmetries (i.e. baryon \#, lepton \#). Higher dim. operators are the first place violation of these symmetries occurs

Why?

precision: LHC, HL-LHC, etc. will soon test SM to unprecedented precision = sensitivity to effects from even higher dimension
new effects: lower dim. operators have accidental symmetries (i.e. baryon \#, lepton \#). Higher dim. operators are the first place violation of these symmetries occurs
cool

How?

Consider a simple setup: ϕ, ϕ^{*} with charge $+1,-1$
all invariants are of the form ($\left.\phi \phi^{*}\right)^{n}$, and for each n there is only one invariant

How?

Consider a simple setup: ϕ, ϕ^{*} with charge $+1,-1$
all invariants are of the form ($\left.\phi \phi^{*}\right)^{n}$, and for each n there is only one invariant

Hilbert series is defined as: $h=\sum_{n} \kappa_{n} t^{n}$
for us:
degree $=$ mass dimension, $t=$ symmetry-invariant operators
degree $=$ mass dimension, $\mathrm{t}=$ symmetry-invariant operators

$$
h_{\phi}=1+\left(\phi \phi^{*}\right)+\left(\phi \phi^{*}\right)^{2}+\left(\phi \phi^{*}\right)^{3}+\cdots
$$

only one invariant at each order: $\mathrm{K}_{\mathrm{i}}=1$
degree $=$ mass dimension, $\mathrm{t}=$ symmetry-invariant operators

$$
h_{\phi}=1+\left(\phi \phi^{*}\right)+\left(\phi \phi^{*}\right)^{2}+\left(\phi \phi^{*}\right)^{3}+\cdots
$$

only one invariant at each order: $\mathrm{K}_{\mathrm{i}}=1$
treat ϕ, ϕ^{*} as complex \#, modulus 1 rather than quantum fields (call it a `spurion')... then we can formally sum series

$$
h_{\phi}=\frac{1}{1-\left(\phi \phi^{*}\right)}
$$

rewrite

$$
h_{\phi}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{d \theta}{\left(1-\phi e^{i \theta}\right)\left(1-\phi^{*} e^{-i \theta}\right)}
$$

change to $z=e^{i \theta}$

$$
h_{\phi}=\frac{1}{2 \pi i} \oint_{|z|=1} \frac{d z}{z} \frac{1}{(1-\phi z)\left(1-\frac{\phi^{*}}{z}\right)}
$$

overly complicated for simple example, but will be generalizable to more fields, symmetries
rewrite

$$
h_{\phi}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{d \theta}{\left(1-\phi e^{i \theta}\right)\left(1-\phi^{*} e^{-i \theta}\right)}
$$

change to $z=e^{i \theta}$

$$
h_{\phi}=\frac{1}{2 \pi i} \oint_{|z|=1} \frac{d z}{\frac{1}{z}} \frac{1}{(1-\phi z)\left(1-\frac{\phi^{*}}{z}\right)}
$$

overly complicated for simple example, but will be generalizable to more fields, symmetries
rewrite

$$
h_{\phi}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{d \theta}{\left(1-\phi e^{i \theta}\right)\left(1-\phi^{*} e^{-i \theta}\right)}
$$

change to $z=e^{i \theta}$

$$
h_{\phi}=\frac{1}{2 \pi i} \oint_{|z|=1} \frac{1}{\frac{d z}{z} \frac{1}{(1-\phi z)\left(1-\frac{\phi^{*}}{z}\right)}}
$$

overly complicated for simple example, but will be generalizable to more fields, symmetries

$$
\begin{aligned}
\frac{1}{(1-\phi z)\left(1-\frac{\phi^{*}}{z}\right)} & =1+\left(\phi \phi^{*}\right)+\left(\phi \phi^{*}\right)^{2}+\left(\phi \phi^{*}\right)^{3}+\cdots \\
& +z\left(\phi+\phi\left(\phi \phi^{*}\right)+\phi\left(\phi \phi^{*}\right)^{2}+\phi\left(\phi \phi^{*}\right)^{3}+\cdots\right) \\
+ & \frac{1}{z}\left(\phi^{*}+\phi^{*}\left(\phi \phi^{*}\right)+\phi^{*}\left(\phi \phi^{*}\right)^{2}+\phi^{*}\left(\phi \phi^{*}\right)^{3}+\cdots\right) \\
& +\cdots
\end{aligned}
$$

generates all possible combinations of ϕ, ϕ^{*}. Combinations can be grouped according to their charge
only the combinations at $\mathrm{O}(1)$ (charge zero) are picked out by the contour integral dz / z

manipulate further

$$
\begin{aligned}
\frac{1}{(1-\phi z)\left(1-\frac{\phi^{*}}{z}\right)}= & \exp \left(-\log (1-\phi z)-\log \left(1-\frac{\phi^{*}}{z}\right)\right) \\
& =\exp \left(\sum_{r=1}^{\infty}\left\{\frac{(\phi z)^{r}}{r}+\frac{1}{r}\left(\frac{\phi^{*}}{z}\right)^{r}\right\}\right)
\end{aligned}
$$

this will be the most useful (= generalizable) form
generating function written as "Plethystic exponential" $=$ PE

manipulate further

$$
\begin{gathered}
\frac{1}{(1-\phi z)\left(1-\frac{\phi^{*}}{z}\right)}=\exp \left(-\log (1-\phi z)-\log \left(1-\frac{\phi^{*}}{z}\right)\right) \\
=\exp \left(\sum_{r=1}^{\infty}\left\{\frac{(\phi z)^{r}}{r}+\frac{1}{r}\left(\frac{\phi^{*}}{z}\right)^{r}\right\}\right) \\
\text { objects }
\end{gathered}
$$

this will be the most useful (= generalizable) form
generating function written as "Plethystic exponential" $=P E$

manipulate further

$$
\begin{gathered}
\frac{1}{(1-\phi z)\left(1-\frac{\phi^{*}}{z}\right)}= \\
=\exp \left(-\log (1-\phi z)-\log \left(1-\frac{\phi^{*}}{z}\right)\right) \\
\text { objects }\left(\sum_{r=1}^{\infty}\left\{\frac{(\phi z)^{r}}{r}+\frac{1}{r}\left(\frac{\phi^{*}}{z}\right)^{r}\right\}\right) \\
\text { 'charge' }
\end{gathered}
$$

this will be the most useful (= generalizable) form
generating function written as "Plethystic exponential" $=P E$

Plethystic exponential

Hilbert series

more complicated example:

$$
\begin{array}{cc}
& \phi_{1}, \phi_{1}^{*}, \phi_{2}, \phi_{2}^{*} \\
\text { charge: } & +1,-1,+2,-2
\end{array}
$$

now there are four invariants

$$
\left(\phi_{1} \phi_{1}^{*}\right),\left(\phi_{2} \phi_{2}^{*}\right),\left(\phi_{1}^{2} \phi_{2}^{*}\right),\left(\phi_{1}^{* 2} \phi_{2}\right)
$$

based on last example, may guess that

$$
h_{\phi_{1} \phi_{2}}=\frac{1}{\left(1-\left(\phi_{1} \phi_{1}^{*}\right)\right)\left(1-\left(\phi_{2} \phi_{2}^{*}\right)\right)\left(1-\left(\phi_{1}^{2} \phi_{2}^{*}\right)\right)\left(1-\left(\phi_{1}^{* 2} \phi_{2}\right)\right)}
$$

generates all invariants
not correct! misses relations among invariants:

$$
\left(\phi_{1}^{2} \phi_{2}^{*}\right)\left(\phi_{1}^{* 2} \phi_{2}\right)=\left(\phi_{1} \phi_{1}^{*}\right)^{2}\left(\phi_{2} \phi_{2}^{*}\right)
$$

correct series is

$$
h_{\phi_{1} \phi_{2}}=\frac{1-\phi_{1}^{2} \phi_{1}^{* 2} \phi_{2} \phi_{2}^{*}}{\left(1-\left(\phi_{1} \phi_{1}^{*}\right)\right)\left(1-\left(\phi_{2} \phi_{2}^{*}\right)\right)\left(1-\left(\phi_{1}^{2} \phi_{2}^{*}\right)\right)\left(1-\left(\phi_{1}^{* 2} \phi_{2}\right)\right)}
$$

not correct! misses relations among invariants:

$$
\left(\phi_{1}^{2} \phi_{2}^{*}\right)\left(\phi_{1}^{* 2} \phi_{2}\right)=\left(\phi_{1} \phi_{1}^{*}\right)^{2}\left(\phi_{2} \phi_{2}^{*}\right) \quad \text { "syzygy" }
$$

correct series is

$$
h_{\phi_{1} \phi_{2}}=\frac{1-\phi_{1}^{2} \phi_{1}^{* 2} \phi_{2} \phi_{2}^{*}}{\left(1-\left(\phi_{1} \phi_{1}^{*}\right)\right)\left(1-\left(\phi_{2} \phi_{2}^{*}\right)\right)\left(1-\left(\phi_{1}^{2} \phi_{2}^{*}\right)\right)\left(1-\left(\phi_{1}^{* 2} \phi_{2}\right)\right)}
$$

not correct! misses relations among invariants:

$$
\left(\phi_{1}^{2} \phi_{2}^{*}\right)\left(\phi_{1}^{* 2} \phi_{2}\right)=\left(\phi_{1} \phi_{1}^{*}\right)^{2}\left(\phi_{2} \phi_{2}^{*}\right)
$$

correct series is

$$
h_{\phi_{1} \phi_{2}}=\frac{1-\phi_{1}^{2} \phi_{1}^{* 2} \phi_{2} \phi_{2}^{*}}{\left(1-\left(\phi_{1} \phi_{1}^{*}\right)\right)\left(1-\left(\phi_{2} \phi_{2}^{*}\right)\right)\left(1-\left(\phi_{1}^{2} \phi_{2}^{*}\right)\right)\left(1-\left(\phi_{1}^{* 2} \phi_{2}\right)\right)}
$$

however, if we work with the PE, we get this automatically.
extend

$$
\exp \left(\sum_{r=1}^{\infty}\left\{\frac{\left(\phi_{1} z\right)^{r}}{r}+\frac{1}{r}\left(\frac{\phi_{1}^{*}}{z}\right)^{r}+\frac{\left(\phi_{2} z^{2}\right)^{r}}{r}+\frac{1}{r}\left(\frac{\phi_{2}^{*}}{z^{2}}\right)^{r}\right\}\right)
$$

$$
\frac{1}{2 \pi i} \oint_{|z|=1} \frac{d z}{z} \frac{1}{\left(1-\phi_{1} z\right)\left(1-\frac{\phi_{1}^{*}}{z}\right)\left(1-\phi_{2} z^{2}\right)\left(1-\frac{\phi_{2}^{*}}{z^{2}}\right)}
$$

multiple poles, but not all reside in $|z|<1\left(\Phi_{1}, \Phi_{2}\right.$ are also $\bmod <1$)

Molien form = PE developed to capture invariants correctly
[Melia]
all invariants, keeping track of redundancies captured by the PE approach. We want to use this to generate all EFT operators; $\phi \rightarrow \mathrm{Q}, \mathrm{u}^{c}, \mathrm{~d}^{c}, \mathrm{H}, \mathrm{F}_{\mu \mathrm{v}}$, etc.

Need to:

1.) expand to other larger groups
2.) deal with anticommuting objects
3.) incorporate derivatives ; brings difficulty of equations of motion (EOM) and integration by parts (IBP)

Other groups:

$$
\exp \left(\sum_{r=1}^{\infty}\left\{\frac{\left(\phi_{1} z\right)^{r}}{r}+\frac{1}{r}\left(\frac{\phi_{1}^{*}}{z}\right)^{r}+\frac{\left(\phi_{2} z^{2}\right)^{r}}{r}+\frac{1}{r}\left(\frac{\phi_{2}^{*}}{z^{2}}\right)^{r}\right\}\right)
$$

for a ‘field' in a representation R of a group G,
$z \rightarrow X_{R}\left(z_{i}\right)$, the character of the representation R
character?
if, under G $\phi_{i} \rightarrow D_{R, i j} \phi_{j}$ then $\chi_{R}=\operatorname{tr}\left(D_{R}\right)$
X_{R} are functions of \mathbf{j} complex numbers, $\mathbf{j}=$ rank of \mathbf{G}
(1 for SU(2), 2 for $\operatorname{SU}(3)$, etc..)
$U(1)$, charge $Q: X_{Q}=z^{Q}$

$$
\exp \left(\sum_{r=1}^{\infty}\left\{\frac{\left(\phi_{1} z\right)^{r}}{r}+\frac{1}{r}\left(\frac{\phi_{1}^{*}}{z}\right)^{r}+\frac{\left(\phi_{2} z^{2}\right)^{r}}{r}+\frac{1}{r}\left(\frac{\phi_{2}^{*}}{z^{2}}\right)^{r}\right\}\right)
$$

$\operatorname{SU}(2)$, doublet: $\quad \chi=\left(z+\frac{1}{z}\right)$
triplet: $\quad \chi=\left(1+z^{2}+\frac{1}{z^{2}}\right)$
$\operatorname{SU}(3)$, triplet: $\quad \chi=\left(z_{1}+\frac{z_{2}}{z_{1}}+\frac{1}{z_{2}}\right)$
charged under multiple groups: total character is product of each group characters

Other groups:

$$
\frac{1}{2 \pi i} \oint \frac{d z}{z} \rightarrow \int d \mu, \text { Haar measure }
$$

Haar measure: volume of compact group expressed as an integral over the j complex variables = Cartan subalgebra variables
$\operatorname{SU}(2): \quad \int d \mu_{S U(2)}=\frac{1}{2 \pi i} \oint d z \frac{\left(z^{2}-1\right)}{z}$
$\operatorname{SU}(3): \quad \int d \mu_{S U(3)}=\frac{1}{(2 \pi i)^{2}} \oint d z_{1} d z_{2} \frac{\left(1-z_{1} z_{2}\right)}{z_{1} z_{2}}\left(1-\frac{z_{1}^{2}}{z_{2}}\right)\left(1-\frac{z_{2}^{2}}{z_{1}}\right)$

Peter-Weyl theorem: characters of compact Lie groups form an orthonormal basis set for functions of the j complex variables

$$
\int_{G} d \mu \chi_{M}\left(z_{i}\right) \chi_{N}^{*}\left(z_{i}\right)=\delta_{M N}
$$

and we can expand any function of z_{i} as a linear combination of $X \mathrm{M}\left(\mathrm{z}_{\mathrm{i}}\right)$

$$
F\left(z_{i}\right)=\sum_{M} \underbrace{A_{M} \chi_{M}\left(z_{i}\right)}_{\text {coefficient, indep. of } z_{i}}
$$

can project out any A_{m} using orthonormality
exactly like Fourier series:

$$
\begin{aligned}
f(\theta)= & \sum_{n=-\infty}^{\infty} A_{n} e^{i n \theta} \\
& =A_{0}+\sum_{n} \tilde{A}_{n} \cos (n \theta)+\sum_{n} \tilde{B}_{n} \sin (n \theta)
\end{aligned}
$$

project out individual coefficient

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} d \theta f(\theta)=A_{0}
$$

exactly like Fourier series:

$$
\begin{aligned}
f(\theta)= & \sum_{n=-\infty}^{\infty} A_{n} e^{i n \theta} \\
& =A_{0}+\sum_{n} \tilde{A}_{n} \cos (n \theta)+\sum_{n} \tilde{B}_{n} \sin (n \theta)
\end{aligned}
$$

project out individual coefficient

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} d \theta f(\theta)=A_{0}
$$

in fact: set $z=e^{i \theta}$
Fourier series $=$ character orthonormality for $\mathbf{U}(1)$

Generalizes to multiple symmetry groups

1.) form the PE: $\operatorname{PE}\left[\phi_{1}\left(X_{1}\left(z_{1}\right), X_{2}\left(z_{2}\right) \ldots\right)+\phi_{2}\left(X_{1}^{\prime}\left(z_{1}\right), X_{2}^{\prime}\left(z_{2}\right)\right)+\ldots\right]$
2.) $P E$ is a function of the complex variables parameterizing the groups, z. can be expanded in terms of characters

$$
P E=\prod_{G}\left(\sum_{M} A_{M}^{G} \chi_{M}^{G}\left(z_{i}\right)\right) \text { (combo of all reps of all groups) }
$$

3.) Integrate over Haar measure

$$
\int \prod_{G} d \mu_{G} \prod_{G}\left(\sum_{M} A_{M}^{G} \chi_{M}^{G}\left(z_{i}\right)\right)=\prod_{G} A_{0}^{G}
$$

only piece that survives is Ao, coefficient of overall singlet/ invariant irrep

Ex: doublet scalar with Higgs charges under $\operatorname{SU}(2)_{w} \otimes U(1)_{Y}$

$$
\begin{gathered}
P E\left[H\left(0, \frac{1}{2},-\frac{1}{2}\right)+H^{\dagger}\left(0, \frac{1}{2}, \frac{1}{2}\right)\right] \\
P E\left[H\left(z+\frac{1}{z}\right) u^{-1 / 2}+H^{\dagger}\left(z+\frac{1}{z}\right) u^{1 / 2}\right] \\
\frac{1}{(2 \pi i)^{2}} \oint_{u} \frac{d u}{u} \oint_{z} d z \frac{\left(z^{2}-1\right)}{z} P E\left[H, H^{\dagger}\right]
\end{gathered}
$$

Ex: doublet scalar with Higgs charges under $\operatorname{SU}(2)_{w} \otimes U(1)_{Y}$

$$
\begin{gathered}
P E\left[H\left(0, \frac{1}{2},-\frac{1}{2}\right)+H^{\dagger}\left(0, \frac{1}{2}, \frac{1}{2}\right)\right] \\
P E\left[H\left(z+\frac{1}{z}\right) u^{-1 / 2}+H^{\dagger}\left(z+\frac{1}{z}\right) u^{1 / 2}\right] \\
\frac{1}{(2 \pi i)^{2}} \oint_{u} \frac{d u}{u} \oint_{z} d z \frac{\left(z^{2}-1\right)}{z} P E\left[H, H^{\dagger}\right] \\
1+\left(H^{\dagger} H\right)+\left(H^{\dagger} H\right)^{2}+\left(H^{\dagger} H\right)^{3}+\cdots
\end{gathered}
$$

Fermions:

asymmetric, plus they transform under Lorentz group
Asymmetry:
Plethystic Exponential (PE)
\rightarrow Fermionic Plethystic Exponential (PEF)

$$
\operatorname{PEF}[\psi]=\exp \left\{\sum_{r=1}^{\infty} \frac{(-1)^{r+1}}{r}\left(\psi \chi\left(z_{i}\right)\right)^{r}\right\}
$$

Lorentz group:
LH, RH fermions are in 2D reps of the Lorentz group
just two more groups: $\mathrm{SO}(3,1) \rightarrow \mathrm{SO}(4) \cong \mathrm{SU}(2)_{\mathrm{R}} \otimes \mathrm{SU}(2)\llcorner$

$$
\text { ex: } Q, u^{c}, d^{c} \sim(0,1 / 2)
$$

Fermions:

asymmetric, plus they transform under Lorentz group
Asymmetry:
Plethystic Exponential (PE)
\rightarrow Fermionic Plethystic Exponential (PEF)

$$
\operatorname{PEF}[\psi]=\exp \left\{\sum_{r=1}^{\infty} \frac{(-1)^{r+1}}{r}\left(\psi \chi\left(z_{i}\right)\right)^{r}\right\}
$$

Lorentz group:
LH, RH fermions are in 2D reps of the Lorentz group
just two more groups: $\mathrm{SO}(3,1) \rightarrow \mathrm{SO}(4) \cong \mathrm{SU}(2)_{\mathrm{R}} \otimes \mathrm{SU}(2)\llcorner$

$$
\text { ex: } Q, u^{c}, d^{c} \sim(0,1 / 2)
$$

example: QQQL operators, $\mathrm{N}_{\mathrm{f}}=3$

$$
\operatorname{PEF}[3 Q(0,1 / 2 ; 3,2,1 / 6)+3 L(0,1 / 2 ; 1,2,-1 / 2)]
$$

x, y for $\operatorname{SU}(2)_{r} \times S U(2)\left\llcorner\right.$; $(w 1, w 2)$ for $S U(3), z$ for $S U(2) w, u$ for $U(1)_{y}$

$$
\begin{aligned}
\operatorname{PEF}\left[3 Q (y + \frac { 1 } { y }) (z + \frac { 1 } { z }) \left(w_{1}+\right.\right. & \left.+\frac{w_{2}}{w_{1}}+\frac{1}{w_{2}}\right) u^{1 / 6} \\
& \left.+3 L\left(y+\frac{1}{y}\right)\left(z+\frac{1}{z}\right) u^{-1 / 2}\right]
\end{aligned}
$$

$\int d \mu_{\text {Lorentz }}(x, y) d \mu_{S U(3)}\left(w_{1}, w_{2}\right) d \mu_{S U(2)}(z) d \mu_{U(1)}(u) P E F[3 Q, 3 L]$

$$
1+57 L Q^{3}+4818 L^{2} Q^{6}+162774 L^{3} Q^{9}+\cdots
$$

derivatives:

general EFT expansion can have derivatives on fields as well as fields

$$
\mathcal{L} \supset \phi^{n},\left(\partial_{\mu} \phi\right)^{n} \phi^{m}, \text { etc }
$$

since PE generates all combinations, we need to add $\partial_{\mu} \phi$ to $P E$.. and also $\partial^{2} \mu \phi, \partial^{3} \mu \phi$..

derivatives:

general EFT expansion can have derivatives on fields as well as fields

$$
\mathcal{L} \supset \phi^{n},\left(\partial_{\mu} \phi\right)^{n} \phi^{m}, \text { etc }
$$

since PE generates all combinations, we need to add $\partial_{\mu} \phi$ to $P E$.. and also $\partial^{2}{ }_{\mu} \phi, \partial^{3}{ }_{\mu} \phi$..
$\partial_{\mu} \sim(1 / 2,1 / 2)$ of Lorentz, so doesn't look too terrible but even at ∂^{2} there are two possibilities:

$$
\begin{array}{lr}
\partial_{\{\mu, \nu\}} \phi, & \square \phi \\
(1,1), & (0,0)
\end{array}
$$

but any polynomial containing any $\square \phi$ formed by the PE

$$
\text { i.e. } \quad \phi^{m} \square \phi
$$

always reduces via the EOM

$$
\square \phi=m^{2} \phi^{2}+\lambda \phi^{3} \quad \text { (for } \phi^{4} \text { theory) }
$$

form of RHS of EOM is not important. We only care that $\square \phi$ can always be replaced by terms with fewer derivatives
so:

$$
P E[\phi, \square \phi]_{E O M}=P E[\phi]
$$

but any polynomial containing any $\square \phi$ formed by the PE

$$
\text { i.e. } \quad \phi^{m} \square \phi
$$

always reduces via the EOM

$$
\square \phi=m^{2} \phi^{2}+\lambda \phi^{3} \quad \text { (for } \phi^{4} \text { theory) }
$$

form of RHS of EOM is not important. We only care that $\square \phi$ can always be replaced by terms with fewer derivatives
so:

$$
P E[\phi, \square \phi]_{E O M}=P E[\phi]
$$

(all polynomials in ϕ and $\partial^{2} \phi=$ all polynomials in ϕ)

by same logic, at higher derivative order, only keep the fully symmetric term

$$
P E[\phi] \rightarrow P E\left[\phi(0,0)+D \phi(1 / 2,1 / 2)+D^{2} \phi(1,1)+\cdots\right]
$$

similar story for fermions and field strengths
by same logic, at higher derivative order, only keep the fully symmetric term
$P E[\phi] \rightarrow P E\left[\phi(0,0)+D \phi(1 / 2,1 / 2)+D^{2} \phi(1,1)+\cdots\right]$
similar story for fermions and field strengths

$$
\begin{gathered}
\partial_{\mu} \\
\left(\frac{1}{2}, \frac{1}{2}\right) \otimes\left(0, \frac{1}{2}\right)=\begin{array}{l}
\mathrm{EOM} \\
\left(\frac{1}{2}, 0\right)
\end{array} \oplus\left(\frac{1}{2}, 1\right)
\end{gathered}
$$

therefore:

$$
\operatorname{PEF}[\psi]=\operatorname{PEF}\left[\psi\left(0, \frac{1}{2}\right)+D \psi\left(\frac{1}{2}, 1\right)+D^{2} \psi\left(1, \frac{3}{2}\right)+\cdots\right]
$$

Integration by parts (IBP)

derivative-extended PE still contains redundancy from IBP:

ex.)

$$
\begin{gathered}
D_{\mu} H D^{\mu} H H^{\dagger 2}, \quad D_{\mu} H^{\dagger} D^{\mu} H^{\dagger} H^{2}, \quad D_{\mu} H D^{\mu} H^{\dagger}\left(H^{\dagger} H\right) \\
\text { are not all independent }
\end{gathered}
$$

ex.)

$$
D_{\{\mu, \nu\}} H^{\dagger} D^{\{\mu \nu\}} H \quad \text { completely reduces by IBP }+ \text { EOM }
$$

options:

Integration by parts (IBP)

derivative-extended PE still contains redundancy from IBP:

ex.)

$$
\begin{gathered}
D_{\mu} H D^{\mu} H H^{\dagger 2}, \quad D_{\mu} H^{\dagger} D^{\mu} H^{\dagger} H^{2}, \quad D_{\mu} H D^{\mu} H^{\dagger}\left(H^{\dagger} H\right) \\
\text { are not all independent }
\end{gathered}
$$

ex.)
$D_{\{\mu, \nu\}} H^{\dagger} D^{\{\mu \nu\}} H$ completely reduces by IBP + EOM
options:
1.) brute force.. may suffice for dim 8
2.) better idea?

Lehman, AM 1510.00372

all $\mathcal{O}\left(D^{m} \phi^{n}\right)$ must come from $D \times \mathcal{O}\left(D^{m-1} \phi^{n}\right)$
if we can count the number of $\mathcal{O}\left(D^{m-1} \phi^{n}\right)$, thats a set of constraints on the $\mathcal{O}\left(D^{m} \phi^{n}\right)$

Lehman, AM 1510.00372

all $\mathcal{O}\left(D^{m} \phi^{n}\right)$ must come from $D \times \mathcal{O}\left(D^{m-1} \phi^{n}\right)$
if we can count the number of $\mathcal{O}\left(D^{m-1} \phi^{n}\right)$, thats a set of constraints on the $\mathcal{O}\left(D^{m} \phi^{n}\right)$
can get \# $\mathcal{O}\left(D^{m-1} \phi^{n}\right)$ using character orthogonality

Lehman, AM 1510.00372

all $\mathcal{O}\left(D^{m} \phi^{n}\right)$ must come from $D \times \mathcal{O}\left(D^{m-1} \phi^{n}\right)$
if we can count the number of $\mathcal{O}\left(D^{m-1} \phi^{n}\right)$, thats a set of constraints on the $\mathcal{O}\left(D^{m} \phi^{n}\right)$
can get \# $\mathcal{O}\left(D^{m-1} \phi^{n}\right)$ using character orthogonality net result:

$$
\int\left(\prod_{i} d \mu_{G_{i}}\right)\left(1-D\left(\frac{1}{2}, \frac{1}{2}\right)\right) P E\left[\phi+D \phi\left(\frac{1}{2}, \frac{1}{2}\right)+\cdots\right]
$$

cross-checks:

easily extended to multiple scalars, complex scalars fermion-scalar theory
works with gauge theory, $D \rightarrow$ covariant derivative
gets SM dim 6 correct, $N_{F}=1,3$
gets SM dim 7 correct, predicts dim-8+

some dim-8, according to this algorithm:

$$
\begin{aligned}
& \left(d_{c}^{\dagger} d_{c}\right)\left(e_{c}^{\dagger} e_{c}\right) F^{L} \quad\left(u_{c}^{\dagger} u_{c}\right)\left(e_{c}^{\dagger} e_{c}\right) F^{L} \quad 2\left(d_{c}^{\dagger} d_{c}\right)\left(u_{c}^{\dagger} u_{c}\right) F^{L} \quad\left(d_{c}^{\dagger} d_{c}\right)\left(L^{\dagger} L\right) F^{L} \\
& \left(u_{c}^{\dagger} u_{c}\right)\left(L^{\dagger} L\right) F^{L} \quad\left(e_{c}^{\dagger} e_{c}\right)\left(L^{\dagger} L\right) F^{L} \quad\left(e_{c}^{\dagger} e_{c}\right)\left(Q^{\dagger} Q\right) F^{L} \quad\left(d_{c} Q\right)\left(e_{c}^{\dagger} L^{\dagger}\right) F^{L} \\
& \left(d_{c} Q\right)\left(e_{c}^{\dagger} L^{\dagger}\right) F^{R} \quad 2\left(L^{\dagger} L\right)\left(Q^{\dagger} Q\right) F^{L} \quad 2\left(d_{c}^{\dagger} d_{c}\right)\left(Q^{\dagger} Q\right) F^{L} \quad 2\left(u_{c}^{\dagger} u_{c}\right)\left(Q^{\dagger} Q\right) F^{L} \\
& 3\left(e_{c} L\right)\left(u_{c} Q\right) F^{L} \quad 3\left(u_{c} d_{c}\right) Q^{2} F^{L} \quad\left(d_{c}^{\dagger} d_{c}\right)\left(L^{\dagger} L\right) W^{L} \quad\left(e_{c}^{\dagger} e_{c}\right)\left(L^{\dagger} L\right) W^{L} \\
& \left(e_{c}^{\dagger} e_{c}\right)\left(Q^{\dagger} Q\right) W^{L} \quad\left(u_{c}^{\dagger} u_{c}\right)\left(L^{\dagger} L\right) W^{L} \quad\left(L^{\dagger} L\right)^{2} W^{L} \quad\left(e_{c}^{\dagger} L^{\dagger}\right)\left(d_{c} Q\right) W^{L} \\
& \left(e_{c} L\right)\left(d_{c}^{\dagger} Q^{\dagger}\right) W^{L} \quad 2\left(d_{c}^{\dagger} d_{c}\right)\left(Q^{\dagger} Q\right) W^{L} \quad 2\left(u_{c}^{\dagger} u_{c}\right)\left(Q^{\dagger} Q\right) W^{L} \quad 3\left(L^{\dagger} L\right)\left(Q^{\dagger} Q\right) W^{L} \\
& 2\left(Q^{\dagger} Q\right)^{2} W^{L} \quad 3\left(e_{c} L\right)\left(u_{c} Q\right) W^{L} \quad 3\left(u_{c} d_{c}\right) Q^{2} W^{L} \quad\left(d_{c}^{\dagger}\right)^{2} d_{c}^{2} G^{L} \\
& \left(u_{c}^{\dagger}\right)^{2} u_{c}^{2} G^{L} \quad\left(d_{c}^{\dagger} d_{c}\right)\left(e_{c}^{\dagger} e_{c}\right) G^{L} \quad\left(u_{c}^{\dagger} u_{c}\right)\left(e_{c}^{\dagger} e_{c}\right) G^{L} \quad 4\left(d_{c}^{\dagger} d_{c}\right)\left(u_{c}^{\dagger} u_{c}\right) G^{L} \\
& \left(Q^{\dagger} Q\right)\left(e_{c}^{\dagger} e_{c}\right) G^{L} \quad\left(d_{c}^{\dagger} d_{c}\right)\left(L^{\dagger} L\right) G^{L} \quad\left(u_{c}^{\dagger} u_{c}\right)\left(L^{\dagger} L\right) G^{L} \quad 2\left(Q^{\dagger} Q\right)\left(L^{\dagger} L\right) G^{L} \\
& 4\left(d_{c}^{\dagger} d_{c}\right)\left(Q^{\dagger} Q\right) G^{L} \quad 4\left(u_{c}^{\dagger} u_{c}\right)\left(Q^{\dagger} Q\right) G^{L} \quad 2\left(Q^{\dagger}\right)^{2} Q^{2} G^{L} \quad\left(d_{c} Q\right)\left(e_{c}^{\dagger} L^{\dagger}\right) G^{L} \\
& \left(d_{c} Q\right)\left(e_{c}^{\dagger} L^{\dagger}\right) G^{R} \quad 3\left(e_{c} L\right)\left(u_{c} Q\right) G^{L} \quad 6\left(d_{c} u_{c}\right) Q^{2} G^{L} \\
& 112 \text { at } O\left(D^{0}\right)
\end{aligned}
$$

cross-checks:

easily extended to multiple scalars, complex scalars fermion-scalar theory

works with gauge theory, $\mathrm{D} \rightarrow$ covariant derivative

gets SM dim 6 correct, $\mathrm{N}_{\mathrm{F}}=1,3$
gets SM dim 7 correct, predicts dim- 8 $^{+}$

But, fails if constraints not independent..
(happens more often for higher D)
also, seems ad hoc...

Henning, Lu, Melia, Murayama 1512.03433

$$
\int\left(\prod_{i} d \mu_{G_{i}}\right)\left(1-D\left(\frac{1}{2}, \frac{1}{2}\right)+D^{2}((0,1)+(1,0))-D^{3}\left(\frac{1}{2}, \frac{1}{2}\right)+D^{4}\right) P E\left[\phi+D \phi\left(\frac{1}{2}, \frac{1}{2}\right)+\cdots\right]
$$

Henning, Lu, Melia, Murayama 1512.03433

$$
\int\left(\prod_{i} d \mu_{G_{i}}\right)\left(1-D\left(\frac{1}{2}, \frac{1}{2}\right)+D^{2}((0,1)+(1,0))-D^{3}\left(\frac{1}{2}, \frac{1}{2}\right)+D^{4}\right) P E\left[\phi+D \phi\left(\frac{1}{2}, \frac{1}{2}\right)+\cdots\right]
$$

works, free of issues

- extend d=8 SMEFT set to 992 (+62 from Lehman, AM)
- count $d=9,10,11,12$ SMEFT operators (560, 15456, 11962..)
- possible compact 'all orders' form

Why $\left(1-D\left(\frac{1}{2}, \frac{1}{2}\right)+D^{2}((0,1)+(1,0))-D^{3}\left(\frac{1}{2}, \frac{1}{2}\right)+D^{4}\right)$?
Start with irreps of conformal symmetry $\mathrm{SO}(4,2)$ operators in conformal theory: primary \mathcal{O}, descendents $\partial_{\mu} \mathcal{O}$

Why $\left(1-D\left(\frac{1}{2}, \frac{1}{2}\right)+D^{2}((0,1)+(1,0))-D^{3}\left(\frac{1}{2}, \frac{1}{2}\right)+D^{4}\right)$?
Start with irreps of conformal symmetry $\mathrm{SO}(4,2)$ operators in conformal theory: primary \mathcal{O}, descendents $\partial_{\mu} \mathcal{O}$
removing IBP redundancy = eliminating all operators that are descendants of other ops.

$$
\text { Why }\left(1-D\left(\frac{1}{2}, \frac{1}{2}\right)+D^{2}((0,1)+(1,0))-D^{3}\left(\frac{1}{2}, \frac{1}{2}\right)+D^{4}\right) ?
$$

Start with irreps of conformal symmetry $\mathrm{SO}(4,2)$ operators in conformal theory: primary \mathcal{O}, descendents $\partial_{\mu} \mathcal{O}$
removing IBP redundancy $=$ eliminating all operators that are descendants of other ops.
accomplished by keeping only the highest conformal weight of operator products

Why $\left(1-D\left(\frac{1}{2}, \frac{1}{2}\right)+D^{2}((0,1)+(1,0))-D^{3}\left(\frac{1}{2}, \frac{1}{2}\right)+D^{4}\right)$?
Start with irreps of conformal symmetry $\mathrm{SO}(4,2)$ operators in conformal theory: primary \mathcal{O}, descendents $\partial_{\mu} \mathcal{O}$
removing IBP redundancy $=$ eliminating all operators that are descendants of other ops.
accomplished by keeping only the highest conformal weight of operator products
integration over SO(4,2)/SO(3,1) (dilations, conformal trans) + highest weight projection conspire to give 1-D...prefactor

What now?

- knowing all dim-8 SMEFT, we can study which operators have an impact at LHC. Specifically, dim-8 important to understand uncertainty on dim-6

$$
\begin{array}{r}
\left|\mathcal{A}_{S M}+A_{6}+A_{8}\right|^{2} \supset\left|A_{S M}\right|^{2}+2 \operatorname{Re}\left(A_{S M} A_{6}\right)+\left|A_{6}\right|^{2}+2 \operatorname{Re}\left(A_{S M} A_{8}\right) \cdots \\
\quad[\mathrm{pp} \rightarrow \mathrm{hV}, \text { Lehman, AM in progress }]
\end{array}
$$

- analytic properties?
- application to EFT with nonlinear fields?

conclusions:

given symmetry group G ,
fields $\boldsymbol{\phi}_{\mathrm{i}}, \Psi_{\mathrm{i}}, \mathbf{X}_{\mathrm{i}} \mathrm{L}, \mathrm{R}$
\# and form of all invariant (Lorentz \& gauge) operators, accounts for IBP, EOM

- generates all possible combinations of operators, uses character orthonormality to pick out invariants
- derivatives tricky, but issues recently overcome
lots of interesting directions to explore!

$$
\begin{aligned}
\int\left(d \mu_{S O(4,2)(q, x, y)}\right. & \left.\times d \mu_{\text {gauge }}\right)\left(\sum_{n=1}^{\infty} D^{n} \chi_{[n, 0,0]}^{*}(q, x, y)\right) \times \\
& \prod_{i} P E\left[\phi_{i} \chi_{[1,0,0]}(q, x, y) \chi_{\phi_{i}, g a u g e}\right] \prod_{j} P E F\left[\psi_{j} \chi_{[3 / 2,0,1 / 2]}(q, x, y) \chi_{\psi_{j}, g a u g e}\right]
\end{aligned}
$$

