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Outline

• Overview of Deep Learning

• Deep Learning and Neutrinos

• Network Design

• Deep Learning and Scientific Data
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Deep Learning Shows Promise for Large Datasets

• Deep learning is data driven feature extraction supported by 
hierarchy of neuron layers

– Lower layers learn local detail

– Higher layers learn global concepts

http://www.datarobot.com/blog/a-primer-on-deep-learning/
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Traditional Methods   

What are the Goals of Deep Learning?

• Remove/reduce the need for domain level experts 
to determine what are important features of the 
data.

• The model learns what is important.

• The model works “directly” with the data.

Classifier

Feature Encoding

Data

Deep Learning Methods   

Classifier

Feature Encoding

Data

Features Created 
Independent of Classifier

Features are learned as part 
of the process of training classifier
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Where is Deep Learning successful?

Challenging Problems New State of the Art 
Results

Object Classification

Face Recognition

Speech Recognition

• 3.6% error on 
ImageNet competition

• 5x decrease in error 
over results prior to 
first DL submission

• 99.97% accuracy on 
LFW dataset. 

• Only 14 errors out of 
6000 pairs. 

• 5 were mislabeled in 
the dataset

• Human Level:  97.53%

• Used in Google’s 
production speech 
recognition software.

• Provides significant 
improvement on many 
standard benchmarks 
over previous methods.

http://vis-www.cs.umass.edu/lfw/

Jake 
Gyllenhaal

Thabo 
Mbeki
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Convolutional Neural Network (CNN)

• Input image is convolved with hidden units in the first 
convolutional layer 

• The resulting feature maps is then sub-sampled using max 
pooling.

• Process is continued until the output of the final averaging 
layer is provided to a multilayer perceptron.
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ImageNet Competition
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Neutrino Deep Learning Work
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Neutrino Deep Learning Work

• At least two experiments investigating DL for a 
variety of tasks

• NOvA

– Classifying event interaction type

• νµ CC, νe CC, ντ CC, v NC

– https://arxiv.org/abs/1604.01444

• MINERvA

– Vertex reconstruction

https://arxiv.org/abs/1604.01444
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MINERvA
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MINERvA Vertex Reconstruction

• Data: Simulation data. Energy lattice provided for each 
event.

• Goal: Find location of neutrino interaction.

Event 1

Event 2

X  view U view V  view
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MINERvA Vertex Segment Classification

Goal: Classify which segment the vertex is 

located in.

Challenge: Events can have 

very different characteristics.
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How to combine data from 3 views?

Model Test Set Accuracy

Previous Methods 91.90%

CNN – 1 View 80.42%

CNN – 3 Views + 1 Column 88.71%

CNN – 3 Views + 3 

Columns

93.58%
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Misclassified Events

Boundary Multiple Interactions Backward Tracks
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Why that network design/hyper-

parameters?

• Is that the best accuracy possible?

– Better network hyper-parameter choices?

• Other problems to solve?

– Different networks for those?

• Leverage ORNL’s Titan supercomputer to improve 
performance & expand to other problems
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Deep Learning Network Design
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Network Design for Different Datasets

MNIST CIFAR-10 ImageNet
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Progression of ImageNet Network Design

AlexNet VGG GoogLeNet InceptionNet Resnet
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Not quite there, so what’s needed?

• Current research involving toy problems / data sets; 
Real applications driven by commercial interests

• Domain expertise and computational training costs 
limit adaptability to new data sets

Improve Adaptability of Deep Learning

*Reference:  A. Coates, B. Huval, T. Wang, D. J. Wu, and 
A. Y. Ng. “Deep learning with COTS HPC systems.” In 
International Conference on Machine Learning, 2013.

From simple & small 
data sets…

…to more complex & 
bigger data sets
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Problem:  Adaptability Challenge

• Premise:  For every data set, there exists a 
corresponding neural network that performs ideally 
with that data

• What’s the ideal neural network architecture (i.e., 
hyper-parameters) for a particular data set ?

• Current approach:  educated guessing
1. Pick some deep learning software (Caffe, Torch, Theano, etc)

2. Design a set of parameters that defines your deep learning network

3. Try it on your data

4. If it doesn’t work as well as you want, go back to step 2 and try 
again.
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Hyper-parameter Selection

• Manual search, guess and check

– Requires domain knowledge

• Grid search

– Exponential growth with high-dimensional hyper-parameter space

– Doesn’t exploit low effective dimension for discovery

• Random search

– By itself, not adaptive (no use of prior information)
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MENNDL:  Multi-node Evolutionary 

Neural Networks for Deep Learning

• Evolutionary algorithm as a solution for searching 
hyper-parameter space for deep learning

– Focus on Convolutional Neural Networks

– Evolve only the topology with EA; typical training process

– Generally: Provide scalability and adaptability for many 
data sets and compute platforms

• Leverage more GPUs; ORNL’s Titan has 18k GPUs

– Next generation, Summit, will have more

• Provide the ability to analyze hierarchical patterns 
from large data sets

– Often high dimensional, thousands of variables

– Climate science, material science, physics, etc.
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Proof of Concept Using CIFAR-10 Data

• CIFAR-10 data: Images of 10 classes of objects

• Using MENNDL, can we evolve the topology of a 
poorly performing CNN to perform well on CIFAR-
10?
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Hyper-parameter Values vs Performance

• Currently T&E of latest 
code that changes all 
possible parameters 
(e.g., # of layers, layer 
types, etc)

• Using just 4 nodes

• From 27% to 65% 
Accuracy

Evolved
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Hyper-parameter Values vs Performance

• Improved performance over known 
good network

• Using just 4 nodes

• From 75% to 82%

Evolved
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Deep Learning and Scientific Data
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Applying DL for Scientific Use

• Challenges

– Scientists don’t want a black box, they want to the system 
to explain how the system arrived at a result.

• Good news! It’s not a black box.

• Bad news! It’s not clear how to break down 
thousands/millions/billions of parameters/calculations into an easily 
conveyed explanation of a result.

– Scientists want better ways to quantify the uncertainty of 
results.

• Small changes can cause dramatic changes in results.

• How to measure similarity of training data to testing data?

• Opportunity

– Many science fields have high quality simulations that can 
be leveraged for training data.
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Simulation Data for Training
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Backup Slides
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Per Segment Accuracy

Target Segment Previous DL

- 0 78.9% 78.1%

1 1 92.2% 96.4%

- 2 88.4% 88.5%

2 3 91.5% 96.4%

- 4 88.6% 89.2%

3 5 91.2% 95.4%

- 6 95.1% 95.1%

4 7 89.1% 93.4%

- 8 73.7% 61.3%

5 9 88.8% 94.9%

- 10 98.0% 96.8%


