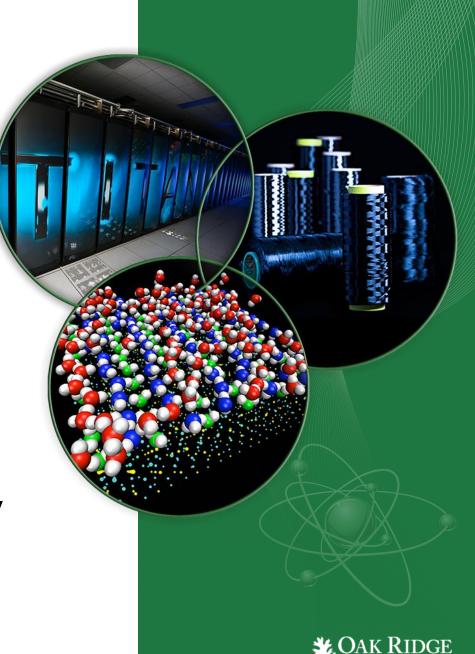
Deep Learning

Steven R. Young

Computational Data Analytics

Oak Ridge National Laboratory



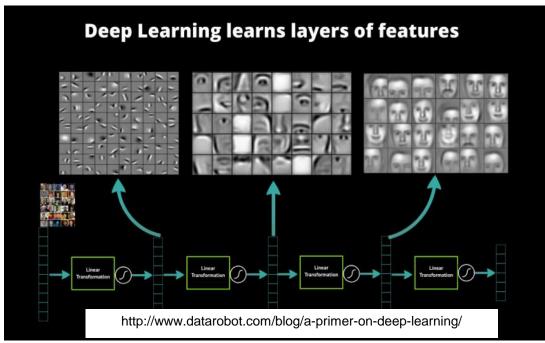
National Laboratory

Outline

- Overview of Deep Learning
- Deep Learning and Neutrinos
- Network Design
- Deep Learning and Scientific Data

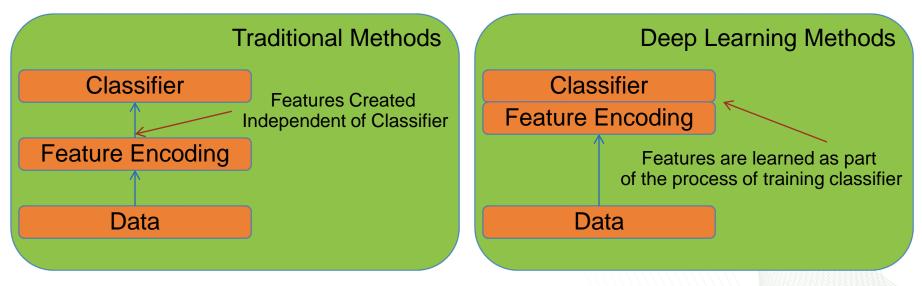
Deep Learning Shows Promise for Large Datasets

- Deep learning is data driven feature extraction supported by hierarchy of neuron layers
 - Lower layers learn local detail
 - Higher layers learn global concepts



What are the Goals of Deep Learning?

- Remove/reduce the need for domain level experts to determine what are important features of the data.
- The model learns what is important.
- The model works "directly" with the data.



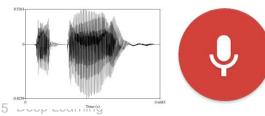
Where is Deep Learning successful? Challenging Problems New State of the Art

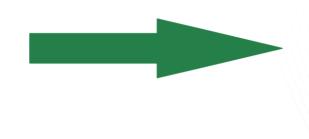
Object Classification

Face Recognition

http://vis-www.cs.umass.edu/lfw/

Speech Recognition

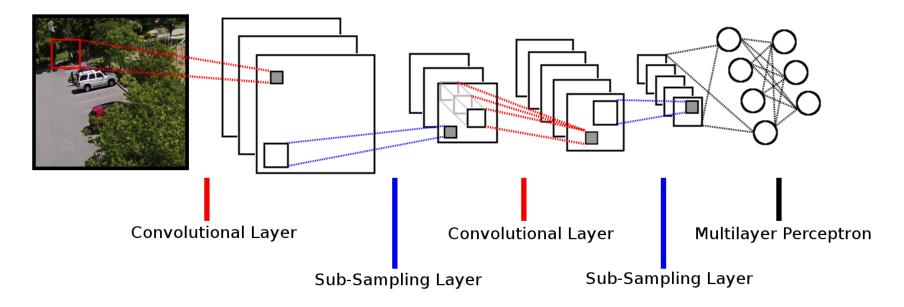




- Results
 3.6% error on ImageNet competition
 - 5x decrease in error over results prior to first DL submission
 - 99.97% accuracy on LFW dataset.
 - Only 14 errors out of 6000 pairs.
 - 5 were mislabeled in the dataset
 - Human Level: 97.53%
 - Used in Google's production speech recognition software.
 - Provides significant improvement on many standard benchmarks over previous methods.

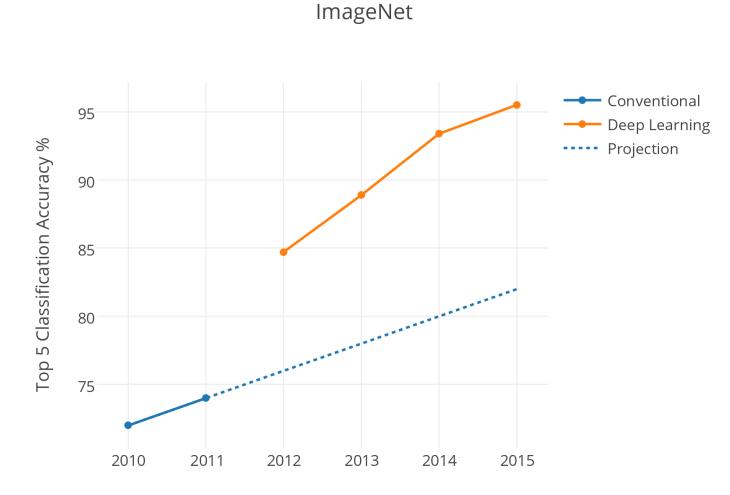
.....

Convolutional Neural Network (CNN)



- Input image is convolved with hidden units in the first convolutional layer
- The resulting feature maps is then sub-sampled using max pooling.
- Process is continued until the output of the final averaging layer is provided to a multilayer perceptron.

ImageNet Competition

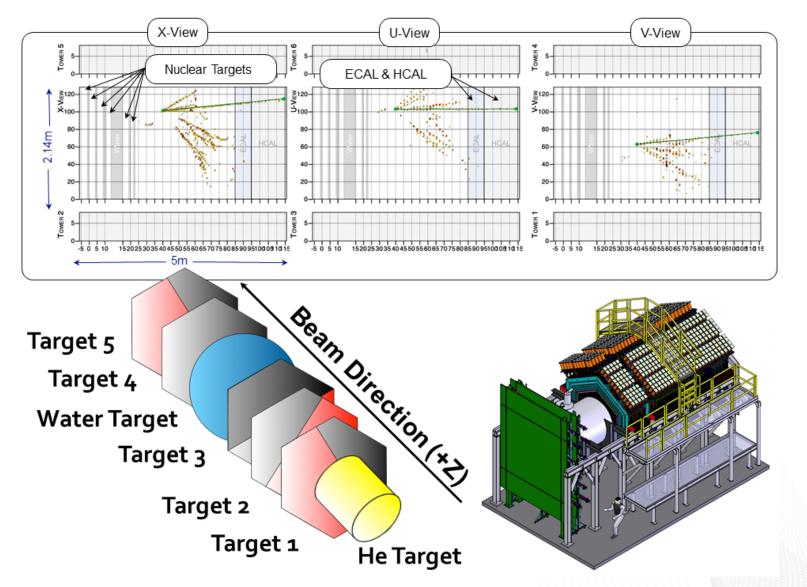


Neutrino Deep Learning Work

Neutrino Deep Learning Work

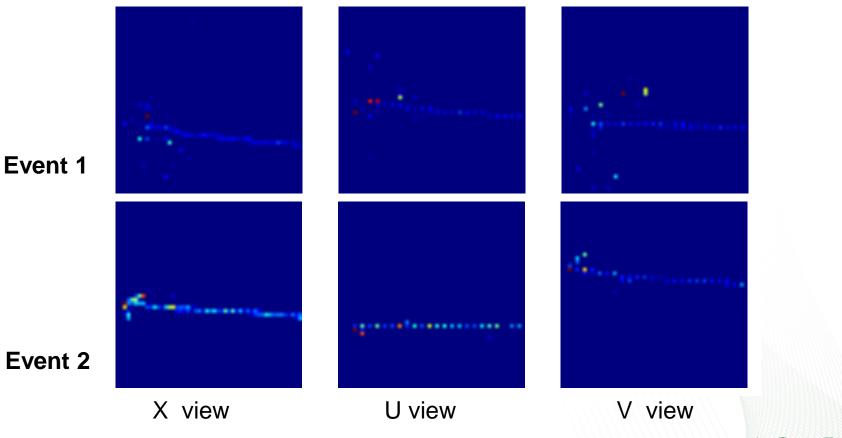
- At least two experiments investigating DL for a variety of tasks
- NOvA
 - Classifying event interaction type
 - v_{μ} CC, v_{e} CC, v_{τ} CC, v NC
 - <u>https://arxiv.org/abs/1604.01444</u>
- MINERvA
 - Vertex reconstruction

MINERvA



MINERvA Vertex Reconstruction

- Data: Simulation data. Energy lattice provided for each event.
- Goal: Find location of neutrino interaction.



MINERvA Vertex Segment Classification

Goal: Classify which segment the vertex is located in.

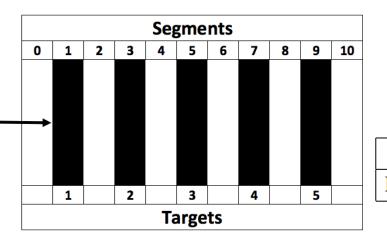
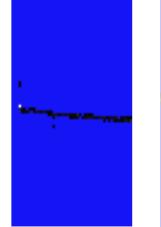
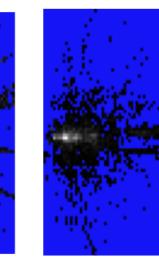


Table 1:	Class	distribution
----------	-------	--------------

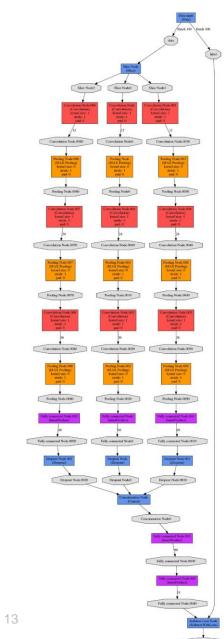
	Target		1			2		3		4		5	
	Distribution		12.9% 1		13	13.8%		11.4%		8.4%		10.8%	
	Segment		1			3		5		7		9	
	Segment		0	2	2	4		6		8		10	
D	Distribution	2	.4%	4.7	%	4.89	%	13.59	%	1.29	%	16.0%	%

Challenge: Events can have very different characteristics.



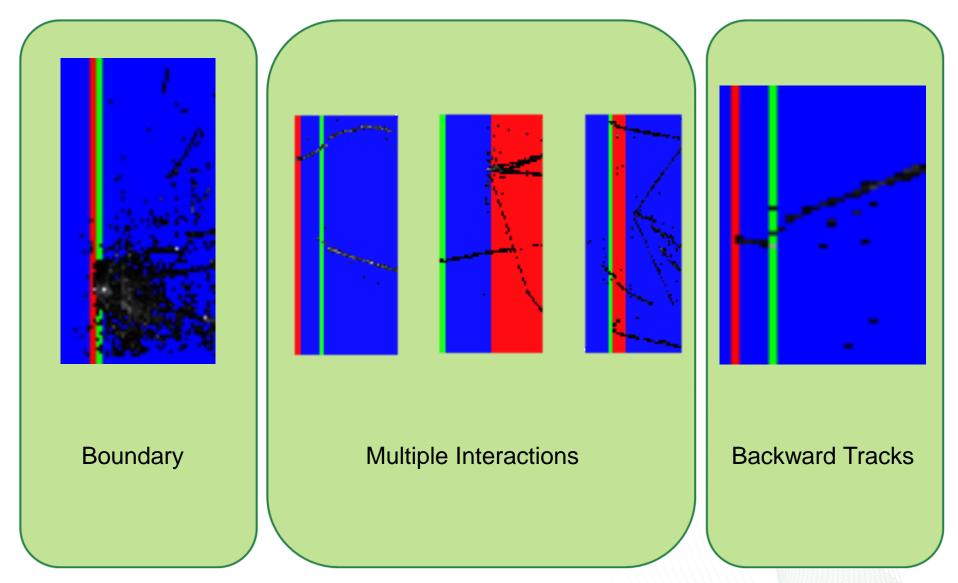


How to combine data from 3 views?



Model	Test Set Accuracy
Previous Methods	91.90%
CNN – 1 View	80.42%
CNN – 3 Views + 1 Column	88.71%
CNN – 3 Views + 3 Columns	93.58%

Misclassified Events



Why that network design/hyperparameters?

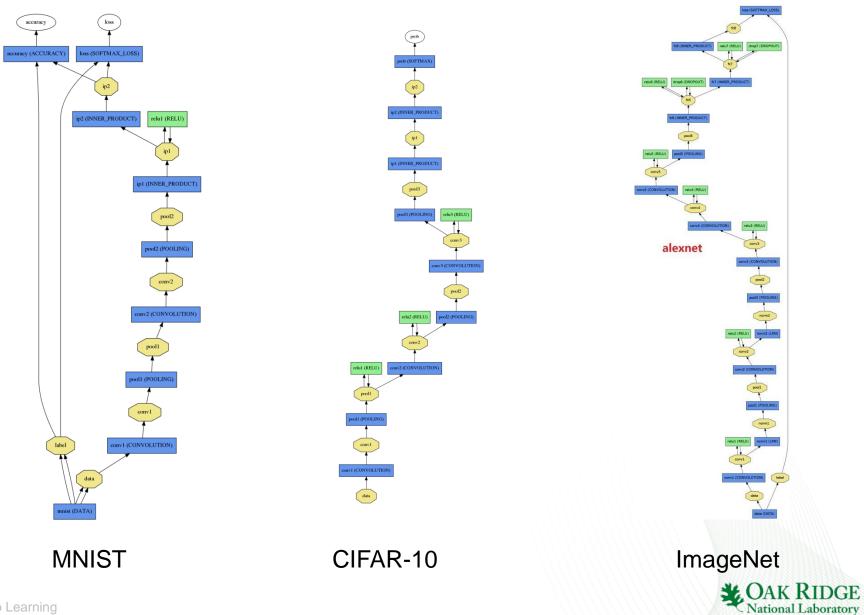
# convLayers	Kernel Sizes $(\{h\} \times w)$	Accuracy
Three	$\{6,6,3\} imes 3$	93.58%
Four	$\{{f 8},{f 8},{f 7},{f 6}\} imes{f 3}$	94.09%
Five	$\{8,7,7,3,3\} imes 3$	93.55%

- Is that the best accuracy possible?
 - Better network hyper-parameter choices?
- Other problems to solve?
 - Different networks for those?
- Leverage ORNL's Titan supercomputer to improve performance & expand to other problems

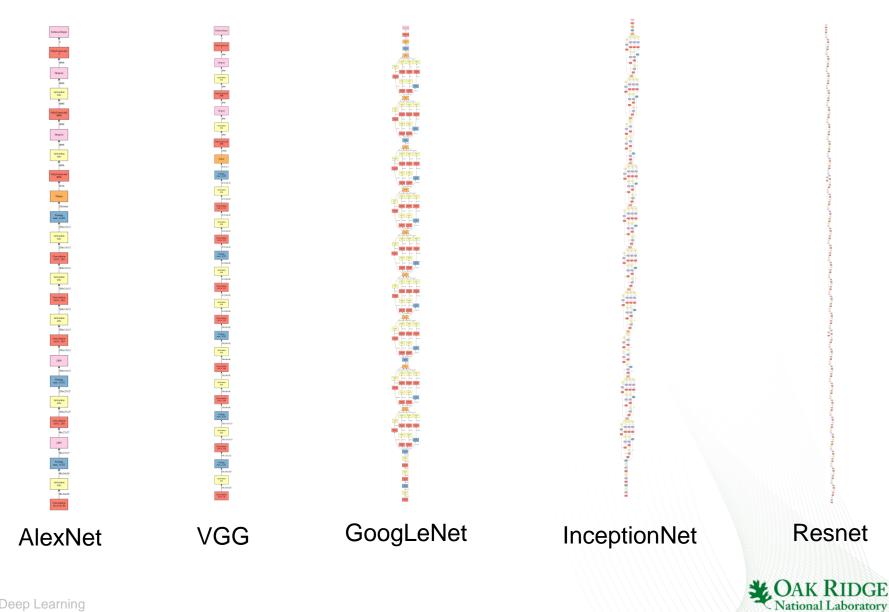
Deep Learning Network Design

16 Deep Learning

Network Design for Different Datasets



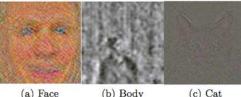
Progression of ImageNet Network Design



Not quite there, so what's needed?

- Current research involving toy problems / data sets; Real applications driven by commercial interests
- Domain expertise and computational training costs limit adaptability to new data sets

Improve Adaptability of Deep Learning



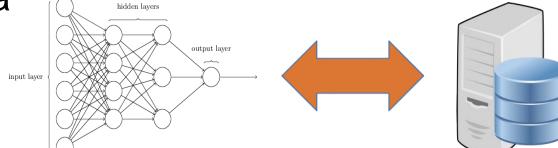
*Reference: A. Coates, B. Huval, T. Wang, D. J. Wu, and A. Y. Ng. "Deep learning with COTS HPC systems." In International Conference on Machine Learning, 2013.

From simple & small data sets...

...to more complex & bigger data sets

Problem: Adaptability Challenge

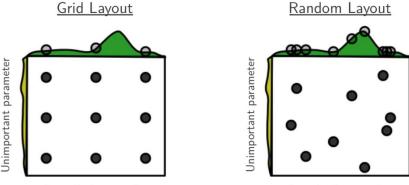
• **Premise:** For every data set, there exists a corresponding neural network that performs ideally with that data

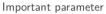


- What's the ideal neural network architecture (i.e., hyper-parameters) for a particular data set ?
- Current approach: educated guessing
 - 1. Pick some deep learning software (Caffe, Torch, Theano, etc)
 - 2. Design a set of parameters that defines your deep learning network
 - 3. Try it on your data
 - 4. If it doesn't work as well as you want, go back to step 2 and try again.

Hyper-parameter Selection

- Manual search, guess and check
 - Requires domain knowledge
- Grid search
 - Exponential growth with high-dimensional hyper-parameter space
 - Doesn't exploit low effective dimension for discovery
- Random search
 - By itself, not adaptive (no use of prior information)





Important parameter

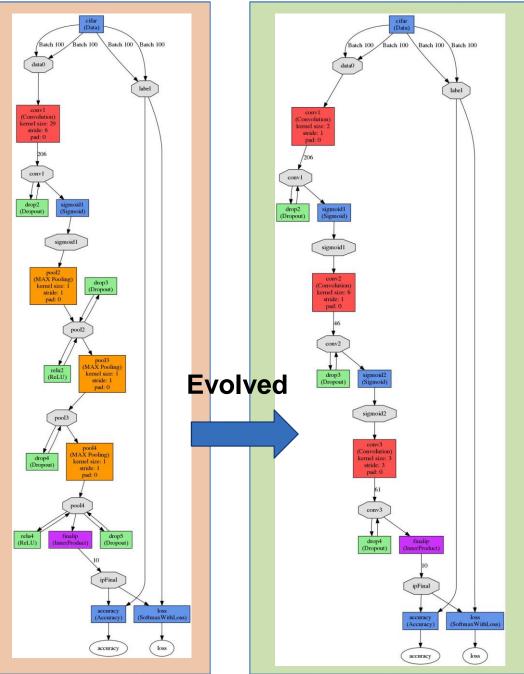
MENNDL: Multi-node Evolutionary Neural Networks for Deep Learning

- Evolutionary algorithm as a solution for searching hyper-parameter space for deep learning
 - Focus on Convolutional Neural Networks
 - Evolve *only* the topology with EA; typical training process
 - Generally: Provide scalability and adaptability for many data sets and compute platforms
- Leverage more GPUs; ORNL's Titan has 18k GPUs
 - Next generation, Summit, will have more
- Provide the ability to analyze hierarchical patterns from large data sets
 - Often high dimensional, thousands of variables
 - Climate science, material science, physics, etc.

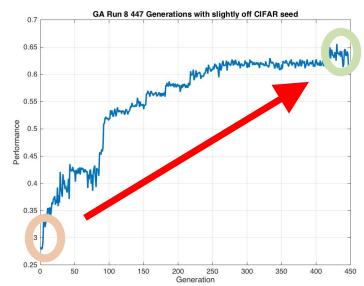
Proof of Concept Using CIFAR-10 Data

- CIFAR-10 data: Images of 10 classes of objects
- Using MENNDL, can we evolve the topology of a poorly performing CNN to perform well on CIFAR-10?

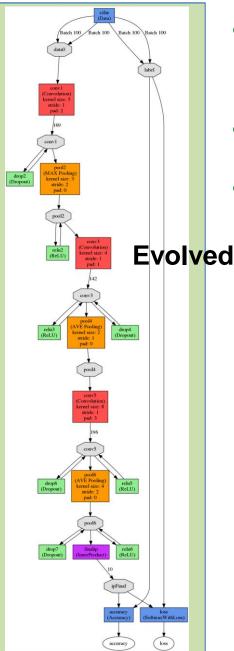
Hyper-parameter Values vs Performance



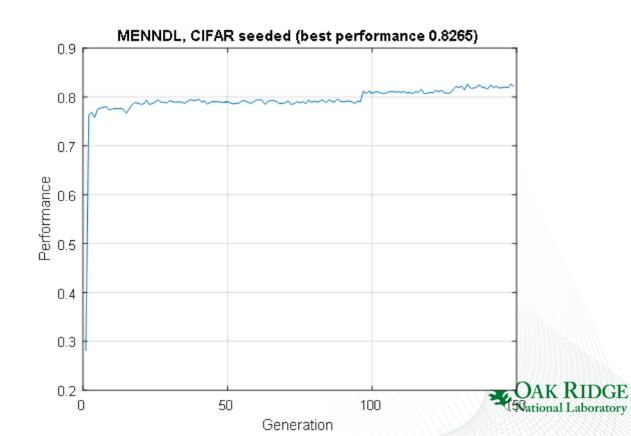
- Currently T&E of latest code that changes all possible parameters (e.g., # of layers, layer types, etc)
- Using just 4 nodes
- From 27% to 65%
 Accuracy



Hyper-parameter Values vs Performance



- Improved performance over known good network
- Using just 4 nodes
- From 75% to 82%



Deep Learning and Scientific Data

Applying DL for Scientific Use

Challenges

- Scientists don't want a black box, they want to the system to explain how the system arrived at a result.
 - Good news! It's not a black box.
 - Bad news! It's not clear how to break down thousands/millions/billions of parameters/calculations into an easily conveyed explanation of a result.
- Scientists want better ways to quantify the uncertainty of results.
 - Small changes can cause dramatic changes in results.
 - How to measure similarity of training data to testing data?
- Opportunity
 - Many science fields have high quality simulations that can be leveraged for training data.

Simulation Data for Training

Acknowledgements

- Gabriel Perdue (FNAL) and the entire MINERvA collaboration
- Robert Patton (ORNL) and the "Scalable Deep Learning Algorithms for Exascale Data Analytics" LDRD team
- Adam Terwilliger (Grand Valley State University)
- David Isele (University of Pennsylvania)

Backup Slides

Per Segment Accuracy

Target	Segment	Previous	DL
-	0	78.9%	78.1%
1	1	92.2%	96.4%
-	2	88.4%	88.5%
2	3	91.5%	96.4%
-	4	88.6%	89.2%
3	5	91.2%	95.4%
-	6	95.1%	95.1%
4	7	89.1%	93.4%
-	8	73.7%	61.3%
5	9	88.8%	94.9%
-	10	98.0%	96.8%

