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P R E FA C E

•This reminds me of PhyStat series leading up to the LHC.  

• Thanks to Louis, Tom, Bob, Richard, … 

• Impressed by the sophistication of discussion 

•One thing I learned: 

• collaboration might converge on high-level statistical procedure. 
Put in likelihood / probability model and turn the crank. 

• Practical improvements to analysis mainly lie in techniques used for 
modeling the data ! (eg. systematics, ND->FD extrapolation, etc.) 

• Useful to factorize discussion & software in terms of modeling and 
high-level statistical procedure
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T H E  H I G G S  D I S C O V E R Y
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I N T R O D U C T I O N

•In particle physics, our high-level inference goals are 

• searches (hypothesis testing) 

• measurements (maximum likelihood estimate) 

• constrain parameters (confidence intervals) 

•Typically, we use likelihood-based techniques 

• surprisingly, we lack a nice technique for likelihood-
based inference when we want to use high-dimensional 
observations and have to deal with detector response
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Likelihood-free Inference



OVERVIEW OF PREDICTIONS
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The language is Quantum Field Theory1)
Feynman Diagrams 
are used to predict 
high-energy 
interaction among 
fundamental particles

2)

The interaction of outgoing particles 
with the detector is simulated.  

3)
e+

e-

mu-

mu+

Finally, we run particle identification algorithms 
on the simulated data as if they were from real 
collisions.

4)

Uses of Multivariate Methods

Complex final state of VBF H → WW → llEmiss
T well-suited for multivariate methods

Used 7 variables:
∆ηll, ∆φll, Mll, ∆ηjj, ∆φjj, Mjj, MT

Compared Neural Networks, Genetic Program-
ming, and Support Vector Regression

q

q

W

W

H
W+

W−

ν

l+

l−

ν̄

Ref. Cuts low-mH Cuts NN GP SVR
120 ee 0.87 1.25 1.72 1.66 1.44
120 eµ 2.30 2.97 3.92 3.60 3.33
120 µµ 1.16 1.71 2.28 2.26 2.08
Combined 2.97 3.91 4.98 4.57 4.26
130 eµ 4.94 6.14 7.55 7.22 6.59

Table 1: Expected significance in sigma after 30 fb−1 for two cut analyses and three multivariate analyses for
different Higgs masses and final state topologies.

March 14, 2006

University of Pennsylvania Seminar

Higgs Searches at the LHC:

Challenges, Prospects, and Developments (page 25)

Kyle Cranmer

Brookhaven National Laboratory

>100 million sensors

~10-30 features describe interesting part



D E T E C T O R  S I M U L AT I O N

•Conceptually: Prob(detector response | particles ) 

•Implementation: Monte Carlo integration over micro-physics 

•Consequence: cannot evaluate likelihood for a given event

7



D E T E C T O R  S I M U L AT I O N

•Conceptually: Prob(detector response | particles ) 

•Implementation: Monte Carlo integration over micro-physics 

•Consequence: cannot evaluate likelihood for a given event 

•This motivates a new class of algorithms for what is called 
likelihood-free inference, which only require ability to 
generate samples from the simulation in the “forward mode” 
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1 0 ⁸  S E N S O R S   →  1  R E A L - VA L U E D  Q U A N T I T Y

•Most measurements and searches for new particles at the LHC are based on the 
distribution of a single variable or feature 

• choosing a good variable (feature engineering) is a task for a skilled physicist 
and tailored to the goal of measurement or new particle search 

• likelihood p(x|θ) approximated using histograms (univariate density estimation)
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H I G H  D I M E N S I O N A L  E X A M P L E

•For instance, when looking for deviations from the standard model 
Higgs, we would like to look at all sorts of kinematic correlations 

• each observation x is high-dimensional
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FIG. 2: Distribution of the cos θ∗ (left), Φ1 (second from the left), cos θ1 and cos θ2 (second from the right), and Φ (right)
generated for mX = 250 GeV with the program discussed in the text (unweighted events shown as points with error bars) and
projections of the ideal angular distributions given in the text (smooth lines). The four sets of plots from top to bottom show
the models discussed in Table I for spin-zero 0+ and 0− (top), spin-one 1+ and 1− (second row from top), spin-two 2+m, 2+

L
,

and 2− (third row from top), and the bottom row shows distributions in background generated with Madgraph (points with
error bars) and empirical shape (smooth lines). The J+ distributions are shown with solid red points and J− distributions are
shown with open blue points, while the 2+m and 2+

L
are shown with red circles and green squares, respectively.

production angles in Fig. 3, where we plot the distributions of θ∗ and Φ1 production angles for the spin-zero particle
X . If these distributions are measured with the “ideal” (4π) detector, the results are flat. Hence, the non-trivial
shapes of these distributions shown in Fig. 3 are entirely due to an acceptance effect.
It is evident from Fig. 3 that the acceptance effects are very important in the analysis of data. They have to be

taken into account explicitly, otherwise the results of the analysis will be biased. This can be easily done in our MC
simulation program on an event-by-event basis using the acceptance function in Eq. (39), where we reject events if
at least one lepton exceeds the maximal pseudorapidity. It is also possible, but much harder, to incorporate this
acceptance function into the likelihood function that is discussed in the next section. However, as we explain now,

H
l

l

l

l

2

FIG. 1: Illustration of an exotic X particle production and decay in pp collision gg or qq̄ → X → ZZ → 4l±. Six angles fully
characterize orientation of the decay chain: θ∗ and Φ∗ of the first Z boson in the X rest frame, two azimuthal angles Φ and Φ1

between the three planes defined in the X rest frame, and two Z-boson helicity angles θ1 and θ2 defined in the corresponding
Z rest frames. The offset of angle Φ∗ is arbitrarily defined and therefore this angle is not shown.

discussed in Refs. [21–23] KK graviton decays into pairs of gauge bosons are enhanced relative to direct decays into
leptons. Similar situations may occur in “hidden-valley”-type models [24]. An example of a ”heavy photon” is given
in Ref. [25].
Motivated by this, we consider the production of a resonance X at the LHC in gluon-gluon and quark-antiquark

partonic collisions, with the subsequent decay of X into two Z bosons which, in turn, decay leptonically. In Fig. 1,
we show the decay chain X → ZZ → e+e−µ+µ−. However, our analysis is equally applicable to any combination of
decays Z → e+e− or µ+µ−. It may also be applicable to Z decays into τ leptons since τ ’s from Z decays will often be
highly boosted and their decay products collimated. We study how the spin and parity of X , as well as information
on its production and decay mechanisms, can be extracted from angular distributions of four leptons in the final state.
There are a few things that need to be noted. First, we obviously assume that the resonance production and

its decays into four leptons are observed. Note that, because of a relatively small branching fraction for leptonic Z
decays, this assumption implies a fairly large production cross-section for pp → X and a fairly large branching fraction
for the decay X → ZZ. As we already mentioned, there are well-motivated scenarios of BSM physics where those
requirements are satisfied.
Second, having no bias towards any particular model of BSM physics, we consider the most general couplings of the

particle X to relevant SM fields. This approach has to be contrasted with typical studies of e.g. spin-two particles
at hadron colliders where such an exotic particle is often identified with a massive graviton that couples to SM fields
through the energy-momentum tensor. We will refer to this case as the “minimal coupling” of the spin-two particle
to SM fields.
The minimal coupling scenarios are well-motivated within particular models of New Physics, but they are not

sufficiently general. For example, such a minimal coupling may restrict partial waves that contribute to the production
and decay of a spin-two particle. Removing such restriction opens an interesting possibility to understand the couplings
of a particle X to SM fields by means of partial wave analyses, and we would like to set a stage for doing that in this
paper. To pursue this idea in detail, the most general parameterization of the X coupling to SM fields is required.
Such parameterizations are known for spin-zero, spin-one, and spin-two particles interacting with the SM gauge
bosons [7, 8] and we use these parameterizations in this paper. We also note that the model recently discussed in
Refs. [21–23] requires couplings beyond the minimal case in order to produce longitudinal polarization dominance.
Third, we note that while we concentrate on the decay X → ZZ → l+1 l

−
1 l

+
2 l

−
2 , the technique discussed in this

paper is more general and can, in principle, be applied to final states with jets and/or missing energy by studying
such processes as X → ZZ → l+l−jj, X → W+W− → l+νjj, etc. In contrast with pure leptonic final states,
higher statistics, larger backgrounds, and a worse angular resolution must be expected once final states with jets and



M O V I N G  C L O S E R  T O  T H E  D ATA

•A more extreme example is to work with lower-level data 

• each observation x is high-dimensional
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LArTPC

LArTPC'sLArTPC's

Note: This table was first produced by my boss Mitch Soderberg and if he had patented it 
he would have 10's of dollars because it shows up in every LAr talk I've ever seen!

→ Dense
40% more dense than water

→ Abundant
1% of the atmosphere

→ Ionizes easily
55,000 electrons / cm

→ High electron lifetime
Greek name means “lazy”

→ Produces copious 
scintillation light

Transparent to light produced

Liquid Argon is an excellent choice for neutrino detectors:

Time Projection Chamber

ν
µ

Electric Field

Electric Field

Electric Field

Electric Field

Neutrino interaction in LAr produces 
ionization and scintillation light

γ
γ
γ
γ γ

γ

γ
γ

Drift the ionization charge in a 
uniform electric field

Electric Field

Electric Field

Read out charge and light produced 
using precision wires and PMT's

J. Asaadi                                        The MicroBooNE Experiment                                               3J. Asaadi                                        The MicroBooNE Experiment                                               3

  

Future prospects of electron/photon Future prospects of electron/photon 

separation & Neutral Current separation & Neutral Current ππ 00  

measurements with Liquid Argon measurements with Liquid Argon 
TPCs and other methodsTPCs and other methods

νν
ee
 candidate candidate

γγ  candidate candidate
Neutral Current Neutral Current 

ππ 00  candidate candidateArgoNeuT DataArgoNeuT Data

ArgoNeuT DataArgoNeuT Data ArgoNeuT DataArgoNeuT Data

Jonathan Asaadi
Syracuse University

Tracking, Calorimetry, and Particle ID in same detector. 
Goal ~80% Neutrino Efficiency. 

All you need for Physics is neutrino flavor and energy.  

Jonathon Asaadi
CNNs Applied to MicroBooNE

1vgenty

Vic Genty @ Columbia U.

MicroBooNE-NOTE-1019-PUB
Convolutional Neural Networks Applied to Neutrino
Events in a Liquid Argon Time Projection Chamber

MicroBooNE Collaboration

July 4, 2016

Abstract

We present several studies of convolution neural networks applied to data coming

from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC).

The algorithms studied include the classification of single particle images, the local-

ization of single particle and neutrino interactions in an image, and the detection

of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real

detector data. The purpose of these studies was to demonstrate the potential of

these networks for particle identification or event detection with simulated neutrino

interactions and to address a number of technical issues that arise when applying

this technique on data from a large LArTPC located near the surface. The results

of these studies can be used to guide similar applications on detector neutrino data.

We developed and validated techniques and approaches that demonstrate success-

ful application of these networks for particle identification or event detection on

simulated data and can be used to guide similar application on detector data.

1

http://www-microboone.fnal.gov/publications/publicnotes/MICROBOONE-NOTE-1019-PUB.pdf

with
MicroBooNE Deep Learning Team  

G. Collins @ MIT
K. Terao @ Columbia
T. Wongjirad @ MIT

Pattern recognition with 2D ADC images in LArTPC 
P. Płoński, D. Stefan, R. Sulej 

1 DS@HEP Workshop, NYC, July 7, 2016 

…informal input to the workshop discussions… 

https://indico.hep.caltech.edu/indico/contributionDisplay.py?contribId=27&confId=102
https://indico.hep.caltech.edu/indico/contributionDisplay.py?contribId=27&confId=102


L I K E L I H O O D  F R E E  I N F E R E N C E

•Goal: approximate the likelihood p(x|θ) for high 
dimensional feature x using a generative model for the data
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L I K E L I H O O D  F R E E  I N F E R E N C E

•Goal: approximate the likelihood p(x|θ) for high 
dimensional feature x using a generative model for the data
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14 11. CKM quark-mixing matrix
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Figure 11.2: Constraints on the ρ̄, η̄ plane. The shaded areas have 95% CL. Color
version at end of book.

These values are obtained using the method of Refs. [6,95]. Using the prescription
of Refs. [102,118] gives λ = 0.2246 ± 0.0011, A = 0.832 ± 0.017, ρ̄ = 0.130 ± 0.018,
η̄ = 0.350± 0.013 [119]. The fit results for the magnitudes of all nine CKM elements are.

VCKM =

⎛

⎝
0.97428± 0.00015 0.2253 ± 0.0007 0.00347+0.00016

−0.00012

0.2252 ± 0.0007 0.97345+0.00015
−0.00016 0.0410+0.0011

−0.0007

0.00862+0.00026
−0.00020 0.0403+0.0011

−0.0007 0.999152+0.000030
−0.000045

⎞

⎠ , (11.27)

and the Jarlskog invariant is J = (2.91+0.19
−0.11) × 10−5.

Fig. 11.2 illustrates the constraints on the ρ̄, η̄ plane from various measurements and
the global fit result. The shaded 95% CL regions all overlap consistently around the
global fit region, though the consistency of |Vub/Vcb| and sin 2β is not very good.

July 30, 2010 14:36



T H E  R A P I D  R I S E  O F  “ A B C ”
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A N  A LT E R N AT I V E  T O  A B C

K.C., http://arxiv.org/abs/1506.02169

http://arxiv.org/abs/1506.02169


C O L L A B O R AT O R S
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M A C H I N E  L E A R N I N G :  C L A S S I F I E R S

•Common to use machine learning 
classifiers to separate signal (H1) vs. 
background (H0) 

• want a function that maps signal 
to y=1 and background to y=0  

• think of it as applied calculus of 
variations: find function s(x) that 
minimizes loss:

17

L[s] =
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Figure 4: Example plots for classifier output distributions for signal and background events from the academic
test sample. Shown are likelihood (upper left), PDE range search (upper right), Multilayer perceptron (MLP
– lower left) and boosted decision trees.

• TMVA tutorial: https://twiki.cern.ch/twiki/bin/view/TMVA.

• An up-to-date reference of all configuration options for the TMVA Factory, the fitters, and all
the MVA methods: http://tmva.sourceforge.net/optionRef.html.

• On request, the TMVA methods provide a help message with a brief description of the method,
and hints for improving the performance by tuning the available configuration options. The
message is printed when the option ”H” is added to the configuration string while booking
the method (switch o↵ by setting ”!H”). The very same help messages are also obtained by
clicking the “info” button on the top of the reference tables on the options reference web page:
http://tmva.sourceforge.net/optionRef.html.

• The web address of this Users Guide: http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf.

• The TMVA talk collection: http://tmva.sourceforge.net/talks.shtml.

12 3 Using TMVA
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Figure 5: Example for the background rejection versus signal e�ciency (“ROC curve”) obtained by cutting
on the classifier outputs for the events of the test sample.

• TMVA versions in ROOT releases: http://tmva.sourceforge.net/versionRef.html.

• Direct code views via ViewVC: http://tmva.svn.sourceforge.net/viewvc/tmva/trunk/TMVA.

• Class index of TMVA in ROOT: http://root.cern.ch/root/htmldoc/TMVA Index.html.

• Please send questions and/or report problems to the tmva-users mailing list:
http://sourceforge.net/mailarchive/forum.php?forum name=tmva-users (posting messages requires
prior subscription: https://lists.sourceforge.net/lists/listinfo/tmva-users).

3 Using TMVA

A typical TMVA classification or regression analysis consists of two independent phases: the training

phase, where the multivariate methods are trained, tested and evaluated, and an application phase,
where the chosen methods are applied to the concrete classification or regression problem they have
been trained for. An overview of the code flow for these two phases as implemented in the examples
TMVAClassification.C and TMVAClassificationApplication.C (for classification – see Sec. 2.5),
and TMVARegression.C and TMVARegressionApplication.C (for regression) are sketched in Fig. 7.
Multiclass classification does not di↵er much from two class classification from a technical point of
view and di↵erences will only be highlighted where neccessary.

In the training phase, the communication of the user with the data sets and the MVA methods
is performed via a Factory object, created at the beginning of the program. The TMVA Factory
provides member functions to specify the training and test data sets, to register the discriminating

Figure 1: Left: an example of the distributions f0(s|✓) and f1(s|✓) when the classifier s is
a boosted-decision tree (BDT). Right: the corresponding ROC curve (right) for this and
other classifiers. Figures taken from TMVA manual.

These steps lead to a subsequent statistical analysis where one observes in data {xe},
where e is an event index running from 1 to n. For each event, the classifier is evaluated and
one performs inference on a parameter µ related to the presence of the signal contribution.
In particular, one forms the statistical model

p({xe} |µ, ✓) =
nY

e=1

[µf1(s(xe) | ✓) + (1 � µ) f0(s(xe) | ✓) ] , (1)

where µ = 0 is the null (background-only) hypothesis and µ > 0 is the alternate (signal-
plus-background) hypothesis.1 Typically, we are interested in inference on µ and ✓ are
nuisance parameters; though, sometimes ✓ may include some components that we are also
wish to infer (like the mass of a new particle that a↵ects the distribution x for the signal
events).

1.2 Comments on typical usage of machine learning in HEP

Nuisance parameters are an after thought in the typical usage of machine learning in HEP.
In fact, most machine learning discussions would only consider f0(x) and f1(x). However,
as experimentalists we know that we must account for various forms of systematic uncer-
tainty, parametrized by ✓. In practice, we take the classifier as fixed and then propagate
uncertainty through the classifier as in Eq. 1. Building the distribution f(s(x)|✓) for values
of ✓ other than the nominal ✓0 used to train the classifier can be thought of as a calibration

1
Sometimes there is an additional Poisson term when expected number of signal and background events

is known.
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• applied calculus of variations: 
find function s(x) that minimizes 
loss: 

• the optimal classifier would 
learn the regression function 

• which is 1-to-1 with the 
likelihood ratio
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p(x|H1)

p(x|H0)

s(x) =
p(x|H1)

p(x|H0) + p(x|H1)

L[s] =

Z
p(x|H0) (0� s(x))2 dx

+

Z
p(x|H1) (1� s(x))2dx

⇡
X

i

(yi � s(xi))
2
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Figure 4: Example plots for classifier output distributions for signal and background events from the academic
test sample. Shown are likelihood (upper left), PDE range search (upper right), Multilayer perceptron (MLP
– lower left) and boosted decision trees.

• TMVA tutorial: https://twiki.cern.ch/twiki/bin/view/TMVA.

• An up-to-date reference of all configuration options for the TMVA Factory, the fitters, and all
the MVA methods: http://tmva.sourceforge.net/optionRef.html.

• On request, the TMVA methods provide a help message with a brief description of the method,
and hints for improving the performance by tuning the available configuration options. The
message is printed when the option ”H” is added to the configuration string while booking
the method (switch o↵ by setting ”!H”). The very same help messages are also obtained by
clicking the “info” button on the top of the reference tables on the options reference web page:
http://tmva.sourceforge.net/optionRef.html.

• The web address of this Users Guide: http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf.

• The TMVA talk collection: http://tmva.sourceforge.net/talks.shtml.
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Figure 5: Example for the background rejection versus signal e�ciency (“ROC curve”) obtained by cutting
on the classifier outputs for the events of the test sample.

• TMVA versions in ROOT releases: http://tmva.sourceforge.net/versionRef.html.

• Direct code views via ViewVC: http://tmva.svn.sourceforge.net/viewvc/tmva/trunk/TMVA.

• Class index of TMVA in ROOT: http://root.cern.ch/root/htmldoc/TMVA Index.html.

• Please send questions and/or report problems to the tmva-users mailing list:
http://sourceforge.net/mailarchive/forum.php?forum name=tmva-users (posting messages requires
prior subscription: https://lists.sourceforge.net/lists/listinfo/tmva-users).

3 Using TMVA

A typical TMVA classification or regression analysis consists of two independent phases: the training

phase, where the multivariate methods are trained, tested and evaluated, and an application phase,
where the chosen methods are applied to the concrete classification or regression problem they have
been trained for. An overview of the code flow for these two phases as implemented in the examples
TMVAClassification.C and TMVAClassificationApplication.C (for classification – see Sec. 2.5),
and TMVARegression.C and TMVARegressionApplication.C (for regression) are sketched in Fig. 7.
Multiclass classification does not di↵er much from two class classification from a technical point of
view and di↵erences will only be highlighted where neccessary.

In the training phase, the communication of the user with the data sets and the MVA methods
is performed via a Factory object, created at the beginning of the program. The TMVA Factory
provides member functions to specify the training and test data sets, to register the discriminating

Figure 1: Left: an example of the distributions f0(s|✓) and f1(s|✓) when the classifier s is
a boosted-decision tree (BDT). Right: the corresponding ROC curve (right) for this and
other classifiers. Figures taken from TMVA manual.

These steps lead to a subsequent statistical analysis where one observes in data {xe},
where e is an event index running from 1 to n. For each event, the classifier is evaluated and
one performs inference on a parameter µ related to the presence of the signal contribution.
In particular, one forms the statistical model

p({xe} |µ, ✓) =
nY

e=1

[µf1(s(xe) | ✓) + (1 � µ) f0(s(xe) | ✓) ] , (1)

where µ = 0 is the null (background-only) hypothesis and µ > 0 is the alternate (signal-
plus-background) hypothesis.1 Typically, we are interested in inference on µ and ✓ are
nuisance parameters; though, sometimes ✓ may include some components that we are also
wish to infer (like the mass of a new particle that a↵ects the distribution x for the signal
events).

1.2 Comments on typical usage of machine learning in HEP

Nuisance parameters are an after thought in the typical usage of machine learning in HEP.
In fact, most machine learning discussions would only consider f0(x) and f1(x). However,
as experimentalists we know that we must account for various forms of systematic uncer-
tainty, parametrized by ✓. In practice, we take the classifier as fixed and then propagate
uncertainty through the classifier as in Eq. 1. Building the distribution f(s(x)|✓) for values
of ✓ other than the nominal ✓0 used to train the classifier can be thought of as a calibration

1
Sometimes there is an additional Poisson term when expected number of signal and background events

is known.
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PA R A M E T R I Z E D  C L A S S I F I E R S

•We started with a classifier that was learning 

•Implicitly that classifier depends on H0 and H1 used to 
generate the training data. Make that explicit 

•Can do the same thing for any two points in parameter 
space. I call this a parametrized classifier 
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s(x;H0, H1) =
p(x|H1)

p(x|H0) + p(x|H1)

s(x) =
p(x|H1)

p(x|H0) + p(x|H1)

s(x; ✓0, ✓1) =
p(x|✓1)

p(x|✓0) + p(x|✓1)



G E N E R A L I Z E D  L I K E L I H O O D  R AT I O  T E S T S

•The target likelihood ratio test based on high-dimensional features x is: 

•I can show that an equivalent test can be made from 1-D projection 

•if the map s: X → ℝ has the same level sets as the likelihood ratio 

•Remember that a classifier that minimizes squared loss ∑ [ yᵢ - s(xᵢ) ]²  approximates 
the regression function, which has the same level sets!
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Figure 4: Example plots for classifier output distributions for signal and background events from the academic
test sample. Shown are likelihood (upper left), PDE range search (upper right), Multilayer perceptron (MLP
– lower left) and boosted decision trees.

• TMVA tutorial: https://twiki.cern.ch/twiki/bin/view/TMVA.

• An up-to-date reference of all configuration options for the TMVA Factory, the fitters, and all
the MVA methods: http://tmva.sourceforge.net/optionRef.html.

• On request, the TMVA methods provide a help message with a brief description of the method,
and hints for improving the performance by tuning the available configuration options. The
message is printed when the option ”H” is added to the configuration string while booking
the method (switch o↵ by setting ”!H”). The very same help messages are also obtained by
clicking the “info” button on the top of the reference tables on the options reference web page:
http://tmva.sourceforge.net/optionRef.html.

• The web address of this Users Guide: http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf.

• The TMVA talk collection: http://tmva.sourceforge.net/talks.shtml.
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Figure 5: Example for the background rejection versus signal e�ciency (“ROC curve”) obtained by cutting
on the classifier outputs for the events of the test sample.

• TMVA versions in ROOT releases: http://tmva.sourceforge.net/versionRef.html.

• Direct code views via ViewVC: http://tmva.svn.sourceforge.net/viewvc/tmva/trunk/TMVA.

• Class index of TMVA in ROOT: http://root.cern.ch/root/htmldoc/TMVA Index.html.

• Please send questions and/or report problems to the tmva-users mailing list:
http://sourceforge.net/mailarchive/forum.php?forum name=tmva-users (posting messages requires
prior subscription: https://lists.sourceforge.net/lists/listinfo/tmva-users).

3 Using TMVA

A typical TMVA classification or regression analysis consists of two independent phases: the training

phase, where the multivariate methods are trained, tested and evaluated, and an application phase,
where the chosen methods are applied to the concrete classification or regression problem they have
been trained for. An overview of the code flow for these two phases as implemented in the examples
TMVAClassification.C and TMVAClassificationApplication.C (for classification – see Sec. 2.5),
and TMVARegression.C and TMVARegressionApplication.C (for regression) are sketched in Fig. 7.
Multiclass classification does not di↵er much from two class classification from a technical point of
view and di↵erences will only be highlighted where neccessary.

In the training phase, the communication of the user with the data sets and the MVA methods
is performed via a Factory object, created at the beginning of the program. The TMVA Factory
provides member functions to specify the training and test data sets, to register the discriminating

Figure 1: Left: an example of the distributions f0(s|✓) and f1(s|✓) when the classifier s is
a boosted-decision tree (BDT). Right: the corresponding ROC curve (right) for this and
other classifiers. Figures taken from TMVA manual.

These steps lead to a subsequent statistical analysis where one observes in data {xe},
where e is an event index running from 1 to n. For each event, the classifier is evaluated and
one performs inference on a parameter µ related to the presence of the signal contribution.
In particular, one forms the statistical model

p({xe} |µ, ✓) =
nY

e=1

[µf1(s(xe) | ✓) + (1 � µ) f0(s(xe) | ✓) ] , (1)

where µ = 0 is the null (background-only) hypothesis and µ > 0 is the alternate (signal-
plus-background) hypothesis.1 Typically, we are interested in inference on µ and ✓ are
nuisance parameters; though, sometimes ✓ may include some components that we are also
wish to infer (like the mass of a new particle that a↵ects the distribution x for the signal
events).

1.2 Comments on typical usage of machine learning in HEP

Nuisance parameters are an after thought in the typical usage of machine learning in HEP.
In fact, most machine learning discussions would only consider f0(x) and f1(x). However,
as experimentalists we know that we must account for various forms of systematic uncer-
tainty, parametrized by ✓. In practice, we take the classifier as fixed and then propagate
uncertainty through the classifier as in Eq. 1. Building the distribution f(s(x)|✓) for values
of ✓ other than the nominal ✓0 used to train the classifier can be thought of as a calibration

1
Sometimes there is an additional Poisson term when expected number of signal and background events

is known.
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ABC as it does not require a prior over the parameters and can also be used
in the classical (frequentist) setting. A strength of this approach is that it
separates the quality of the approximation of the target likelihood from the
quality of the calibration. In Section 7 we discuss the scheme sketched by
Neal (2007) that also suggests using a classifier as a dimensionality reduction
map to aid in the estimation of the likelihood function.

1.1. Notation and Assumptions. We use the following notation:

• x: a vector of features for an event
• D: a data set of D = {x1, . . . , xn}, where x

e

are assumed to be i.i.d.
• ✓: parameters of a statistical model
• p(x|✓): probability density (simulation-based model) for x given ✓

• y: a class label used for training a classifier.
• s(x; ✓0, ✓1): real-valued discriminative classification score, parametrized

by ✓0 and ✓1

• p(s
✓0,✓1 |✓): The probability density for s(x; ✓0, ✓1) implied by p(x|✓)

We will assume the x

e

are i.i.d., so that p(D|✓) =
Q

n

e=1 p(xe|✓).

1.2. Prelude. In the setting where one is interested in simple hypothesis
testing between a null ✓ = ✓0 against an alternate ✓ = ✓1, the Neyman-
Pearson lemma states that the likelihood ratio

(1.1) T (D; ✓0, ✓1) =
nY

e=1

p(x
e

|✓0)
p(x

e

|✓1)

is the most powerful test statistic. In order to evaluate T (D), one must be
able to evaluate the probability density p(x|✓) at any value x. However,
it is increasingly common in science that one has a complex simulation
that can act as generative model for p(x|✓), but one cannot evaluate the
density directly. For instance, this is the case high energy physics where
the simulation of particle detectors can only be done in the ‘forward mode’.
This same setting has been considered by Scott and Nowak (2005), Xin Tong
(2013), and Neal (2007).

The main result of this paper is to generalize the observation that one
can form an equivalent test based on

(1.2) T

0(D; ✓0, ✓1) =
nY

e=1

p(s
e

|✓0)
p(s

e

|✓1)

if

(1.3) s

e

= s(x
e

; ✓0, ✓1) = m ( p(x
e

|✓0)/p(xe|✓1) )

APPROXIMATING LIKELIHOOD RATIOS WITH CLASSIFIERS 7

identify the value of the parameters that are being compared in the likeli-
hood ratio with the values used as input to s(x; ✓0, ✓1).

(3.1) T (D; ✓0, ✓1) =
Y

e

p(x
e

|✓0)
p(x

e

|✓1)
=

Y

e

p(s(x
e

; ✓0, ✓1)|✓0)
p(s(x

e

; ✓0, ✓1)|✓1)
.

This is equivalent to approximating the likelihood function for ✓0 when ✓1

is held fixed.

4. Composite hypotheses and the generalized likelihood ratio.
In the case of composite hypotheses ✓ 2 ⇥0 against an alternative ✓ 2 ⇥C

0 ,
the generalized likelihood ratio1 test is commonly used

(4.1) �(⇥0) =
sup

✓2⇥0
p(D|✓)

sup
✓2⇥ p(D|✓) .

This generalized likelihood ratio can be used both for hypothesis tests in
the presence of nuisance parameters or to create confidence intervals with or
without nuisance parameters. Often, the parameter vector is broken into two
components ✓ = (µ, ⌫), where the µ components are considered parameters
of interest while the ⌫ components are considered nuisance parameters. In
that case ⇥0 corresponds to all values of ⌫ with µ fixed.

Denote the maximum likelihood estimator

(4.2) ✓̂ = arg max
✓

p(D|✓)

and the conditional maximum likelihood estimator

(4.3) ˆ̂
✓ = arg max

✓2⇥0

p(D|✓) .

It is not obvious that if we are working with the distributions p(s|✓) (for
some particular s(x; ✓0, ✓1) comparison) that we can find the same estima-
tors. Fortunately, there is a construction based on p(s|✓) that works. The
maximum likelihood estimate of Eq. 4.2 is the same as the value that max-
imizes the likelihood ratio with respect to p(D|✓1) for some fixed value of
✓1. This allows us to use Theorem 1 to reformulate the maximum likelihood
estimate

(4.4) ✓̂ = arg max
✓

X
ln

p(x
e

|✓)
p(x

e

|✓1)
= arg max

✓

X
ln

p(s(x
e

; ✓, ✓1)|✓)
p(s(x

e

; ✓, ✓1)|✓1)
.

It is important that we include the denominator p(s(x
e

; ✓, ✓1)|✓1) because
this cancels Jacobian factors that vary with ✓.

1Also known as the profile likelihood ratio.

s(x; ✓0; ✓1) = monotonic[ p(x|✓0)/p(x|✓1) ]

K.C., G. Louppe, J. Pavez: http://arxiv.org/abs/1506.02169

http://arxiv.org/abs/1506.02169
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Example: Inference from multidimensional data

Let assume 5D data x generated
from the following process p

0

:

1. z := (z
0

, z
1

, z
2

, z
3

, z
4

), such that

z
0

⇠ N (µ = ↵,� = 1),

z
1

⇠ N (µ = �,� = 3),

z
2

⇠ Mixture(

1

2

N (µ = �2,� =

1), 1

2

N (µ = 2,� = 0.5)),
z
3

⇠ Exponential(� = 3), and

z
4

⇠ Exponential(� = 0.5);

2. x := Rz, where R is a fixed semi-positive

definite 5⇥ 5 matrix defining a fixed

projection of z into the observed space.

Our goal is to infer the values ↵ and
� based on D.

Observed data D

Check out (Louppe et al., 2016) to reproduce this example.

9 / 13

Distribution depends on α, β 
toy data with α=1, β=-1
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α=1,β= −1 Exact MLE Approx. MLE

(d)

Figure 4: Inference from exact and approximate likelihood ratios. The red dot corresponds

to the true values (↵ = 1, � = �1) used to generate D, the green dot is the MLE from

the exact likelihood, while the blue dot is the MLE from the approximate likelihood. 1,

2 and 3-� contours are shown in white. (4a) The exact �2 log⇤(↵, �) for the observed

data D. (4b) The approximate �2 log⇤(↵, �) evaluated on a coarse 15 ⇥ 15 grid. (4c) A

Gaussian Process surrogate of �2 log⇤(↵, �) ratio estimated from a Bayesian optimization

procedure. White dots show the parameter points sampled during the optimization process.
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APPROXIMATING LIKELIHOOD RATIOS WITH CLASSIFIERS 7

identify the value of the parameters that are being compared in the likeli-
hood ratio with the values used as input to s(x; ✓0, ✓1).

(3.1) T (D; ✓0, ✓1) =
Y

e

p(x
e

|✓0)
p(x

e

|✓1)
=

Y

e

p(s(x
e

; ✓0, ✓1)|✓0)
p(s(x

e

; ✓0, ✓1)|✓1)
.

This is equivalent to approximating the likelihood function for ✓0 when ✓1

is held fixed.

4. Composite hypotheses and the generalized likelihood ratio.
In the case of composite hypotheses ✓ 2 ⇥0 against an alternative ✓ 2 ⇥C

0 ,
the generalized likelihood ratio1 test is commonly used

(4.1) �(⇥0) =
sup

✓2⇥0
p(D|✓)

sup
✓2⇥ p(D|✓) .

This generalized likelihood ratio can be used both for hypothesis tests in
the presence of nuisance parameters or to create confidence intervals with or
without nuisance parameters. Often, the parameter vector is broken into two
components ✓ = (µ, ⌫), where the µ components are considered parameters
of interest while the ⌫ components are considered nuisance parameters. In
that case ⇥0 corresponds to all values of ⌫ with µ fixed.

Denote the maximum likelihood estimator

(4.2) ✓̂ = arg max
✓

p(D|✓)

and the conditional maximum likelihood estimator

(4.3) ˆ̂
✓ = arg max

✓2⇥0

p(D|✓) .

It is not obvious that if we are working with the distributions p(s|✓) (for
some particular s(x; ✓0, ✓1) comparison) that we can find the same estima-
tors. Fortunately, there is a construction based on p(s|✓) that works. The
maximum likelihood estimate of Eq. 4.2 is the same as the value that max-
imizes the likelihood ratio with respect to p(D|✓1) for some fixed value of
✓1. This allows us to use Theorem 1 to reformulate the maximum likelihood
estimate

(4.4) ✓̂ = arg max
✓

X
ln

p(x
e

|✓)
p(x

e

|✓1)
= arg max

✓

X
ln

p(s(x
e

; ✓, ✓1)|✓)
p(s(x

e

; ✓, ✓1)|✓1)
.

It is important that we include the denominator p(s(x
e

; ✓, ✓1)|✓1) because
this cancels Jacobian factors that vary with ✓.

1Also known as the profile likelihood ratio.

•The denominator in the likelihood ratio is just a shift

6 K. CRANMER

It is su�cient to show that q
x

(x) = q

s

(s(x)). The function q

s

(s) is based on
the induced densities p0(s) and p1(s). The induced density p1(s) is given by

(2.5) p1(s
⇤) =

Z
dx�(s⇤ � s(x))p1(x) =

Z
d⌦

s

⇤
p1(x)/|n̂ · rs|

and a similar equation for p0(s).

Theorem 1: We have the following equality

(2.6)
p1(s(x))

p0(s(x))
=

p1(x)

p0(x)
.

Proof For x 2 ⌦
s

⇤ , we can factor out of the integral the constant p1(x)/p0(x).
Thus

(2.7) p1(s
⇤) =

Z
d⌦

s

⇤
p1(x)/|n̂ · rs| =

p1(x)

p0(x)

Z
d⌦

s

⇤
p0(x)/|n̂ · rs| ,

and the integrals cancel in the likelihood ratio

(2.8)
p1(s⇤)

p0(s⇤)
=

p1(x)

p0(x)

R
d⌦

s

⇤
p0(x)/|n̂ · rs|R

d⌦
s

⇤
p0(x)/|n̂ · rs|

=
p1(x)

p0(x)
8x 2 ⌦

s

⇤
.

One can think of the ratio p1(s)/p0(s) as a way of calibrating the the
discriminative classifier and correcting for the monotonic transformation m

of the desired likelihood ratio as in Eq. 1.3.

3. Embedding the classifier into the likelihood. Thus far we have
shown that the target likelihood ratio p(x|✓0)/p(x|✓1) with high dimensional
features x can be reproduced via the univariate densities p(s|✓0)/p(s|✓1) if
the classifier s(x|✓0, ✓1) is a strictly increasing function of p(x|✓0)/p(x|✓1). We
now generalize from the ratio of two simple hypotheses specified by ✓0 and
✓1 to the case where ✓ are continuous model parameters. We postpone the
practicalities of training the classifier and estimating the density to Section 5
and continue in the likelihood-free setting with idealized classifiers and their
densities.

In the case of a fixed classifier s(x) it is possible to compute s

e

= s(x
e

)
for the observed data and never refer back to the original features x

e

. In the
parametrized setting it is not possible to pre-compute s(x

e

; ✓0, ✓1) since ✓0

and ✓1 are unknown.
The critical observation is that if we postpone the evaluation of the clas-

sifier to the stage of evaluating the enveloping likelihood ratio, then we can

•Provides a non-trivial diagnostic:

Diagnostics

In practice r̂(ŝ(x; ✓
0

, ✓
1

)) will not be exact. Diagnostic procedures
are needed to assess the quality of this approximation.

1. For inference, the value of the MLE ✓̂ should be independent
of the value of ✓

1

used in the denominator of the ratio.

2. Train a classifier to distinguish between unweighted samples
from p(x|✓

0

) and samples from p(x|✓
1

) weighted by
r̂(ŝ(x; ✓

0

, ✓
1

)).
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(a) Poorly trained, well calibrated. (b) Poorly trained, well calibrated.

(c) Poorly calibrated, well trained. (d) Poorly calibrated, well trained.

(e) Well trained, well calibrated. (f) Well trained, well calibrated.

Figure 5: Results from the diagnostics described in Sec. 3.5. The rows correspond to the

quality of the training and calibration of the classifier. The left plots probe the sensitivity

to ✓

1

, while the right plots show the ROC curve for a calibrator trained to discriminate

samples from p(x|✓
0

) and samples from p(x|✓
1

) weighted as indicated in the legend.

23



D I A G N O S T I C S  W I T H  A N  A D V E R S A R Y

•Train a new classifier to discriminate between events from target p(x|θ₀)  
and events resampled from original distribution p(x|θ₁) with 
probabilities given by the predicted weights r(̂x|θ₀, θ₁) ≈ p(x|θ₀)/p(x|θ₁) 

• classifier can easily distinguish unweighted distributions;  

• exact weights are perfect (AUC~0.5)

27

Important: 
Performance evaluated on 
independent testing sample

(a) Poorly trained, well calibrated. (b) Poorly trained, well calibrated.

(c) Poorly calibrated, well trained. (d) Poorly calibrated, well trained.

(e) Well trained, well calibrated. (f) Well trained, well calibrated.

Figure 5: Results from the diagnostics described in Sec. 3.5. The rows correspond to the

quality of the training and calibration of the classifier. The left plots probe the sensitivity

to ✓

1

, while the right plots show the ROC curve for a calibrator trained to discriminate

samples from p(x|✓
0

) and samples from p(x|✓
1

) weighted as indicated in the legend.
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(a) Poorly trained, well calibrated. (b) Poorly trained, well calibrated.

(c) Poorly calibrated, well trained. (d) Poorly calibrated, well trained.

(e) Well trained, well calibrated. (f) Well trained, well calibrated.

Figure 5: Results from the diagnostics described in Sec. 3.5. The rows correspond to the

quality of the training and calibration of the classifier. The left plots probe the sensitivity

to ✓

1

, while the right plots show the ROC curve for a calibrator trained to discriminate

samples from p(x|✓
0

) and samples from p(x|✓
1

) weighted as indicated in the legend.
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•Often the model for the data is a mixture of different components wc   

• to be more generic, consider parametrized coefficients wc(θ) 

•I worked out a way to decompose the training into pairwise 
comparisons: 

•Last line uses the main result of the paper, need a classifier for each 
pairwise ( c vs. c’ ) comparison  (n (n-1)/2 of them)

30

p(x|✓0)
p(x|✓1)

=

P
c wc(✓0)pc(x)P

c0 wc0(✓1)pc0(x)

=
X

c

"
X

c0

wc0(✓1)

wc(✓0)

pc0(x)

pc(x)

#�1

=
X

c

"
X

c0

wc0(✓1)

wc(✓0)

pc0(sc,c0)

pc(sc,c0)

#�1

p(x|✓) =
X

c

wc(✓)pc(x)



R E S U LT S  F O R  1 0 - D I M  E X A M P L E

•Left: fit to mixture coefficients for 
single pseudo-experiment 

•Right: histogram of best fit of 
one coefficient for many pseudo-
experiments

31
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Example: Inference from multidimensional data

Let assume 5D data x generated
from the following process p

0

:

1. z := (z
0

, z
1

, z
2

, z
3

, z
4

), such that

z
0

⇠ N (µ = ↵,� = 1),

z
1

⇠ N (µ = �,� = 3),

z
2

⇠ Mixture(

1

2

N (µ = �2,� =

1), 1

2

N (µ = 2,� = 0.5)),
z
3

⇠ Exponential(� = 3), and

z
4

⇠ Exponential(� = 0.5);

2. x := Rz, where R is a fixed semi-positive

definite 5⇥ 5 matrix defining a fixed

projection of z into the observed space.

Our goal is to infer the values ↵ and
� based on D.

Observed data D

Check out (Louppe et al., 2016) to reproduce this example.

9 / 13

p₀ has α=1, β=-1 
p₁ has α=0, β=0
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•1-d projections of the original and target distributions
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hep_ml.GBReweigher carl with calibrated MLP



E VA L U AT I N G  T H E  Q U A L I T Y  O F  T H E  R E W E I G H T I N G

•Train a new classifier to discriminate between events from target and events resampled from 
original distribution with probabilities given by the predicted weights 

• classifier can easily distinguish unweighted distributions;  

• exact weights are perfect (AUC~0.5) 

• carl doing a little better than GBReweighter on this problem (no special effort to tune either) 

• neither is perfect

36

Important: 
Performance evaluated on 
independent testing sample
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