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PREFACE

This reminds me of PhyStat series leading up to the LHC.
e Thanks to Louis, Tom, Bob, Richard, ...
e Impressed by the sophistication of discussion

One thing | learned:

e collaboration might converge on high-level statistical procedure.
Put in likelihood / probability model and turn the crank.

e Practical improvements to analysis mainly lie in techniques used for
modeling the data ! (eg. systematics, ND->FD extrapolation, etc.)

e Useful to factorize discussion & software in terms of modeling and
high-level statistical procedure
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INTRODUCTION

n particle physics, our high-level inference goals are

* searches (hypothesis testing)

e measurements (maximum likelihood estimate)

e constrain parameters (confidence intervals)
Typically, we use likelihood-based techniques

e surprisingly, we lack a nice technique tor likelihood-
based inference when we want to use high-dimensional
observations and have to deal with detector response



Likelihood-free Inference



OVERVIEW OF PREDICTIONS

. l r 15 l {1 l L 1
Loy = W - W — B, B" — <G, Gl

w

1 )The language is Quantum Field Theory

W
Kinelic energaes and self-imeractions of the gauge bosons
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kinetic energies and electroweak interactions of fermions .
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Interaction among W
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The interaction of outgoing particles
with the detector is simulated.

>100 million sensors

e+

Finally, we run particle identification algorithms
on the simulated data as if they were from real

collisions.
~10-30 features describe interesting part




DETECTOR SIMULATION

Conceptually: Prob(detector response | particles )
Implementation: Monte Carlo integration over micro-physics

Consequence: cannot evaluate likelihood for a given event
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DETECTOR SIMULATION

Conceptually: Prob(detector response | particles )

Implementation: Monte Carlo integration over micro-physics

Consequence: cannot evaluate likel

This motivates a new class of algorit
likelihood-free inference, which on

ihood for a given event

nms for what is called

y require ability to

generate samples from the simulation in the “"forward mode”



10° SENSORS — 1 REAL-VALUED QUANTITY

Most measurements and searches for new particles at the LHC are based on the
distribution of a single variable or feature

e choosing a good variable (feature engineering) is a task for a skilled physicist
and tailored to the goal of measurement or new particle search

e likelihood p(x|0) approximated using histograms (univariate density estimation)
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This doesn’t scale if x is high dimensional!



HIGH DIMENSIONAL EXAMPLE

or instance, when looking for deviations from the standard model
iggs, we would like to look at all sorts of kinematic correlations

e each observation x is high-dimensional
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MOVING CLOSER TO THE DATA

A more extreme example is to work with lower-level data

* each observation x is high-dimensional

Pattern recognition with 2D ADC images in LArTPC
r P. Ptonski, D. Stefan, R. Sulej
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...Informal input to the workshop discussions...

1 DS@HEP Workshop, NYC, July 7, 2016 DUVE
Neutrino interaction in LAr produces Drift the ionization charge in a Read out charge and light produced
ionization and scintillation light uniform electric field using precision wires and PMT's

ArgoNeuT Data ArgoNeui: Data
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CNNs Applied to MicroBooNE

Vic Genty @ Columbia U.

with
= MicroBooNE Deep Learning Team
A £ Neutral Current G. Collins @ MIT
3 > TE a 0 ; K. Terao @ Columbia
ArgoNeui: Data * I h S T Cdn d Id ate T. Wongjirad @ MIT

MicroBooNE-NOTE-1019-PUB

Tracking, Calorimetry, and Particle ID in same detector. R R T L
Goal ~80% Neut”no Eﬁlclency MicroBooNE Collaboration

July 4, 2016

All you need for Physics is neutrino flavor and energy.

http://www-microboone.fnal.gov/publications/publicnotes/ MICROBOONE-NOTE-1019-PUB.pdf
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https://indico.hep.caltech.edu/indico/contributionDisplay.py?contribId=27&confId=102
https://indico.hep.caltech.edu/indico/contributionDisplay.py?contribId=27&confId=102

LIKELIHOOD FREE INFERENCE

Goal: approximate the likelihood p(x|9) for high
dimensional feature x using a generative model for the data
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LIKELIHOOD FREE INFERENCE

Goal: approximate the likelihood p(x|0) for high
dimensional feature x using a generative model tfor the data
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THE RAPID RISE OF "ABC”

ABC

resources on (i[’jxl’;lx'f)xi""f aie
Bayesian computational This website keeps track of developments in approximate Bayesian computation (ABC) (a.k.a.
methods likelihood- free) a class of computatlonal statlstucal methods for Bayesnan inference under

RERIG PR AR AN

mtatble' I|k||hods The site is meant to be a resource bth for blologlsts and statisticians who

Home

want to learn more about ABC and related methods. Recent publications are under Publications
2012. A comprehensive list of publications can be found under Literature. If you are unfamiliar
Home with ABC methods see the Introduction. Navigate using the menu to learn more.

ABC in Montreal ABC in Montreal (2014)

ABC in Montreal

Approximate Bayesian computation (ABC) or lkhhood -free (LF) methods have developed mostly beyond the
radar of the machine learning community, but are important ools for a l__ge ‘and dlverse se ment of the

c1ntnccommumtx “This is particularly true for systems and population biology, computational
neuroscience, computer vision, healthcare sciences, but also many others.

Interaction between the ABC and machine learning community has recently started and contributed to
important advances. In general, however, there is still significant room for more intense interaction and
collaboration. Our workshop aims at being a place for this to happen.




AN ALTERNATIVE TO ABC

K.C., http://arxiv.org/abs/1506.02169


http://arxiv.org/abs/1506.02169

COLLABORATORS

Juan Pavez
CS graduate student in Chile

Fellowship to work @ CERN summer ’15
) @jgpavez
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scikit-learn developer
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MACHINE LEARNING: CLASSIFIERS

Normalized
— — —

FS

RBF SVM

RBF SVM
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Common to use machine learning

classifiers to separate signal (H1) vs.
background (Ho)

e want a function that maps signal
to y=1 and background to y=0

e think of it as applied calculus of
variations: find function s(x) that
minimizes loss:

L|s] = /p(x|H0) (0 — s(x))* dx

n / p(elHy) (1 — s(x))2da
Z(yz’ — 8(%‘))2

1

a4
Y



MACHINE LEARNING: CLASSIFIERS

Normalized

RBF SVM

L

RBF SVM
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e applied calculus of variations:
find function s(x) that minimizes

loss: L[S]:/p(xmo) (0 — s(z))? do
+ [ plal ) (1= s(a))Pda
<2

e the optlmal classifier would

_Sajz

learn the regression function

p(z|Ho) + p(z|H)

e which is 1-to-1 with the
likelihood ratio

p(z|Hq)
p(z|Hp)




PARAMETRIZED CLASSIFIERS

We started with a classitfier that was learning

S($) _ p($|H1)
p(z|Ho) + p(z|H)

Implicitly that classitier depends on Hg and H; used to
generate the training data. Make that explicit

p(x|H1)
(z|Ho) + p(x|H:)

S(£U7 HO7 Hl) —
p

Can do the same thing for any two points in parameter
space. | call this a parametrized classifier

p(z|61)
z|6o) + p(x|61)

s(x;0p,01) =
(60, 01) p(



GENERALIZED LIKELIHOOD RATIO TESTS

The target likelihood ratio test based on high-dimensional features x is:

(e|0p)
T(D; 6o,6:) = pr :9‘;

| can show that an equivalent test can be made from 1-D projection

p(xe|6o) p(s(xe; 00,01)]60) Q
D 0 9 —
0 01) H ze|61) 1 s(e; 00, 01)]61) :

if the map s: X = R has the same level sets as the likelihood ratio

s(x; 60;601) = monotonic| p(x|0y)/p(x|01) |

Remember that a classifier that minimizes squared loss X [ y; - s(x;) > approximates
the regression function, which has the same level sets!

K.C., G. Louppe, J. Pavez: http://arxiv.org/abs/1506.02169
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AN EXAMPLE



X1

THE DATA

Let assume 5D data x generated
from the following process py:

1.

z:= (29,21, 20, 23, 24), such that
20 ~ N(p=a,0 =1),

z1 ~ N(n =8, = 3),

zy ~ Mixture(5 N (u = —2,0 =
1), LN (1 = 2,0 = 0.5)).

z3 ~ Exponential(\ = 3), and
z4 ~ Exponential(A = 0.5);

. X := Rz, where R is a fixed semi-positive

definite 5 X 5 matrix defining a fixed
projection of z into the observed space.

Distribution depends on «, B
toy data with ax=1, f=-1




LIKELIHOOD CONTOURS

090 095 1.00 1.05 1.10 1.15
(o4

Exact likelihood

090 095 1.00 1.05 1.10 1.15

Approximate likelihood (smoothed)

0.90 0.95 1.00 1.05 1.10 1.15
a

Approximate likelihood

0 4 8 12 16 20 24 28 32

e a=1B=-1 e Exact MLE e Approx. MLE



DIAGNOSTICS



MAXIMUM LIKELIHOOD ESTIMATORS

In practice 7(5(x; 0g,01)) will not be exact. Diagnostic procedures
are needed to assess the quality of this approximation.

1. For inference, the value of the MLE 0 should be independent
of the value of 61 used in the denominator of the ratio.

The denominator in the likelihood ratio is just a shift

~ p(xe\H) xeae 91)|9)
4.4 0 = areg max In = arg max ln
(4.4 gmax ) | In -7 - gmax ) a:e,e 06r)

It is important that we include the denominator p(s(aje; 0,01)|61) because
this cancels Jacobian factors that vary with 6.

Provides a non-trivial diagnostic:




DIAGNOSTICS

14

10

—2logA(6)

T N 7T

— Exact
— Approx., 0, =(a=0,=1)

— Approx., 0§, =(a=1,=-1)
— Approx., 6, =(a=0,0=-1) |
+lo, 0, =(a=0,4=-1)

14

12}

10

—2logA(0)

T 1T el

— Exact
— Approx., 6, =(a=0,6=1)
— Approx., 6§, =(a=1,=-1)

+10, 0, =(a=0,3=—1)

— Approx., 6, =(a=0,8=-1) ||

calibrated, well trained.

1.3

—2logA(0)

T T T T 17

— Exact
— Approx., 6, =(a=0,6=1)
— Approx., §; =(a=1,=-1)

+10, 6, =(a=0,8=—-1)

— Approx., 6, =(a=0,8=-1) ||

1.3

(e) Well trained, well calibrated.

1.0f
0.8} E
[0}
T
o
g o8 -
.‘%
(o]
o
g 0.4} R
'_
—  p(z|0,)r(x|6,,0,) exact
0.2} .
— p(z|6,) no weights
—  p(z|6,)r(z|6,,0,) approx.
0.0 L L L L
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

(b) Poorly trained, well calibrated.

1.0 i T T T T
0.8} .
I}
©
o
g 0.6} .
.‘i
[o]
a.
g 0.4} R
'_
—  p(z|6,)r(z|6,,0, ) exact
0.2+ .
—  p(z|6,) no weights
—  p(z|6,)r(x|6,,0,) approx.
0.0 Il Il l l
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

(d) Poorly calibrated, well trained.

T T T T
1.0}
0.8} i
[
©
o«
o 0.6 4
=
=
%)
o
a
g 04} .
'_
—  p(=]6,)r(z|6,,0,) exact
0.2 .
— p(z|6,) no weights
—  p(x]6;)r(z|0y,6,) approx.
0.0 Il Il Nl Nl
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

(f) Well trained, well calibrated.



DIAGNOSTICS WITH AN ADVERSARY

Train a new classifier to discriminate between events from target p(x|9o)
and events resampled from original distribution p(x|81) with
probabilities given by the predicted weights r(x|0¢, 81) = p(x|00)/p(x|01)

e classifier can easily distinguish unweighted distributions;

e exact weights are perfect (AUC~0.5)

1.0

o
(o0]
T

Important:
Performance evaluated on
independent testing sample

o
o

0.4}

True Positive Rate

—  p(z|6; )r(z]6,,0,) exact
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False Positive Rate



DIAGNOSTICS
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SPECIAL CASE:
MIXTURE MODELS




MIXTURE MODEL

Often the model for the data is a mixture of different components w,

* to be more generic, consider parametrized coefficients w.(0)

p(z|0) = ch )pe(x

| worked out a way to decompose the training into pairwise
comparisons:

p(xlbo) 2 . we(bo)pe(x)
p(x|fr) > we(01)pe (2)

- wer (01) per (z)
B Z: S: wC(HO) pC( )_

_ S‘ _S‘ Wer (91) Pe (Sc,c’)_

Last line uses the main result of the paper, need a classifier for each
pairwise (¢ vs. ¢’ ) comparison (n (n-1)/2 of them)



RESULTS FOR 10-DIM EXAMPLE

c1[0] Fitting

) — s Left: fit to mixture coefficients for
single pseudo-experiment
" Right: histogram of best fit of
I one coefficient for many pseudo-
| - experiments
0.40 ' Likelihood r§t'io,values for cl[?l\-cl[}l - Histoqram for fitted values c1[0)
0.35} - g )
go.zs» % g sh
0.20 6} J
0.15} cé; 2

c1(0]



CONNECTION TO REWEIGHTING



X1

THE DATA

Let assume 5D data x generated
from the following process py:

1. z:= (20,21, 20, 23,24), such that
2o~ N(p=a,0=1),

21~ N(p=8,0=3),
°f Zy ~ Mixture(%/\/’(,u: —2,0 =
o 1), 3 N(n = 2,0 =0.5)),
N z3 ~ Exponential(\ = 3), and
zy4 ~ Exponential(A = 0.5);
o | : . "
‘ 2. x:= Rz, where R is a fixed semi-positive
M definite 5 X 5 matrix defining a fixed
ol projection of z into the observed space.
» |
/\b [
of 0o has a=1, f=-1
°| 01 has a=0, B=0
"9 -
¢ s
Q
o}




ORIGINAL VS. TARGET DISTRIBUTIONS

1-d projections of the original and target distributions

0.25 T T T T T T 0.12 T T T T T T 0.10

010 | 0.08 |

0.08
0.06 |
0.06 |
004
004 |

002 | 002

=20 -20 -15 -10 -5 0 5 10
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015

-12 -10 -8 -6 -4 -2 0 2 4 6 -5




TWO REWEIGHING METHODS:

hep_ml.GBReweigher

10

08 |

GB weights
=
h

carl weights

<
>

0.2 |-

0.0 02 04 06 08 10
exact weights

100K SAMPLES

carl with calibrated MLP

10

0.8 |

<o
(=)

<
>

0.2

0.0 0.2 04 06 08 10
exact weights

(((((




EVALUATING THE QUALITY OF THE REWEIGHTING

Train a new classifier to discriminate between events from target and events resampled from
original distribution with probabilities given by the predicted weights

e classifier can easily distinguish unweighted distributions;
e exact weights are perfect (AUC~0.5)
e carl doing a little better than GBReweighter on this problem (no special effort to tune either)

* neither is perfect Resampled proportional to weights

10 | |
08|
Important: o
Performance evaluated on % oc L
independent testing sample &
£
v 04 }
= exact weights AUC=0.503
— no weights AUC=0.771
0.2 — GBReweighter AUC=0.613 ||
—— carl Approx LR AUC=0.552
0-0 1 1 1
00 02 04 0.6 08 10

False Positive Rate
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