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Outline

I will avoid spending much time on issues covered by 
Michael Smy at PhyStat-Nu in Kashiwa.  

Instead I'll focus on a few areas:

● Issues in maximum likelihood signal extraction 

● Statistical issues in time variability analyses

My background is from SNO, and apologies in advance 
for choosing most of my examples from that experiment, 
but it's what I know best.  I'll try to indicate the general 
applicability of the methods.

Michael Smy, “Solar Neutrinos”, PhyStat-n in Kashiwa, May 2016,  
http://indico.ipmu.jp/indico/getFile.py/access?contribId=35&sessionId=2&resId=0&materialId=slides&confId=82

http://indico.ipmu.jp/indico/getFile.py/access?contribId=35&sessionId=2&resId=0&materialId=slides&confId=82


  

The pp fusion chain

Dominant source of energy production in the Sun



  

Solar neutrino energy spectra

Shape of spectra 
determined by 
straightforward 
nuclear physics.

Rates determined 
by astrophysics.

Oscillations 
modify the 
observed spectra 
and rates.



  

Detection techniques
Technique Reaction Threshold Flavour 

Sensitivity
Energy 
measured

Real time 
detection

Radio-
chemical

CC on 
37Cl

0.81 MeV n
e

N N

CC on 
71Ga

0.23 MeV n
e

N N

Water 
Cherenkov

ES on 
H

2
O

~3.5 MeV Mostly n
e

Y Y

CC on 
D

2
O

~3.5 MeV n
e
 Y Y

NC on 
D

2
O

2.2 MeV All N Y

Scintillation ES on 
C

3
H

4

~0.06 
MeV

Mostly n
e

Y Y



  

Telling signal from background

Angular correlation of Super-K 
events with solar direction to 
separate ES peak from radioactive 
background

“Gatti parameters”, based on 
scintillation light time profile, used 
to separate a decays from electron 
events in Borexino

Most experiments use extended maximum likelihood fits to 
extract neutrino rates from large radioactive backgrounds.

PRD 89, 112007 (2014)



  

Telling signal from signal (SNO)

Radioactive backgrounds were less of a problem 
at SNO, due to its cleanliness and energy 
threshold.  More critical was distinguishing 
between three signal reactions, with different 
flavour sensitivity.

This generally cannot be done on 
an event-by-event basis.  But fits 
to distributions can disentangle 
them.



Solar Neutrino Interactions in Pure D
2
O

n + d → t + g (6.25 MeV)

ne + d → p + p + e

nx + e → nx + e

nx + d → p + n
In each case, the end 
result is a a single 
Cherenkov ring in 
SNO

8

NC

CC

ES
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Distinguishing CC, ES, and NC reactions



Distinguishing CC, ES, and NC reactions

10

Neutrons are at
6.25 MeV



Distinguishing CC, ES, and NC reactions

11

Neutrons leak out
into H

2
O and

are lost

CC events on
deuterons stop
at edge of AV



Distinguishing CC, ES, and NC reactions

12

ES events point
away from Sun

CC events 
correlate weakly
with Sun location



  

SNO's Simplest Extended ML Fit 

−ln L= ∑
i=CC , ES ,NC

N i −∑
j=1

events

ln [ ∑
i=CC ,ES , NC

N i f i(E j , R j
3 ,θ j)]

Fit for N
CC

, N
NC

, N
ES

 using three 3D PDFs in (E,R3,q).  Or 

reparametrize in terms of F(8B) and constant P(n
e
→n

e
).

PDFs are assembled from Monte Carlo events, and in 
practice are formed by binning Monte Carlo events in 3D.  
It's important to capture correlations between the three 
observables, especially E and q for elastic scattering 
events.

Key limitation: does not allow spectral distortions, but 
sufficient for energy-independent oscillation probability.



  

Allowing for spectral distortions

∑
k

energy bins

{ ∑
i=CC ,ES , NC

N i , k − ∑
j=1

eventsk

ln [ ∑
i=CC ,ES , NC

N i , k f i ,k (R j
3 ,θ j) ] }

Add separate likelihood terms for each energy bin, and fit 
for number of CC and ES events in each bin.  Constrain 
N

NC,k
 to follow neutron energy PDF shape.

For active neutrino oscillations the ES spectrum is not 
independent from the CC spectrum.  We can instead 
reparametrize N

CC,k
 and N

ES,k 
in

 
terms of F(8B) and an 

energy-dependent P(n
e
→n

e
).

SNO extracted both binned CC/ES spectra, and also 
parametrized fits for P(n

e
→n

e
) = A + BEn  + CEn

2



  

Floating Systematics
Signal PDFs depend on detector response parameters such as 
energy scale, energy resolution, and vertex resolution.  These can 
be accounted for by making the PDFs be functions of these 
parameters, and including the parameters, along with a prior 
constraint term, in the likelihood.  For example, if energy scale is 
uncertain, we can shift Monte Carlo event energies when 
calculating PDFs:

Then the likelihood is modified to include the dependence of the 
PDFs on a:

SNO's initial publications did not use this, but instead “shifted and 
refit” for each systematic, then added results in quadrature. This 
overestimated total error by about 20%!

EMC→αEMC

N−∑
i

f (Ei)→N−∑
i

f (Ei ,α)+
1
2 ( α−1

σα
)
2

¿



  

Computational complexities of 
floating systematics

PDFs are no longer constant in fit, but must be 
recalculated at each step of minimization.  This is a big 
CPU suck.  Various approaches:

● Keep all Monte Carlo events in memory, rebuild PDFs 
at each step of fit.  Slowest solution, but safest.

● Linearly parametrize dependence of each PDF on 
each systematic, and use analytic approximations 
(effectively a first order Taylor series) to calculate 
modifications to PDF without keeping Monte Carlo 
events in memory.  Risks missing non-linear effects.

● Create a giant covariance matrix between all bins, and 
include in fit.  Forces a Gaussian approximation.



  

An issue with binned MC PDFs 
and floating systematics

64

31

63

32

If PDFs are built from binning 
MC events, then a small shift in 
a detector response parameter 
can discontinuously change the 
number of events in a bin, as 
events are shifted across bin 
boundaries.

-ln L

a

Likelihood surface becomes 
discontinuous as a function of 
some fit parameters.  Most 
fitters, especially those based 
on calculating gradients, go 
bonkers.  The likelihood 
surface may have many local 
minima as well.



  

Markov Chain Monte Carlo
Treat likelihood function as a probability distribution to be sampled 
from, using the Metropolis algorithm: Propose new point y  from xn.  

Advantages: Avoids needing to minimize any functions.  Insensitive 
to discontinuities in likelihood function.  Can be easily parallelized 
by running independent chain on multiple CPUs.  Does not require 
Gaussian assumptions on any variables.

Gives posterior distribution---Bayesian in flavour, if not in practice.  

Disadvantages:  Computationally taxing.  Not convenient for 
classical confidence intervals (Neyman construction) [although 
some will view this as an advantage!]

xn+1 = y with probability p=min (1,
L( y)
L(x) )

= xn with probability 1−p



  

Kernel PDFs
Build an analytic approximation to PDF from MC events:

Here h, called the bandwidth, can be chosen to be different for 
each event, and can depend on the local density of events.

Advantages: analytic, smooth 
PDFs can easily be differentiated,
 and work well with standard 
fitters.  PDFs vary smoothly 
under transformations of Monte 
Carlo events.

Disadvantages: Results are  sensitive to choice of h, which 
requires tuning.  Method is still computationally burdensome.

P̂(x)=
1
n∑i=1

n
1

h√2π
e(x−t i)

2/2h2



  

Time Variability Intro
Various groups have re-analyzed solar neutrino rates as a function 
of time, claiming to find correlations with various solar parameters, 
such as 11-year solar cycle, solar rotation, r-mode oscillation 
frequencies.  New physics has been implicated.

These claims have generally been sharply contested by the 
experimenters themselves.

P. Sturrock, Ap.J., 594:1102–1107, 
2003 Sept 10

SK flux data folded by 13.75 day 
period

Homestake data



  

Statistical issues for time variability
● Trials factors: searching at thousands of 

frequencies simultaneously.
● Exposure: to do analysis properly, one must 

know the exact times when the detectors are 
live.  Experiments have not always made these 
public.

● Binning: When exactly did events occur in time 
bins?  Especially relevant for searches at faster 
frequencies.

● Fishing expeditions: very many analysis 
methods exist---if one doesn't give an answer 
you like, try another!



  

ML Method

φ(t )=W (t )N [1+A cos(ω t+δ)]

Window function W(t) = 1 if detector live at time t, =0 
otherwise.  Accounts for exposure history and its time 
variation.

Do an unbinned likelihood fit at any interesting value of w, 
then calculate S = 2(ln L

max
 – ln L

A=0
). By Wilks' theorem,  

under the null hypothesis of A=0 then P(S >Z) = e-Z.

However, the value of this test statistic is not independent 
between different frequencies.  Toy Monte Carlo is the best 
solution to model significance for tests at N different 
frequencies.

    



  

Considerations for frequency scans

There is a frequency resolution given by 1/(duration of data set). 
Power at frequencies closer together than this will be strongly 
correlated.  Note the 
finite peak widths!

Maximum frequency limit:

● Evenly binned data: Nyquist frequency

● Unevenly binned data: roll-off in sensitivity at effective Nyquist 
frequency

● Unbinned analysis: no limit

When scanning over frequencies, one needs to oversample by a 
factor of a few (scan with step sizes smaller than frequency 
resolution ≈ 1/T).  Else significant peaks risk being missed if they 
are centred in between scanned frequency values.



  

Lomb-Scargle periodogram: binned 
data with uneven time intervals 

P(ω)=
1

2σ
2 (¿ [∑ wi( y(t i)− ȳ)cosω(t i−τ)]

2

∑ wi cos2
ω(t i−τ)

+
[∑ wi( y (t i)− ȳ)sinω(t i−τ)]

2

∑w i sin2
ω(t i−τ) )

tan (2ω τ)=
∑ wi sin 2ω t i

∑ w icos2ω t i

Useful when only binned data is available.

Weights w
i
 are 1/s

i
2, & errors assumed to be Gaussian.

Periodogram is closely related to Fourier transform when 
data is evenly spaced.

Scargle, J. D. (1982). "Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data". 
Astrophysical Journal. 263: 835



  

Unbinned analysis has superior sensitivity at shorter periods 
within a factor of a few of the bin size.

SNO ML periodicity analysis



  

Rayleigh Power
z(ω)=

1
N [(∑i

cosω t i)
2
+(∑i

sinω t i)
2 ]

Expected distribution of z sensitive to exposure history.  Can 
calculate it from a random walk model and central limit theorem:

Calculate a phase for each event, and imagine adding the vectors 
end to end.  Periodicity will tend to cause events to 
align in phase and create a net displacement from 
the origin:   z = (1/N)[(DX)2 + (DY)2].

For a large number of events, DX and DY are a set of correlated 
Gaussian variables.  Their expected means and covariances can be 
calculated from their exposures:

μx=
1
T
∑
j=1

runs

∫t start , j

t stop , j
dt cosω t   etc.



  

SNO Rayleigh Power Analysis

Black = data
Red = 90% CL detection threshold
           (accounting for trials factors)

The peaks on the red line show
the effect of SNO's livetime exposure
on the power (aka the fake signal
due to non-uniform exposure).  Note 
especially the strong peaks at 
1/day and 2/day.

SNO collaboration, Ap.J. 710:540-548, 2010 Feb 10



  

High Frequency Search
Rayleigh power method is 
computationally much faster
than unbinned ML method, and
suitable for scanning over a 
large number of frequencies.
SNO used this to scan 1.6M
frequencies down to 10 minute
periods.  No sign of any 
periodicity. 

Keys to the analysis:
● Unbinned analysis
● Explicit account taken of when detector is live
● Trials factors accounted for
● Must scan with frequency resolution a few times smaller than 

1/T, where T is the duration of the data set.
 

Red = 90% CL detection threshold
           (accounting for trials factors)



  

Broadband search
What if the signal is not 
sinusoidal? 

A broadband search is
possible by examining the
distribution of confidence 
levels for all frequencies 
tested.  Here SNO tested for 
white noise in the 10 minute – 
1 day range.

Non-sinusoidal time variation 
at specific frequencies can be 
tested with an h-test [see 
A&A 517, L9 (2010), 
DOI: 10.1051 / 0004-6361 / 201014362].



  

Time Variability Best Practices

● Avoid binning data if possible.  If you must bin, use 
bins that are short compared to shortest period of 
interest.

● Account explicitly for livetime exposure, and beware of 
periodicities inherent in the exposure map.

● Use of toy MC to evaluate significance is mandatory.
● Be extremely wary of trials factors, including those 

associated with choice of analysis technique.



  

    Conclusions   
● Likelihood fits are ubiquitous 

in solar neutrino analyses, 
but computational subtleties 
must be considered when 
building PDFs from Monte 
Carlo.

● Time series analyses are a 
unique aspect of solar 
neutrinos for neutrino 
physics, but are statistically 
fraught.  Proceed with 
caution! 

https://xkcd.com/1132  (“Frequentists vs. Bayesians”)

https://xkcd.com/1132
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