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Reactor Neutrinos 
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• Coincidence signal from 
Inverse Beta Decay:
– Prompt: e+ & annihilation 

– Delayed: n + Gd  8 MeV 
with 30 us capture time

• ~ 200 MeV per fission
• ~ 6 anti-νe per fission from 

daughters decay
• ~ 2 x 1020 anti-νe/GWth/sec
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Anti-νe Disappearance

Daya
Bay 
(China)

RENO 
(Korea)

Double 
Chooz
(France)

Gd
Target

80 ton 16.1 ton 10 ton

Reactor 
Thermal
Power

17.4 
GW

16.4 
GW

8.7 GW

Baseline ~1.7 km ~1.4 km ~1.0 km
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Near/far ratio to cancel uncertainty 
in reactor flux,  firstly proposed by 
Mikaelyan&Sinev Phys. Atmo. 
Nucl. 63, (2000)



Near/Far Ratio
• 100% cancellation of flux uncertainty with one 

reactor, one near and one far detector 
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Double Chooz
~88% suppression of 
systematic uncertainties 

RENO
~77%

Daya Bay
~95%

Statement (~80% suppression) in arXiv:1501.00356  regarding DYB is incorrect



Current Status of sin22Θ13 and ∆m2
32

After Neutrino 2016
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In the following, I will focus on the statistical methods used in 
Daya Bay in fitting these parameters



Log-likelihood profiling
• Also Pearson chi-square with pull terms in PRL, 108, 

171803 (2012)

• According to Wilks’ theorem, assuming 
∆T=T – Tmin following a chi-square distribution

• Advantages: simple to program and easy to examine
• Disadvantages: When number of nuisance parameters is 

large, can be slow to minimize 6
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AD: Antineutrino Detector



Covariance matrix in PRL, 115, 11802 (2015)

• Approximating impacts of all systematics on the event counts 
as normal distributions

• Advantages: Since “V” can be pre-calculated, the minimization 
process to obtain Tmin can be very fast

• Disadvantages: “V” may have dependences on the 
parameters of interest (i.e. θ13 and ∆m2), additional cares are 
needed
– Also Gaussian-Hermite technique to calculate integration in-flight
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“F” is a function of 
observed events

“i” is a energy bin 
label for a detector



Hybrid Approach in PRL,112, 061801 (2014)
• Sometimes, the number of nuisance parameters can be too 

many  numerical instability in finding the minimum
• For example, for reactor-related systematics (26 energy bins), 

we have 
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Given three sites, the number of 
event bins is about 26x3=78

Given the nature of these 
systematics, expect many 
degeneracies  potential 
difficulties in finding the minimum

Use Covariance Matrix (rank 78) 
to reduce 151 uncertainties  78 
nuisance parameters (one on 
each event bin

4 isotopes
6 reactors
26 bins

Also NDF difference can be used to check the covariance matrix



Combining nH + nGd (I)

• n + Gd (nGd)  ~ 8 MeV gammas
• n + p (nH)       2.2 MeV gamma 9

nepe  



Combing nH + nGd (II)
• Approximately, one can estimate the combination through the 

Best Linear Unbiased Estimate (BLUE) 
A. C. Aitken, Proc. Ry. Soc. Edinburgh 55, 42 (1935) 
Lyons&Gibaut&Clifford, NIMA 270, 110 (1988)

• Alternatively, a single fitter can be written to take into account 
all correlations in systematics

• Both methods reach 
similar results

• Combined result reported in 
PRD 90, 071101(R) (2014) 
PRD 93, 072011 (2016).
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Combining Daya Bay, 
RENO, and Double Chooz?
Expect <10% improvement



• We reported  0.943 +- 0.008 (exp.)
• Many literatures reported 0.928 (~ 1.5% lower)

• A tricky statistical mistake, they used 
the measured values to build the 
theoretical covariance matrix

• See G. D’Agostini NIMA 346, 306 (1994), 
V. Blobel, SLAC-R-0703, p101, 
B. Roe arXiv:1506.09077

One Note About Global Average
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PRD 83, 073006 (2011)
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PRL, 116, 061801 (2016) 
and arXiv:1607.05378



The 5-MeV “Bump”

• Unambiguous observations of discrepancies between data and 
spectrum calculation at ~ 5 MeV from all three experiments

• Uncertainties in flux calculation is underestimated (> 5% from 
Hayes et al. PRL 112, 202501, 2014) 

• Also saw in NEOS. Which isotopes? arXiv:1609.03910 (Huber)12

Daya Bay RENO Double Chooz



Absolute Neutrino Spectrum
• Compare to Huber+Mueller

model
• 3σ discrepancy at the full energy 

range

• 4.4σ local significance at 4~6 
MeV
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arXiv:1607.05378
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2.6σ and 4.0σ in PRL 116, 061801

Nested-hypothesis test: eight nuisance 
parameters controlling the shape in 2 
MeV window are allowed to freely move



Neutrino Spectrum Extraction (Unfolding)
• Unfolding “original” neutrino spectrum with reduced information 

from the measured prompt energy spectrum is desired for 
simpler usage
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Stat+Sys



• One challenge of the unfolding is the smearing 
due to finite energy resolution and statistical 
fluctuations 

• Therefore, regularization is needed
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• Basically, smearing due to detector response “R” (typically irregular) is 
replaced by a regular response (1+F2/R2)-1

• With existence of uncertainties, smearing represents an information 
loss, and cannot be fully recovered

• The optimal regularization depends on the existing smearing and 
statistics 

An independent Check



Possible light sterile neutrino oscillation
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• A minimum extension of the 3-ν model:  3(active) + 1(sterile)-ν model
• Search for a higher frequency oscillation pattern besides |∆m2
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Search for a Light Sterile Neutrino
• Confidence Intervals are 

obtained from Covariance 
matrix method (fast) with the 
Feldman-Cousins (FC) 
– PRD 57, 3873 (1998)

• Due to FC’s computing 
demands, CLs method 
(A.L. Read, J. Phys. G28, 2693 
T. Junk, NIMA 434,435) is 
chosen for “likelihood + pull”
– Gaussian CLs method is used

• G. Cowan et al. Eur. Phys. J. C71, 
1544 (2011)

• XQ, A. Tan et al. NIMA 827, 63 
(2016)

17

arXiv:1607.01174 (to be published in 
PRL), factor of 2 improvement to the 
previous result (PRL 113, 141802, 2014)See A. Tan’s talk



Combined Sterile Search
• CLs method is easy to combine results
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arXiv:1607.01177 (DYB+MINOS) to 
be published in PRL

• See past Wine&Cheese seminars

MINOS  θ24 with νμ disappearance
Daya Bay/Bugey-3  θ14 with (anti)νe
disappearance 



Further Prospect of Current 
Reactor Neutrino Experiments

• Daya Bay: 
– Expect to reach < 3% uncertainty for both sin22θ13 and 
∆m2

ee by 2020
– Another factor of two improvement in the limit of sterile 

neutrino search at low ∆m2
41

• Complimentary to the expected results from short-baseline 
reactor experiments (i.e, PROSPECT) at high ∆m2

41

• Combination among Daya Bay, RENO, and 
Double Chooz is under discussion
– Below 3% precision of sin22θ13 by 2017

19



JUNO
• Reactor Power: 36 GW
• Baseline: 53 km
• Detector: 20 kton LS
• E: 3% (2% at 2.5 MeV)
•  rate: ~60/day
• Background:

• Accidentals (10%)
• 9Li (<1%)
• Fast neutrons (<1%) Yangjiang NPP

Taishan NPP

Daya Bay NPP

53 km
53 km

Hong Kong

Macau

Guangzhou
Shenzhen

700 m underground

Acrylic Tank + 
SS structure

m2
21

m2
32

JUNO DUNE
sin2212 0.7%
m2

21 0.6%
|m2

32| 0.5% 0.3%
MH 3–4σ >5σ
sin2213 14% 3%
sin22 3%
CP 10°

J. Phys. G: Nucl. Part. Phys. 43, 030401 (2016)



MH Sensitivity (Non-nested 
Hypothesis Test)

• What’s the meaning of MH sensitivity?
– XQ, A. Tan et al. PRD86, 113011 (2012)
– M. Blennow et al. JHEP 03, 028 (2014) among others
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Summary
• Reactor neutrinos have been and will continue 

to play an important role in understanding the 
neutrino properties
– Previous: KamLAND
– Current: Daya Bay, RENO, Double Chooz
– Future: JUNO, PROSPECT …

• Data analysis of reactor neutrinos involves a 
wide range of statistical techniques
– Parameter fit, (nested/non-nested) hypothesis 

tests, unfolding …
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Rate-only vs. Shape-only

• Rate-only:

• Shape-only:
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AD: Antineutrino Detector



Absolute Reactor Anti-Neutrino Flux

• 621 days data
• Effective fission fraction

235U 238U 239Pu 241Pu
56.1% 7.6% 30.7% 5.6%

Daya Bay’s absolute reactor 
flux measurement is consistent
with previous short baseline 
experiments

Rglobe = 0.943 ± 0.008 
• The World Average:

• Daya Bay result:
Rdyb = 0.946 ± 0.020 

PRL, 116, 061801 (2016) and arXiv:1607.05378



Energy Nonlinearity Calibration

Sources of detector energy nonlinearity
• Scintillator quenching (Birks Law)
• Cherenkov light
• PMT readout electronics

• Modeled with MC and single channel 
FADC measurement

Energy model is constrained with gamma 
(Improved fitting upon Crystal Ball in 
arXiv:1603.04433) and electron sources

~1% uncertainty (correlated among detectors) 26



An Independent Check
• When treating the (still smeared) unfolded spectrum 

as the real (unsmeared) spectrum, additional 
uncertainties (bias) by are needed, which represents 
an additional information loss
– The price that we have to pay for the simpler usage
– Otherwise, same amount of information generally

• Bias be estimated through pseudo experiments
– In Daya Bay, we use various predictions of neutrino 

spectrum   pseudo measurements   unfolded spectrum 
to be compared with MC truth  determine the size of bias 
and additional uncertainties needed
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Statistical tests: 3-ν or 4-ν ?
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• Data is consistent with 3-ν 
hypothesis with FC test  

No evidence for sterile neutrino

• ∆χ2
data = 5.6;  p-value is 0.41

p0

p11-p0
1-p1

∆χ2 = χ2
3ν – χ2

4ν

CLs 
1 p1

1 p0

A.L. Read J. Phys. 
G28, 2693
T. Junk NIMA434, 435

NIMA 827, 63 (2016)


