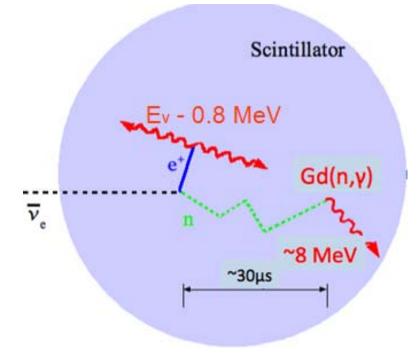
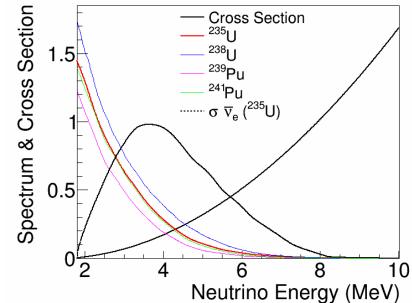


Statistical Methods used in Reactor Neutrino Experiments

Xin Qian BNL

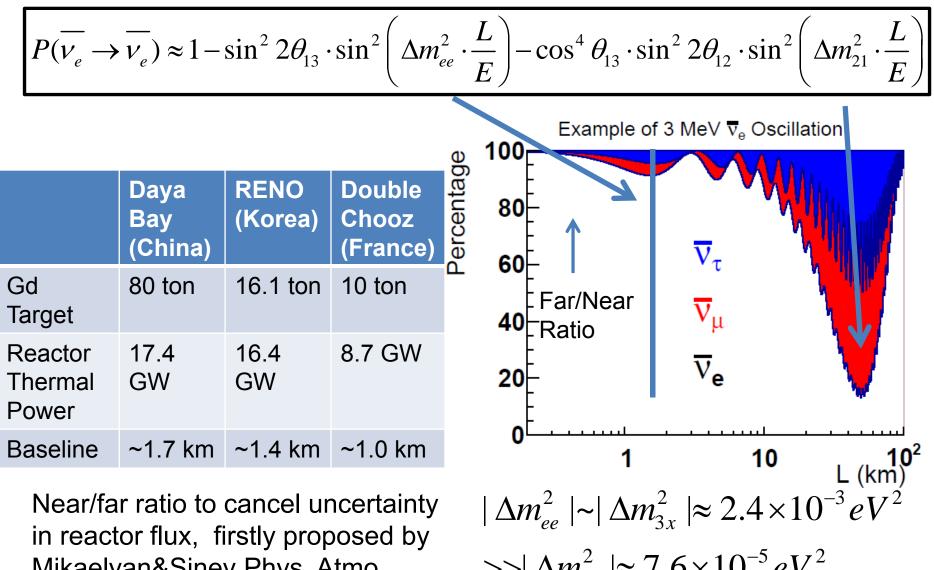




Reactor Neutrinos

- ~ 200 MeV per fission
- ~ 6 anti-v_e per fission from daughters decay
- ~ 2 x 10²⁰ anti- $v_e/GW_{th}/sec$

 $\overline{\nu_e} + p \longrightarrow e^+ + n$

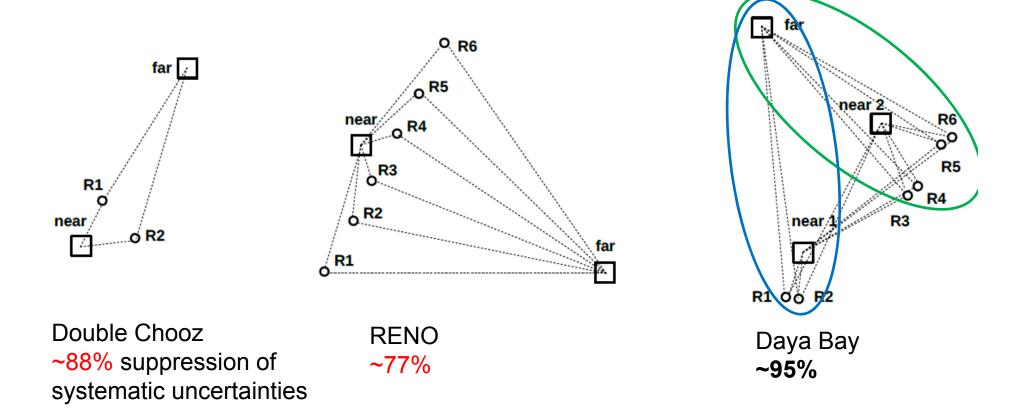


- Coincidence signal from
 Inverse Beta Decay:
 - − Prompt: e^+ & annihilation →

 $E_{prompt} \approx E_v - E_n - 0.78 MeV$

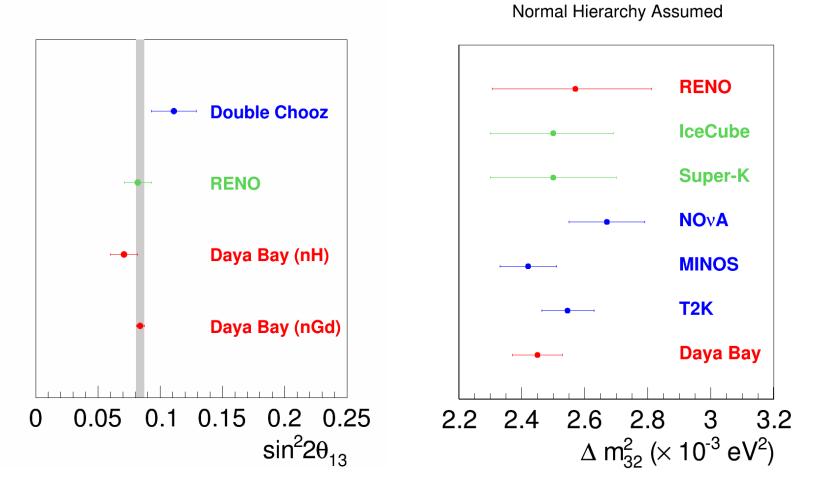
Delayed: n + Gd → 8 MeV
 with 30 us capture time

Anti-v_e Disappearance


 $>> |\Delta m_{21}^2| \approx 7.6 \times 10^{-5} eV^2$

3

Near/far ratio to cancel uncertainty in reactor flux, firstly proposed by Mikaelyan&Sinev Phys. Atmo. Nucl. 63, (2000)


Near/Far Ratio

• 100% cancellation of flux uncertainty with one reactor, one near and one far detector

Statement (~80% suppression) in arXiv:1501.00356 regarding DYB is incorrect

Current Status of $sin^2 2\Theta_{13}$ and Δm^2_{32} After Neutrino 2016

In the following, I will focus on the statistical methods used in Daya Bay in fitting these parameters

Log-likelihood profiling

 Also Pearson chi-square with pull terms in PRL, 108, 171803 (2012)

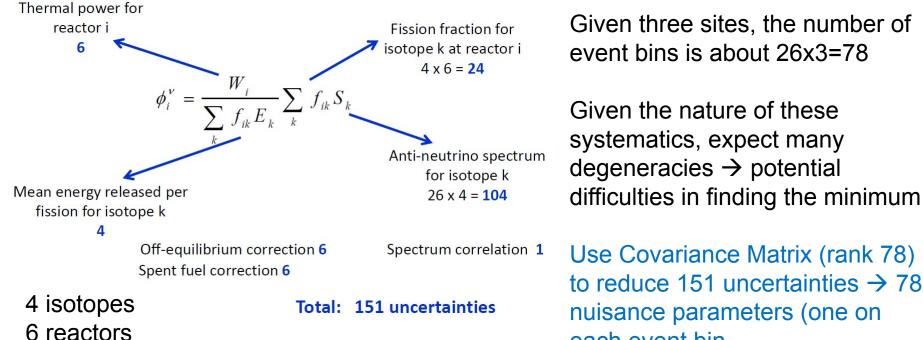
$$T = -2 \operatorname{Log}(L_{stat}) - 2 \operatorname{Log}(L_{sys}) + C$$

$$T_{stat} = 2 \sum_{j}^{ADs,bin} \left(N_{j}^{pred} - N_{j}^{obs} + N_{j}^{obs} \cdot \operatorname{Log}\left(\frac{N_{j}^{obs}}{N_{j}^{pred}}\right) \right)^{\frac{1}{2}} + T_{sys}^{2} = T_{Detector} + T_{Background} + T_{Reactor} + T_{Oscillation}$$

$$Example \text{ format } T_{sys}^{\eta} = \frac{(\eta - \overline{\eta})^{2}}{\delta \eta^{2}} \text{ with } N_{j}^{pred}(\eta)$$

$$AD: \text{ Antineutrino Detector}$$

- According to Wilks' theorem, assuming $\Delta T=T-T_{min}$ following a chi-square distribution
- Advantages: simple to program and easy to examine
- Disadvantages: When number of nuisance parameters is large, can be slow to minimize


$$\begin{aligned} & \textbf{Covariance matrix in PRL, 115, 11802 (2015)} \\ & T = \sum_{i,j} \left(F_i^{obs} - F_i^{pred} \right) \cdot \left(V^{stat} + V^{sys} \right)_{ij}^{-1} \cdot \left(F_j^{obs} - F_j^{pred} \right) & \text{``F" is a function of observed events} \\ & V_{ij}^{\eta} = \int_{-\infty}^{\infty} \frac{1}{\delta\eta \cdot \sqrt{2\pi}} \exp\left(-\frac{(\eta - \overline{\eta})^2}{2\delta\eta^2} \right) \cdot \left(F_i^{obs} \left(\eta \right) - F_i^{pred} \left(\overline{\eta} \right) \right) \cdot \left(F_j^{obs} \left(\eta \right) - F_j^{pred} \left(\overline{\eta} \right) \right) d\eta \\ & = \frac{1}{N} \sum_{k=1}^{N} \left(F_i^{psuedo,k} - F_i^{pred} \left(\overline{\eta} \right) \right) \cdot \left(F_j^{psuedo,k} - F_j^{pred} \left(\overline{\eta} \right) \right) & \text{``i" is a energy bin label for a detector} \end{aligned}$$

- Approximating impacts of all systematics on the event counts as normal distributions
- Advantages: Since "V" can be pre-calculated, the minimization process to obtain T_{min} can be very fast
- Disadvantages: "V" may have dependences on the parameters of interest (i.e. θ_{13} and Δm^2), additional cares are needed
 - Also Gaussian-Hermite technique to calculate integration in-flight

$$E[h(y)] = \int_{-\infty}^{\infty} \frac{1}{\sigma_y \cdot \sqrt{2\pi}} \exp\left(-\frac{(y-\overline{y})^2}{2\sigma_y^2}\right) \cdot h(y) \,\mathrm{d}y \approx \frac{1}{\sqrt{\pi}} \sum_{i=1}^n w_i \cdot h\left(\sqrt{2}\sigma_y x_i + \overline{y}\right)_{\tau}$$

Hybrid Approach in PRL, 112, 061801 (2014)

- Sometimes, the number of nuisance parameters can be too many \rightarrow numerical instability in finding the minimum
- For example, for reactor-related systematics (26 energy bins), •

26 bins

Use Covariance Matrix (rank 78) to reduce 151 uncertainties \rightarrow 78 nuisance parameters (one on each event bin

$$T = -2 \operatorname{Log}(L_{stat}(\eta)) - 2 \operatorname{Log}(L_{other \ sys}) + \sum_{i,j} (\eta_i) \cdot (V_{reactor})_{ij}^{-1} \cdot (\eta_j) + C$$

Also NDF difference can be used to check the covariance matrix

Combining nH + nGd (I)

After acc. bkg. subtraction Delayed Energy [MeV] 700 Near 600 **Double Chooz** 500 400 300 **RENO** 200 100 Daya Bay (nH) Delayed Energy [MeV] 5000 Far 8 7 6 5 m 4000 3000 Daya Bay (nGd) 2000 1000 0.05 0.1 0.15 0.2 0.25 0 7 8 9 10 $\sin^2 2\theta_{13}$ -5 6 Prompt Energy [MeV]

$$\overline{\nu_e} + p \rightarrow e^+ + n$$

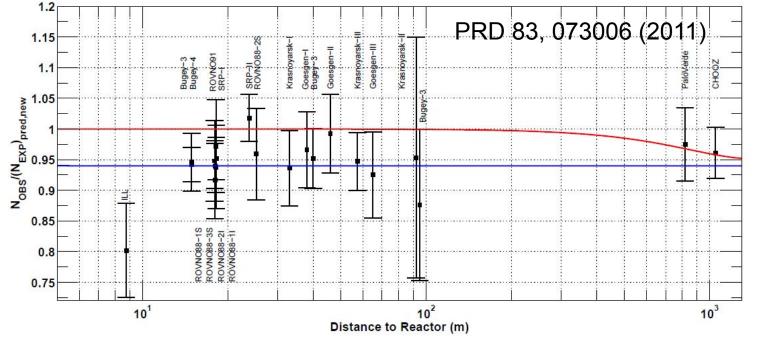
n + Gd (nGd) → ~ 8 MeV gammas
 n + p (nH) → 2.2 MeV gamma

Combing nH + nGd (II)

 Approximately, one can estimate the combination through the Best Linear Unbiased Estimate (BLUE)
 A. C. Aitken, Proc. Ry. Soc. Edinburgh 55, 42 (1935)
 Lyons&Gibaut&Clifford, NIMA 270, 110 (1988)

$$\sigma^2 = \frac{\sigma_{Gd}^2 \sigma_H^2 (1-\rho^2)}{\sigma_{Gd}^2 + \sigma_H^2 - 2\rho\sigma_{Gd}\sigma_H}$$

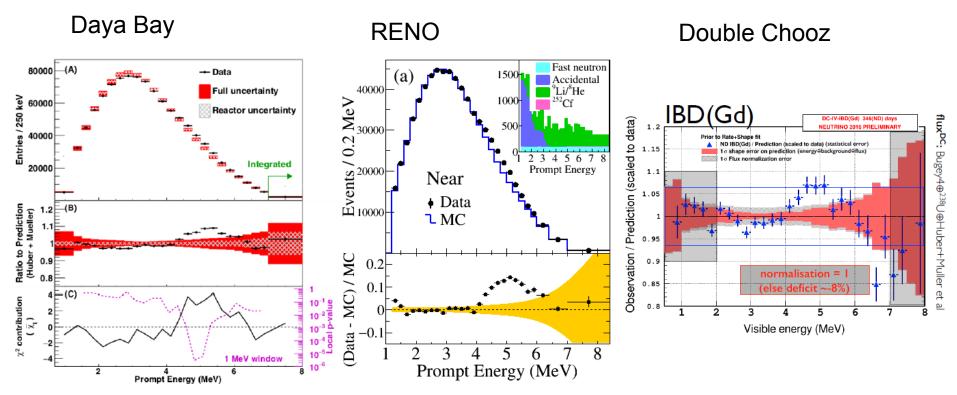
Combining Daya Bay, RENO, and Double Chooz? Expect <10% improvement


- Alternatively, a single fitter can be written to take into account all correlations in systematics
- Both methods reach similar results
- Combined result reported in PRD 90, 071101(R) (2014) PRD 93, 072011 (2016).

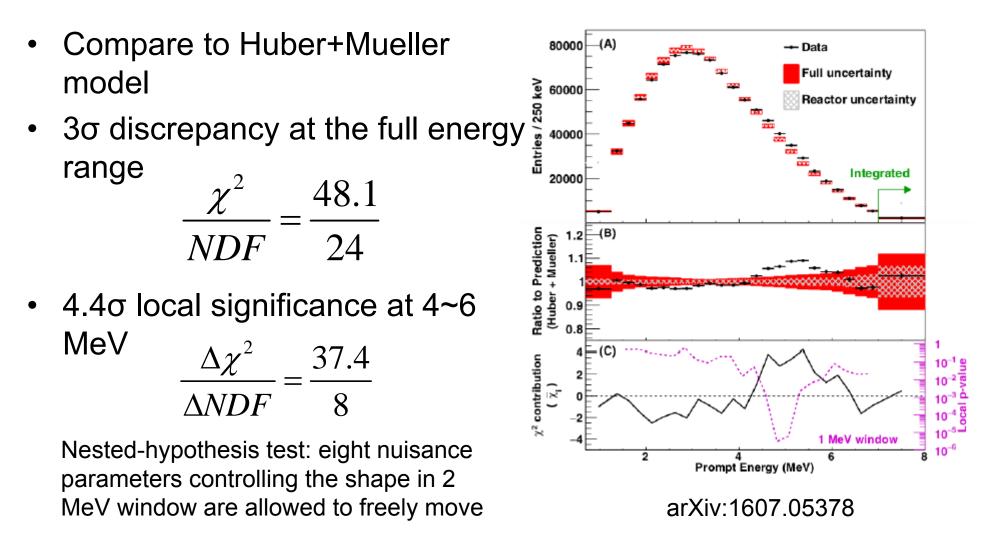
0	Uncertainty Fraction (%)	Correlation
Statistical	51.8	0
Detector	39.2	0.07
Reactor	4.2	1
⁹ Li/ ⁸ He	4.4	0
Accidental	0.4	0
Fast neutron	0.3	0
Am-C	0.1	0.7
Combined	100.4	0.02

One Note About Global Average

• We reported 0.943 +- 0.008 (exp.)

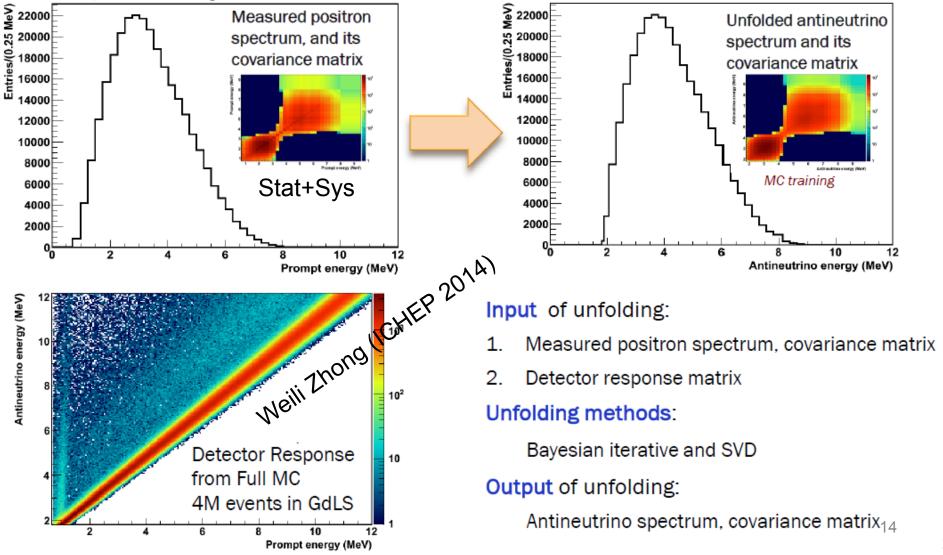

- PRL, 116, 061801 (2016) and arXiv:1607.05378
- Many literatures reported 0.928 (~ 1.5% lower)

- A tricky statistical mistake, they used the measured values to build the theoretical covariance matrix
- See G. D'Agostini NIMA 346, 306 (1994),
 V. Blobel, SLAC-R-0703, p101,
 B. Roe arXiv:1506.09077


$$\chi^{2}(\mathbf{R}_{g}^{past}) = (\mathbf{R}_{g}^{past} - \mathbf{R}_{i}) \cdot \mathbf{V}_{ij}^{-1} \left(\mathbf{R}_{g}^{past} - \mathbf{R}_{j}\right)$$
$$V = V^{exp} + V^{theory}$$
$$V^{theory} = \mathbf{R}_{i}^{obs} \mathbf{R}_{j}^{obs} (\sigma^{theory})^{2}$$
should be $V^{theory} = \mathbf{R}_{i}^{theory} \mathbf{R}_{j}^{theory} (\sigma^{theory})^{2}$

The 5-MeV "Bump"

- Unambiguous observations of discrepancies between data and spectrum calculation at ~ 5 MeV from all three experiments
- Uncertainties in flux calculation is underestimated (> 5% from Hayes et al. PRL 112, 202501, 2014)
- Also saw in NEOS. Which isotopes? arXiv:1609.03910 (Huber)


Absolute Neutrino Spectrum

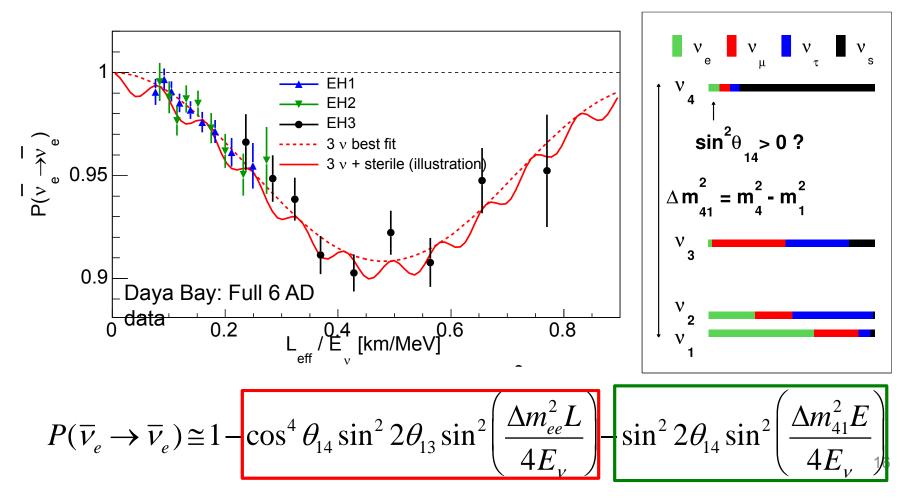
 2.6σ and 4.0σ in PRL 116, 061801

Neutrino Spectrum Extraction (Unfolding)

 Unfolding "original" neutrino spectrum with reduced information from the measured prompt energy spectrum is desired for simpler usage

An independent Check $dN(E_{\overline{\nu}})/dE_{\overline{\nu}}$

- One challenge of the unfolding is the smearing due to finite energy resolution and statistical fluctuations
- Therefore, regularization is needed

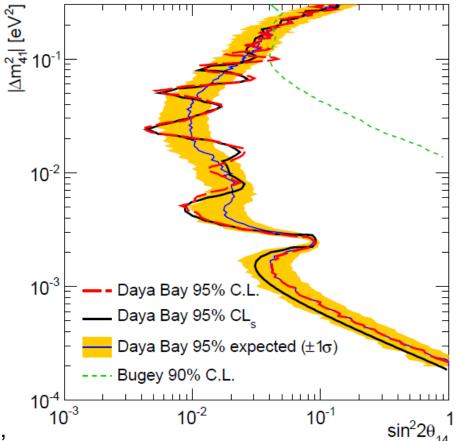

$$\chi^{2} = \sum_{i} \left(M_{i} - \sum_{j} R_{ij} \cdot S_{j} \right) + \chi^{2}_{regularization}$$

$$\chi^{2}_{regularization} = c^{2} \sum_{i} (S_{i}")^{2} = \sum_{i} \left(\sum_{j} F_{ij} \cdot S_{j} \right)^{2}$$
$$\frac{\partial \chi^{2}}{\partial S_{k}} = 0 \longrightarrow S = (1 + \frac{F^{2}}{R^{2}})^{-1} R^{-1} M$$

anti-nu to positron $dN(E_{pos})/dE_{pos}$ IAV Effect $dN(E_{dep})/dE_{dep}$ Non-linearity Energy scale $dN(E_{vis})/dE_{vis}$ Resolution $dN(E_{det})/dE_{det}$

- Basically, smearing due to detector response "R" (typically irregular) is replaced by a regular response (1+F²/R²)⁻¹
 - With existence of uncertainties, smearing represents an information loss, and cannot be fully recovered
 - The optimal regularization depends on the existing smearing and statistics

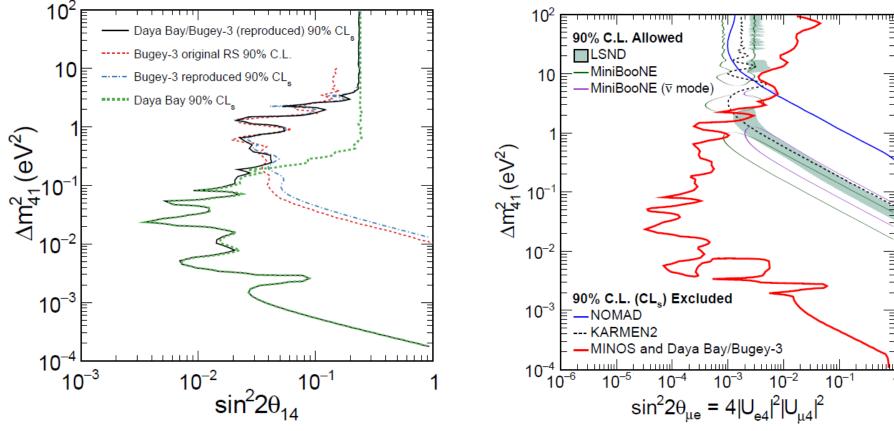
Possible light sterile neutrino oscillation



- A minimum extension of the 3-v model: 3(active) + 1(sterile)-v model
- Search for a higher frequency oscillation pattern besides $|\Delta m^2_{ee}|$

Search for a Light Sterile Neutrino

- Confidence Intervals are obtained from Covariance matrix method (fast) with the Feldman-Cousins (FC)
 – PRD 57, 3873 (1998)
- Due to FC's computing demands, CLs method (A.L. Read, J. Phys. G28, 2693 T. Junk, NIMA 434,435) is chosen for "likelihood + pull"
 - Gaussian CLs method is used
 - G. Cowan et al. Eur. Phys. J. C71, 1544 (2011)
 - XQ, A. Tan et al. NIMA 827, 63 (2016)


See A. Tan's talk

arXiv:1607.01174 (to be published in PRL), factor of 2 improvement to the previous result (PRL 113, 141802, 2014)

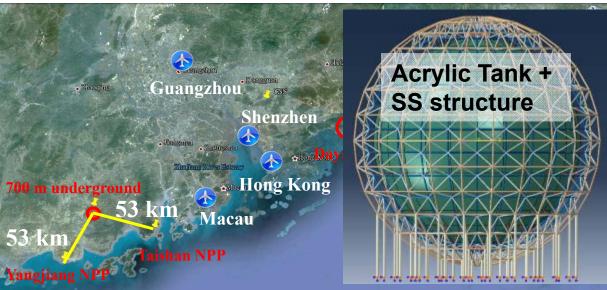
Combined Sterile Search

CLs method is easy to combine results

arXiv:1607.01177 (DYB+MINOS) to be published in PRL

MINOS $\rightarrow \theta_{24}$ with v_{μ} disappearance Daya Bay/Bugey-3 $\rightarrow \theta_{14}$ with (anti) v_{e} disappearance

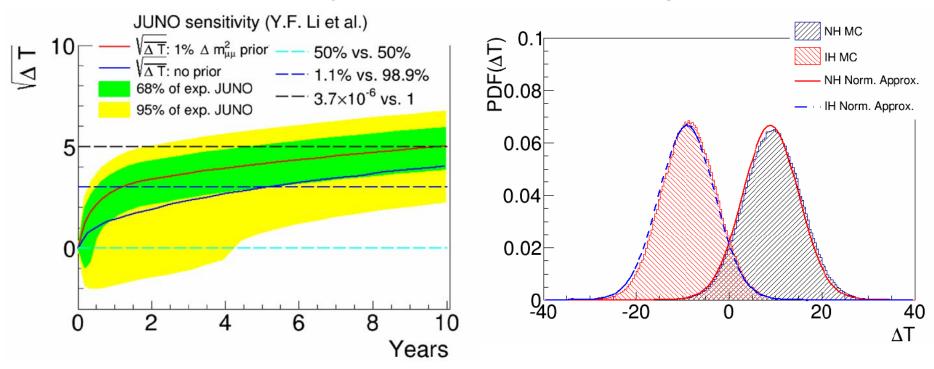
• See past Wine&Cheese seminars


Further Prospect of Current Reactor Neutrino Experiments

- Daya Bay:
 - Expect to reach < 3% uncertainty for both sin²2 θ_{13} and Δm^2_{ee} by 2020
 - Another factor of two improvement in the limit of sterile neutrino search at low Δm^2_{41}
 - Complimentary to the expected results from short-baseline reactor experiments (i.e, PROSPECT) at high Δm_{41}^2
- Combination among Daya Bay, RENO, and Double Chooz is under discussion
 - Below 3% precision of $sin^2 2\theta_{13}$ by 2017

<u>JUNO</u>

- Reactor Power: 36 GW
- Baseline: 53 km
- Detector: 20 kton LS
- •_____ σ_E: 3% (2% at 2.5 MeV)
- v rate: ~60/day
- Background:
 - Accidentals (10%)
 - ⁹Li (<1%)
 - Fast neutrons (<1%) Yangjiang



Dava Bay 1.4 ~60 km Near Site Arbitrary unit 0.6 F JUNO ······ Non oscillation 1.2 Far Site θ₁, oscillation 0.5 E Δm - Normal hierarchy 1.0 Inverted hierarchy 0.8 0.4 Phys.Rev.D78:111103,2008 Savannah River 0.6 0.3 Buee Rovno 0.4 Goeseen 0.2 Krasnoyark Δm_{32}^2 Δ Palo Verde 0.2 KamLAND Chooz 0.1E 0.0 101 10^{2} 10 105 10 10 15 20 25 30 L/E (km/MeV) Distance to Reactor (m)

	JUNO	DUNE	
$\sin^2 2\theta_{12}$	0.7%		
Δm_{21}^2	0.6%		
$ \Delta m^2_{32} $	0.5%	0.3%	North
MH	3-4σ	>5σ	Z
$\sin^2 2\theta_{13}$	14%	3%	
$\sin^2 2\theta_{23}$		3%	
δ _{CP}		10°	

J. Phys. G: Nucl. Part. Phys. 43, 030401 (2016)

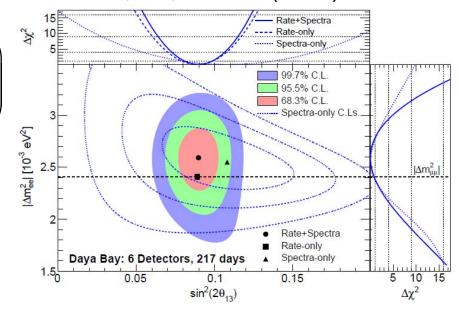
MH Sensitivity (Non-nested Hypothesis Test)

- What's the meaning of MH sensitivity?
 - XQ, A. Tan et al. PRD86, 113011 (2012)
 - M. Blennow et al. JHEP 03, 028 (2014) among others

Summary

- Reactor neutrinos have been and will continue to play an important role in understanding the neutrino properties
 - Previous: KamLAND
 - Current: Daya Bay, RENO, Double Chooz
 - Future: JUNO, PROSPECT ...
- Data analysis of reactor neutrinos involves a wide range of statistical techniques
 - Parameter fit, (nested/non-nested) hypothesis tests, unfolding …

Rate-only vs. Shape-only


$$T_{stat} = 2 \sum_{j,i}^{ADs,bin} \left(N_{ji}^{pred} - N_{ji}^{obs} + N_{ji}^{obs} \cdot \text{Log}\left(\frac{N_{ji}^{obs}}{N_{ji}^{pred}}\right) \right) = \begin{cases} 2 \sum_{j}^{ADs} \left(N_{j}^{pred} - N_{j}^{obs} + N_{ji}^{obs} \cdot \text{Log}\left(\frac{N_{j}^{obs}}{N_{ji}^{pred}}\right) \right) \\ + 2 \sum_{j,i}^{ADs,bin} N_{ji}^{obs} \cdot \text{Log}\left(\frac{N_{ji}^{obs}}{N_{ji}^{pred}}\right) - 2 \sum_{j}^{ADs} \left(N_{j}^{obs} \cdot \text{Log}\left(\frac{N_{ji}^{obs}}{N_{ji}^{pred}}\right) \right) \end{cases}$$

AD: Antineutrino Detector

• Rate-only:

$$2\sum_{j}^{ADs} \left(N_{j}^{pred} - N_{j}^{obs} + N_{j}^{obs} \cdot \text{Log}\left(\frac{N_{j}^{obs}}{N_{j}^{pred}}\right) \right)$$

• Shape-only: $2\sum_{j,i}^{ADs,bin} N_{ji}^{obs} \cdot Log\left(\frac{N_{ji}^{obs}}{N_{ji}^{pred}}\right)$ with $\sum_{i} N_{ji}^{pred} = \sum_{i} N_{ji}^{obs}$

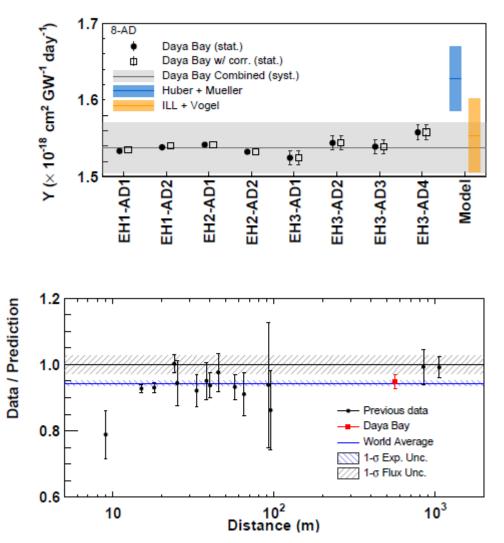
PRL,112,061801 (2014)

Multinomial distribution first discussed in Baker&Cousins, NIMA, 221, 437 (1984)

Absolute Reactor Anti-Neutrino Flux

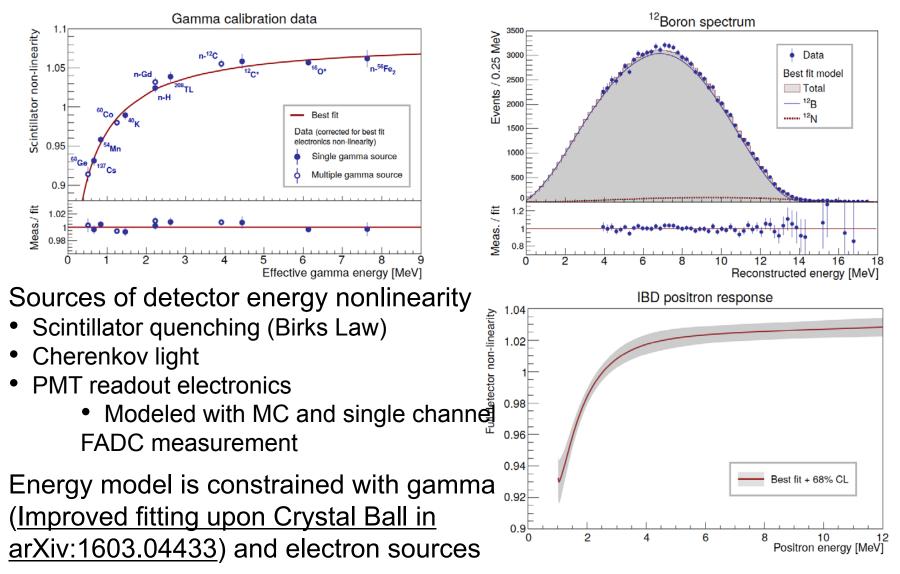
- 621 days data
- Effective fission fraction

²³⁵ U	²³⁸ U	²³⁹ Pu	²⁴¹ Pu
56.1%	7.6%	30.7%	5.6%


• Daya Bay result:

 $R_{dyb} = 0.946 \pm 0.020$

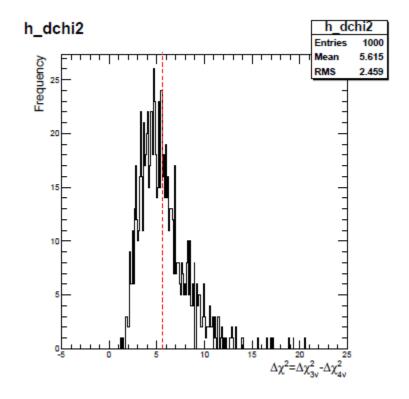
• The World Average:

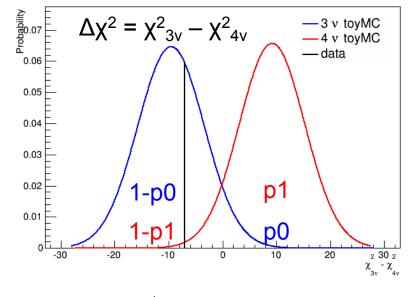

 $R_{globe} = 0.943 \pm 0.008$

Daya Bay's absolute reactor flux measurement is consistent with previous short baseline experiments

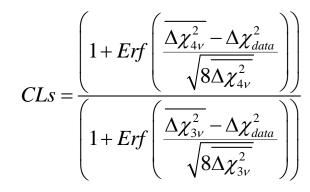
PRL, 116, 061801 (2016) and arXiv:1607.05378

Energy Nonlinearity Calibration




~1% uncertainty (correlated among detectors)

An Independent Check


- When treating the (still smeared) unfolded spectrum as the real (unsmeared) spectrum, additional uncertainties (bias) by are needed, which represents an additional information loss
 - The price that we have to pay for the simpler usage
 - Otherwise, same amount of information generally
- Bias be estimated through pseudo experiments
 - In Daya Bay, we use various predictions of neutrino spectrum → pseudo measurements → unfolded spectrum to be compared with MC truth → determine the size of bias and additional uncertainties needed

Statistical tests: 3-v or 4-v ?

 $CL_{s} = \frac{1 - p_{1}}{1 - p_{0}} \quad \begin{array}{l} \text{A.L. Read J. Phys.} \\ \text{G28, 2693} \\ \text{T. Junk NIMA434, 435} \end{array}$

NIMA 827, 63 (2016) ²⁸

- Data is consistent with 3-v hypothesis with FC test No evidence for sterile neutrino
 - $\Delta \chi^2_{data} = 5.6$; p-value is 0.41