

BFF 1/21 Xiao-Li Meng

Choose Your Replication!

Basu Ex

Summary

Bayesian, Fiducial, and Frequentist (BFF): Best Friends Forever?

Xiao-Li Meng

Department of Statistics, Harvard University

- Liu & Meng (2106) There Is Individualized Treatment. Why Not Individualized Inference? Annual Review of Statistics and Its Application, 3: 79-111
- Liu & Meng (2014). A Fruitful Resolution To Simpson's Paradox via Multi-Resolution Inference. *The American Statistician*, 68: 17-29.
- Meng (2014). A Trio of Inference Problems That Could Win You a Nobel Prize in Statistics (if you help fund it). In the Past, Present, and Future of Statistical Science (Eds: X. Lin, et. al.), 535-560.

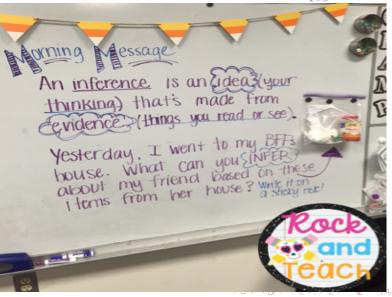
What is inference? Katie's answer ...

BFF 2/21 Xiao-Li Meng

Choose Your Replication!

Basu Ex

Summary



BFF 3/21 Xiao-Li Meng

Choose Your Replication!

Basu Ex

Summary

 An ultimate intellectual game: "to guess wisely and to guess meaningfully the errors in our guesses." (*XL-Files*, Oct 2015)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

BFF 3/21 Xiao-Li Meng

Choose Your Replication!

Basu Ex

Summary

- An ultimate intellectual game: "to guess wisely and to guess meaningfully the errors in our guesses." (*XL-Files*, Oct 2015)
- Impossible to access exact errors, but a full spectrum of possibilities for accessing probabilistic errors.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

BFF 3/21 Xiao-Li Meng

Choose Your Replication!

Basu Ex

Summary

- An ultimate intellectual game: "to guess wisely and to guess meaningfully the errors in our guesses." (*XL-Files*, Oct 2015)
- Impossible to access exact errors, but a full spectrum of possibilities for accessing probabilistic errors.
- Balancing the **degree of inexactness** (Relevance) & the reliance on assumptions (Robustness).

▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → の へ ()

BFF 3/21 Xiao-Li Meng

Choose Your Replication!

Basu Ex

Summary

- An ultimate intellectual game: "to guess wisely and to guess meaningfully the errors in our guesses." (*XL-Files*, Oct 2015)
- Impossible to access exact errors, but a full spectrum of possibilities for accessing probabilistic errors.
- Balancing the **degree of inexactness** (Relevance) & the reliance on assumptions (Robustness).

Pure Frequentist (Fully unconditional)

Most Robust but Least Relevant

BFF 3/21 Xiao-Li Meng

Choose Your Replication!

Basu Ex

Summary

- An ultimate intellectual game: "to guess wisely and to guess meaningfully the errors in our guesses." (*XL-Files*, Oct 2015)
- Impossible to access exact errors, but a full spectrum of possibilities for accessing probabilistic errors.
- Balancing the **degree of inexactness** (Relevance) & the reliance on assumptions (Robustness).

Pure Frequentist (Fully unconditional)

Most Robust but Least Relevant

Pure Bayesian (Fully conditional)

Most Relevant but Least Robust

BFF 3/21 Xiao-Li Meng

Choose Your Replication!

Basu Ex

Summary

- An ultimate intellectual game: "to guess wisely and to guess meaningfully the errors in our guesses." (*XL-Files*, Oct 2015)
- Impossible to access exact errors, but a full spectrum of possibilities for accessing probabilistic errors.
- Balancing the **degree of inexactness** (Relevance) & the reliance on assumptions (Robustness).

Pure Frequentist (Fully unconditional)

Most Robust but Least Relevant

Pure Bayesian (Fully conditional)

Most Relevant but Least Robust

But life is about *compromise*:

Conditional frequentist, Objective Bayesian, Fiducial ...

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

BFF 4/21	
Xiao-Li Meng	
Choose Your Replication!	

BFF 4/21 Xiao-Li Meng

Choose Your Replication!

Basu E>

Summary

Statistical Model via Stochastic Representation

 $\underline{D} = G(\underline{\theta}, \underline{U})$ Data Signal Noise

(S)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

BFF 4/21 Xiao-Li Meng

Choose Your Replication!

Basu Ex

Summary

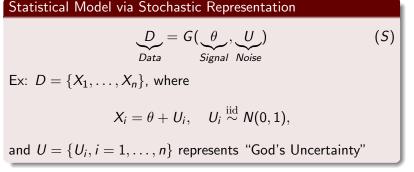
Statistical Model via Stochastic Representation $\underbrace{D}_{Data} = G(\underbrace{\theta}_{Signal}, \underbrace{U}_{Noise}) \quad (S)$ Ex: $D = \{X_1, \dots, X_n\}$, where $X_i = \theta + U_i, \quad U_i \stackrel{\text{iid}}{\sim} N(0, 1),$ and $U = \{U_i, i = 1, \dots, n\}$ represents "God's Uncertainty"

BFF 4/21 Xiao-Li Meng

Choose Your Replication!

Basu Ex

Summary



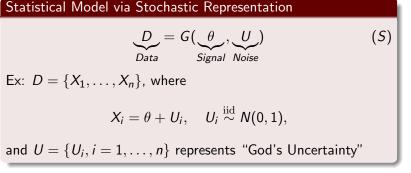
• Frequentist: Fix parameter θ , vary D

BFF 4/21 Xiao-Li Meng

Choose Your Replication!

Basu Ex

Summary



・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

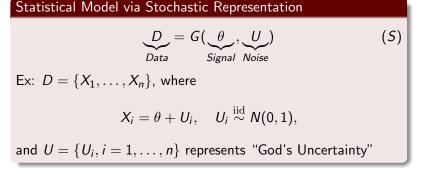
- Frequentist: Fix parameter θ , vary D
- Bayesian: Fix data D, vary θ

BFF 4/21 Xiao-Li Meng

Choose Your Replication!

Basu Ex

Summary



- Frequentist: Fix parameter θ , vary D
- Bayesian: Fix data D, vary θ
- Fiducial: Fix neither, but vary U, subject to the constraint (S) (or implied constraints with A(U) fixed)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

The differences are in the replications ...,

BFF 5/21 Xiao-Li Meng)
Choose Your Replication!)

The differences are in the replications ...

BFF 5/21 Xiao-Li Meng

Choose Your Replication!

Basu Ex

Summary

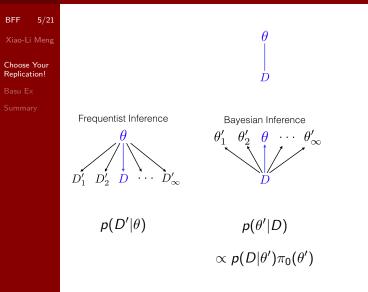
◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ○日 ○ のへで

Frequentist Inference

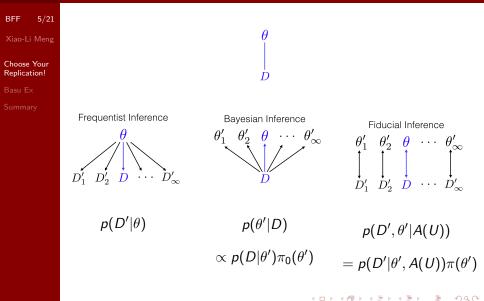
θ D'_{\sim}

 $p(D'|\theta)$

The differences are in the replications ...



The differences are in the replications ...



< □ > < □ > < Ξ > < Ξ > < Ξ > ○ < ♡ < ♡

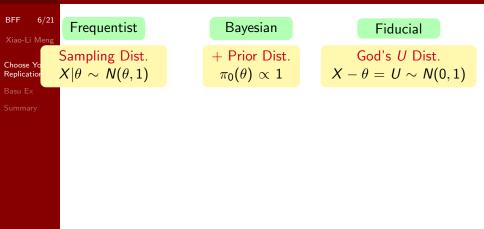
Choose Your Replication!

Basu E>

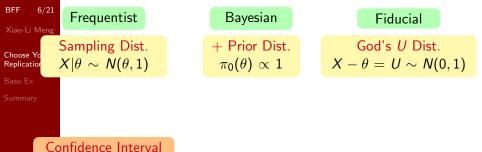
Summary

◆□ > ◆□ > ◆臣 > ◆臣 > □臣 = のへで





◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

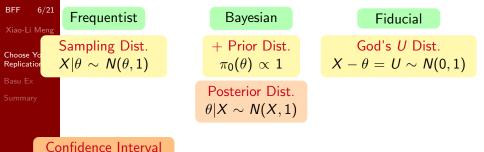


◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

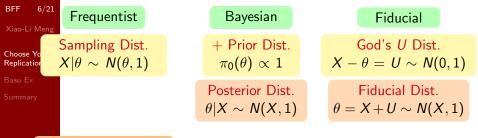
 $(X-z_p,X+z_p)$

 $(X-z_p,X+z_p)$

Illustrate BFF for $X \sim N(\theta, 1)$

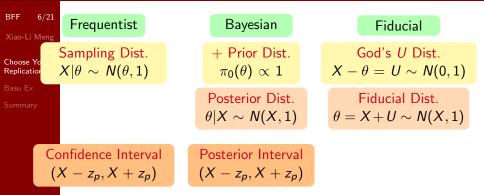


◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

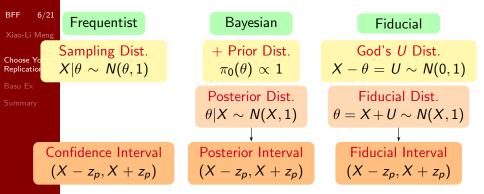


・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨー

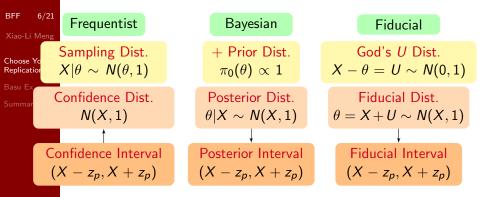
Confidence Interval $(X - z_p, X + z_p)$



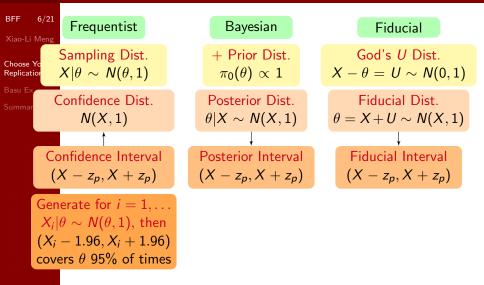
・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨー



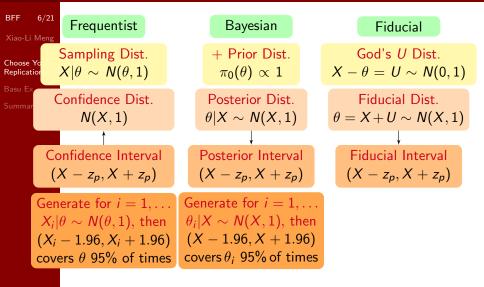
・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨー



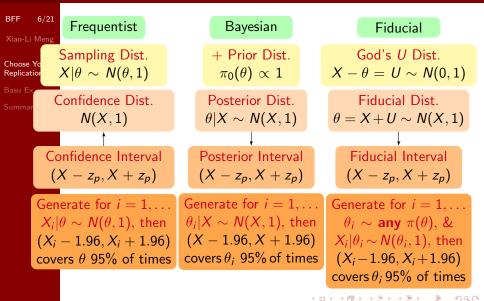
▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → の へ ()



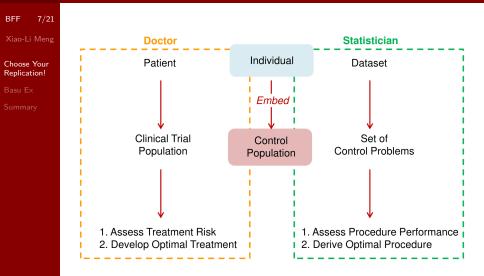
▲ロト ▲冊 ト ▲ ヨ ト → ヨ ト → の へ ()



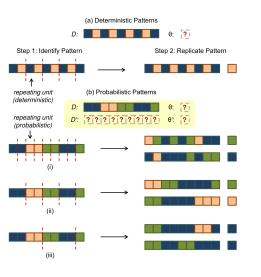
◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○



Finding the Right "Control Population": Treating Data as Your Patient



The Inevitable Statistical "Bootstrap": Creating Internal Replications



▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Relevant Controls/Replications are always needed

BFF 9/21 Xiao-Li Meng

Choose Your Replication!

Basu Ex

Summary

Method Type	Error on Actual Problem Δ	Average Error over Relevant Controls $\overline{\Delta}'$	References
Point Estimate Goal: Give our best guess, θ, for value of θ.	$L(\theta, \hat{\theta})$ Loss: Specify how "far" θ is from $\hat{\theta}$ via loss function.	<i>Risk</i> : The average loss of an estimator over control problems (D' , θ').	Robinson 1979b Rukhin 1988, Lu and Berger 1989, Fourdrinier and Wells 2012
Set Estimate Goal: Identify set, C(D), of likely values for θ.	I($\theta \notin C(D)$) * Coverage: Does our set contain the true value of θ ?	Non-Coverage Probability: Proportion of times a set estimate, e.g. interval estimate, fails to contain the true value of θ' .	Casella 1992, Goutis and Casella 1995, Robinson 1979a, Berger 1988
Hypothesis Test Goal: Should we reject a null hypothesis, H ₀ , based on evidence from data?	I($\hat{T} \neq T$) Type I or II Error: Do we falsely reject or falsely accept H_0 ?	Error Probability: The test's rates of false rejection and false acceptance when applied to control problems.	Hwang et al. 1992, Berger et al. 1994, Berger 2003

* I(statement) denotes the indicator function: it equals 1 if the statement in parentheses is true and 0 otherwise.

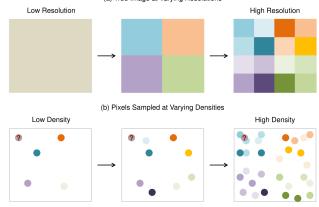
▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Multi-resolution Replications

Choose Your Replication!

Basu Ex

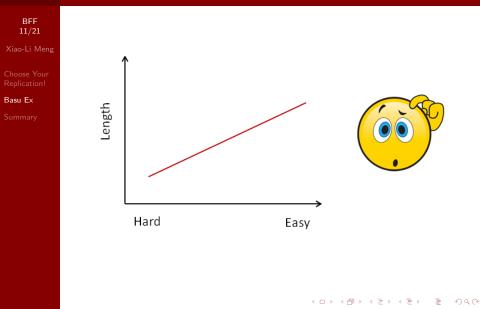
Summary



(a) True Image at Varying Resolutions

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

The Problem Gets Easier But My Intervals Get Longer ?!



BFF 12/21

Xiao-Li Meng

Choose Your Replication!

Basu Ex

Summary

Precision as Function of Multiple Features (Basu 1964)

 (X_i, Y_i) bivariate standard normal with unknown correlation θ

BFF 12/21

Xiao-Li Meng

Choose Your Replication!

Basu Ex

Summary

Precision as Function of Multiple Features (Basu 1964)

 (X_i, Y_i) bivariate standard normal with unknown correlation θ

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

• Fact 1: X_i , Y_i marginally ancillary, not jointly ancillary.

BFF 12/21

Xiao-Li Meng

Choose Your Replication!

Basu Ex

Summary

Precision as Function of Multiple Features (Basu 1964)

- (X_i, Y_i) bivariate standard normal with unknown correlation θ
 - Fact 1: X_i, Y_i marginally ancillary, not jointly ancillary.
 - Fact 2: As ||X|| or ||Y|| increases, precision for θ increases.

BFF 12/21

Alao-Li Meng

Choose Your Replication!

Basu Ex

Summary

Precision as Function of Multiple Features (Basu 1964)

- (X_i, Y_i) bivariate standard normal with unknown correlation heta
 - Fact 1: X_i, Y_i marginally ancillary, not jointly ancillary.
 - Fact 2: As ||X|| or ||Y|| increases, precision for θ increases.

Option 1: Evaluate uncertainty of $\hat{\theta}$ (MLE) *unconditionally*. Construct pivot (using inverse CDF) and invert into CI.

BFF 12/21

- Xiao-Li Meng
- Choose Your Replication!
- Basu Ex
- Summary

Precision as Function of Multiple Features (Basu 1964)

- (X_i, Y_i) bivariate standard normal with unknown correlation heta
 - Fact 1: X_i, Y_i marginally ancillary, not jointly ancillary.
 - Fact 2: As ||X|| or ||Y|| increases, precision for θ increases.

Option 1: Evaluate uncertainty of $\hat{\theta}$ (MLE) *unconditionally*. Construct pivot (using inverse CDF) and invert into CI.

• Achieves exact, unconditional coverage.

BFF 12/21

Xiao-Li Meng

Choose Your Replication!

Basu Ex

Summary

Precision as Function of Multiple Features (Basu 1964)

- (X_i, Y_i) bivariate standard normal with unknown correlation heta
 - Fact 1: X_i, Y_i marginally ancillary, not jointly ancillary.
 - Fact 2: As ||X|| or ||Y|| increases, precision for θ increases.

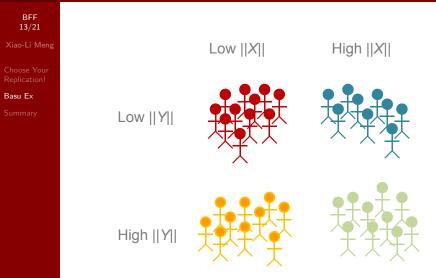
Option 1: Evaluate uncertainty of $\hat{\theta}$ (MLE) *unconditionally*. Construct pivot (using inverse CDF) and invert into CI.

• Achieves exact, unconditional coverage.

Option 2: Evaluate uncertainty of $\hat{\theta}$ conditional on ||X||.

But what about the effect of ||Y|| on precision?

A Heterogeneous Population of Datasets



BFF 14/21

Choose Your Replication!

Basu Ex

Summary

A Regression Perspective

• As ||X|| increases, precision of $\hat{\theta}$ increases.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

BFF 14/21

Xiao-Li Meng

Choose Your Replication!

Basu Ex

Summary

A Regression Perspective

- As ||X|| increases, precision of $\hat{\theta}$ increases.
- As ||Y|| increases, precision of $\hat{\theta}$ increases.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

BFF 14/21

- Xiao-Li Meng
- Choose Your Replication!
- Basu Ex
- Summary

A Regression Perspective

- As ||X|| increases, precision of $\hat{\theta}$ increases.
- As ||Y|| increases, precision of $\hat{\theta}$ increases.
- The first order effects of ||X|| and ||Y|| on precision are robust to assumptions about θ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

BFF 14/21

C V

Replication

Basu Ex

Summary

A Regression Perspective

- As ||X|| increases, precision of $\hat{\theta}$ increases.
- As ||Y|| increases, precision of $\hat{\theta}$ increases.
- The first order effects of ||X|| and ||Y|| on precision are robust to assumptions about θ .

But when we condition on ||X|| and $||Y|| \dots$

• We also model second order effect: how ||X|| and ||Y||together affect data precision (their interaction).

BFF 14/21

Choose Your Replication!

Basu Ex

Summary

A Regression Perspective

- As ||X|| increases, precision of $\hat{\theta}$ increases.
- As ||Y|| increases, precision of $\hat{\theta}$ increases.
- The first order effects of ||X|| and ||Y|| on precision are robust to assumptions about θ .

But when we condition on ||X|| and $||Y|| \dots$

- We also model second order effect: how ||X|| and ||Y|| together affect data precision (their interaction).
- Second order effect (interaction term) is not robust to prior assumptions about θ .

BFF 14/21

- Xiao-Li Meng
- Choose Your Replication!
- Basu Ex
- Summary

A Regression Perspective

- As ||X|| increases, precision of $\hat{\theta}$ increases.
- As ||Y|| increases, precision of $\hat{\theta}$ increases.
- The first order effects of ||X|| and ||Y|| on precision are robust to assumptions about θ .

But when we condition on ||X|| and $||Y|| \dots$

- We also model second order effect: how ||X|| and ||Y|| together affect data precision (their interaction).
- Second order effect (interaction term) is not robust to prior assumptions about θ .
- How to account for first order effects while ignoring second order effects and do so in a *principled* way?

Fiducial's Pivotal Idea (Fraser 68, Hannig 09)

God's U Always Exists

BFF 15/21 Xiao-Li Meng

Choose Your Replication!

Basu Ex

Summary

Represent data as $X = g(\theta; U)$ where $U \sim p(U)$ is known.

Normal:
$$X = \theta + U$$
 $U \sim N(0, 1)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ○ ○

Fiducial's Pivotal Idea (Fraser 68, Hannig 09)

God's U Always Exists

Represent data as $X = g(\theta; U)$ where $U \sim p(U)$ is known.

Normal:
$$X = \theta + U$$
 $U \sim N(0, 1)$

Such representations even exist in cases where pivots do not:

Bernoulli: $X = I(U < \theta)$ $U \sim \text{Unif}[0, 1].$

BFF 15/21 Kiao-Li Meng

Choose Your Replication!

Basu Ex

Summary

RFF

15/21

Basu Ex

Fiducial's Pivotal Idea (Fraser 68, Hannig 09)

God's U Always Exists

Represent data as $X = g(\theta; U)$ where $U \sim p(U)$ is known.

Normal:
$$X = \theta + U$$
 $U \sim N(0, 1)$

Such representations even exist in cases where pivots do not:

Bernoulli: $X = I(U < \theta)$ $U \sim \text{Unif}[0, 1].$

Fiducial Procedure

1. Make a "post-data" inference for U without involving θ by ignoring a part or all data: e.g., pretend $U|X \sim N(0,1)$.

Fiducial's Pivotal Idea (Fraser 68, Hannig 09)

God's U Always Exists

Represent data as $X = g(\theta; U)$ where $U \sim p(U)$ is known.

Normal:
$$X = \theta + U$$
 $U \sim N(0, 1)$

Such representations even exist in cases where pivots do not:

Bernoulli : $X = I(U < \theta)$ $U \sim \text{Unif}[0, 1].$

Fiducial Procedure

- 1. Make a "post-data" inference for U without involving θ by ignoring a part or all data: e.g., pretend $U|X \sim N(0, 1)$.
- 2. Convert inference for U into inference for θ by inverting $X = g(\theta; U)$ to obtain $\theta = h(U; X)$:

E.g.:
$$\theta = X - U \sim N(X, 1)$$
.

BFF 15/21 Xiao-Li Men

Choose Your Replication!

Basu Ex

Summary

BFF 16/21

Xiao-Li Meng

Choose Your Replication!

Basu Ex

Summary

(X_i, Y_i) bivariate normal with mean 0, var 1 and correlation θ .

• Reduce to sufficient statistics: $S_1 = \sum_i (X_i + Y_i)^2$ and $S_2 = \sum_i (X_i - Y_i)^2$.

BFF 16/21

Xiao-Li Meng

Choose Your Replication!

Basu Ex

Summary

(X_i, Y_i) bivariate normal with mean 0, var 1 and correlation θ .

- Reduce to sufficient statistics: $S_1 = \sum_i (X_i + Y_i)^2$ and $S_2 = \sum_i (X_i Y_i)^2$.
- Representation: $S_1 = 4(1+\theta)^2 Q_1$ and $S_2 = 4(1-\theta)^2 Q_2$ where Q_i are i.i.d. $\chi^2_{(n)}$.

BFF 16/21

Replication

Basu Ex

Summary

(X_i, Y_i) bivariate normal with mean 0, var 1 and correlation θ .

- Reduce to sufficient statistics: $S_1 = \sum_i (X_i + Y_i)^2$ and $S_2 = \sum_i (X_i Y_i)^2$.
- Representation: $S_1 = 4(1+\theta)^2 Q_1$ and $S_2 = 4(1-\theta)^2 Q_2$ where Q_i are i.i.d. $\chi^2_{(n)}$.
- Inference for Q_1, Q_2 : Impute Q_1 and Q_2 conditional on

$$\sqrt{\frac{S_1}{4Q_1}} + \sqrt{\frac{S_2}{4Q_2}} - 2 = 0$$

and $Q_i \geq S_i/16$ for i = 1, 2.

BFF 16/21

Choose Your Replication

Basu Ex

Summary

(X_i, Y_i) bivariate normal with mean 0, var 1 and correlation θ .

- Reduce to sufficient statistics: $S_1 = \sum_i (X_i + Y_i)^2$ and $S_2 = \sum_i (X_i Y_i)^2$.
- Representation: $S_1 = 4(1+\theta)^2 Q_1$ and $S_2 = 4(1-\theta)^2 Q_2$ where Q_i are i.i.d. $\chi^2_{(n)}$.
- Inference for Q_1, Q_2 : Impute Q_1 and Q_2 conditional on

$$\sqrt{\frac{S_1}{4Q_1}} + \sqrt{\frac{S_2}{4Q_2}} - 2 = 0$$

and $Q_i \geq S_i/16$ for i = 1, 2.

• Inference for θ : Given Q_1, Q_2 , let $\theta = \sqrt{\frac{S_1}{4Q_1} - 1}$.

||x||

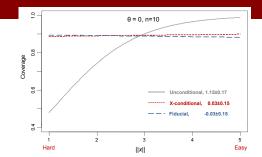
Checking Coverage and Length Conditioning on

BFF 17/21 Xiao-Li Men

Choose You Replication!

Basu Ex

Summary



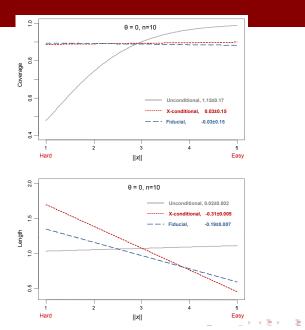
Checking Coverage and Length Conditioning on ||x||

BFF 17/21 Xiao-Li Meng

Choose Your Replication!

Basu Ex

Summary



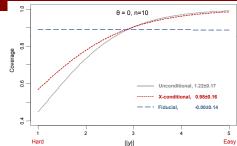
Checking Coverage and Length Conditioning on ||y||

BFF 18/21 Xiao-Li Meng

Choose You Replication!

Basu Ex

Summary



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

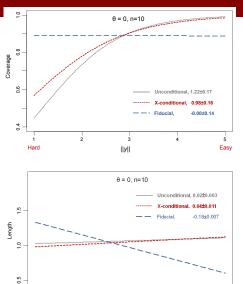
Checking Coverage and Length Conditioning on ||y||

BFF 18/21 Xiao-Li Meng

Choose You Replication!

Basu Ex

Summary



3

IIVII

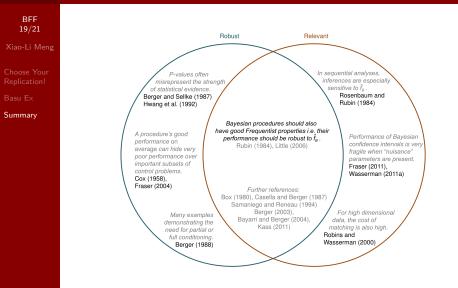
5 Easy

B → B

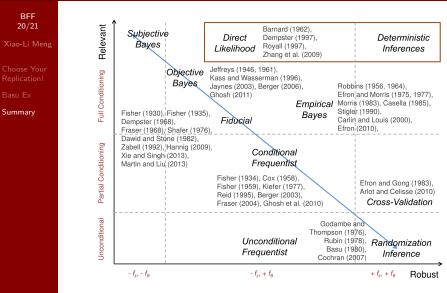
ż

Hard

A Fundamental Principle of Statistical Inference: Bias-Variance or Relevant-Robust Trade-off



A Unified Picture of BFF (and Inference)?



▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨ - のへで

Let's be BFF, not merely FWB ...

BFF 21/21 Xiao-Li Meng

Choose You Replication!

Summary

<ロト < 回 > < 回 > < 三 > < 三 > 三 三

DQC