Bayesian, Fiducial, and Frequentist (BFF):

 Best Friends Forever?Xiao-Li Meng

Department of Statistics, Harvard University

- Liu \& Meng (2106) There Is Individualized Treatment. Why Not Individualized Inference? Annual Review of Statistics and Its Application, 3: 79-111
- Liu \& Meng (2014). A Fruitful Resolution To Simpson's Paradox via Multi-Resolution Inference. The American Statistician, 68: 17-29.
- Meng (2014). A Trio of Inference Problems That Could Win You a Nobel Prize in Statistics (if you help fund it). In the Past, Present, and Future of Statistical Science (Eds: X. Lin, et. al.), 535-560.

What is inference? Katie's answer ...

An inference is an idea3(your thinking) that's made from evidences (things you read or see).
Yesterday. I went to my BFFs house. What can you SINFER about my friend based on these Items from her house? Wink it stick not'

But what is Statistical/Probabilistic Inference?

```
BFF 3/21
Xiao-Li Meng
```

Choose Your Replication!

- An ultimate intellectual game: "to guess wisely and to guess meaningfully the errors in our guesses." (XL-Files, Oct 2015)

But what is Statistical/Probabilistic Inference?

- An ultimate intellectual game: "to guess wisely and to guess meaningfully the errors in our guesses." (XL-Files, Oct 2015)
- Impossible to access exact errors, but a full spectrum of possibilities for accessing probabilistic errors.

But what is Statistical/Probabilistic Inference?

- An ultimate intellectual game: "to guess wisely and to guess meaningfully the errors in our guesses." (XL-Files, Oct 2015)
- Impossible to access exact errors, but a full spectrum of possibilities for accessing probabilistic errors.
- Balancing the degree of inexactness (Relevance) \& the reliance on assumptions (Robustness).

But what is Statistical/Probabilistic Inference?

- An ultimate intellectual game: "to guess wisely and to guess meaningfully the errors in our guesses." (XL-Files, Oct 2015)
- Impossible to access exact errors, but a full spectrum of possibilities for accessing probabilistic errors.
- Balancing the degree of inexactness (Relevance) \& the reliance on assumptions (Robustness).

Pure Frequentist (Fully unconditional)
Most Robust but Least Relevant

But what is Statistical/Probabilistic Inference?

- An ultimate intellectual game: "to guess wisely and to guess meaningfully the errors in our guesses." (XL-Files, Oct 2015)
- Impossible to access exact errors, but a full spectrum of possibilities for accessing probabilistic errors.
- Balancing the degree of inexactness (Relevance) \& the reliance on assumptions (Robustness).

Pure Frequentist (Fully unconditional)
Most Robust but Least Relevant
Pure Bayesian (Fully conditional)
Most Relevant but Least Robust

But what is Statistical/Probabilistic Inference?

- An ultimate intellectual game: "to guess wisely and to guess meaningfully the errors in our guesses." (XL-Files, Oct 2015)
- Impossible to access exact errors, but a full spectrum of possibilities for accessing probabilistic errors.
- Balancing the degree of inexactness (Relevance) \& the reliance on assumptions (Robustness).

Pure Frequentist (Fully unconditional)
Most Robust but Least Relevant
Pure Bayesian (Fully conditional)
Most Relevant but Least Robust
But life is about compromise:
Conditional frequentist, Objective Bayesian, Fiducial ...

It all depends on which Replications you want ...

It all depends on which Replications you want ...

BFF $4 / 21$
 Statistical Model via Stochastic Representation

Xiao-Li Meng

Choose Your Replication!

Basu Ex
Summary

$$
\begin{equation*}
\underbrace{D}_{\text {Data }}=G(\underbrace{\theta}_{\text {Signal }}, \underbrace{U}_{\text {Noise }}) \tag{S}
\end{equation*}
$$

It all depends on which Replications you want ...

Statistical Model via Stochastic Representation

$$
\underbrace{D}_{\text {Data }}=G(\underbrace{\theta}_{\text {Signal }}, \underbrace{U}_{\text {Noise }})
$$

Ex: $D=\left\{X_{1}, \ldots, X_{n}\right\}$, where

$$
X_{i}=\theta+U_{i}, \quad U_{i} \stackrel{\mathrm{iid}}{\sim} N(0,1),
$$

and $U=\left\{U_{i}, i=1, \ldots, n\right\}$ represents "God's Uncertainty"

It all depends on which Replications you want ...

Statistical Model via Stochastic Representation

$$
\begin{equation*}
\underbrace{D}_{\text {Data }}=G(\underbrace{\theta}_{\text {Signal }}, \underbrace{U}_{\text {Noise }}) \tag{S}
\end{equation*}
$$

Ex: $D=\left\{X_{1}, \ldots, X_{n}\right\}$, where

$$
X_{i}=\theta+U_{i}, \quad U_{i} \stackrel{\mathrm{iid}}{\sim} N(0,1),
$$

and $U=\left\{U_{i}, i=1, \ldots, n\right\}$ represents "God's Uncertainty"

- Frequentist: Fix parameter θ, vary D It all depends on which Replications you want ...

Statistical Model via Stochastic Representation

$$
\begin{equation*}
\underbrace{D}_{\text {Data }}=G(\underbrace{\theta}_{\text {Signal }}, \underbrace{U}_{\text {Noise }}) \tag{S}
\end{equation*}
$$

Ex: $D=\left\{X_{1}, \ldots, X_{n}\right\}$, where

$$
X_{i}=\theta+U_{i}, \quad U_{i} \stackrel{\mathrm{iid}}{\sim} N(0,1),
$$

and $U=\left\{U_{i}, i=1, \ldots, n\right\}$ represents "God's Uncertainty"

- Frequentist: Fix parameter θ, vary D
- Bayesian: Fix data D, vary θ

Statistical Model via Stochastic Representation

$$
\begin{equation*}
\underbrace{D}_{\text {Data }}=G(\underbrace{\theta}_{\text {Signal }}, \underbrace{U}_{\text {Noise }}) \tag{S}
\end{equation*}
$$

Ex: $D=\left\{X_{1}, \ldots, X_{n}\right\}$, where

$$
X_{i}=\theta+U_{i}, \quad U_{i} \stackrel{\mathrm{iid}}{\sim} N(0,1),
$$

and $U=\left\{U_{i}, i=1, \ldots, n\right\}$ represents "God's Uncertainty"

- Frequentist: Fix parameter θ, vary D
- Bayesian: Fix data D, vary θ
- Fiducial: Fix neither, but vary U, subject to the constraint (S) (or implied constraints with $A(U)$ fixed)

Eratiotithe
The differences are in the replications

The differences are in the replications
BFF $\quad 5 / 21$

Xiao-Li Meng

Choose Your Replication!

Basu Ex

Summary
Frequentist Inference

$p\left(D^{\prime} \mid \theta\right)$

The differences are in the replications ...

BFF $\quad 5 / 21$

Xiao-Li Meng

Choose Your Replication!

Basu Ex
Summary

Frequentist Inference

$p\left(D^{\prime} \mid \theta\right)$

Bayesian Inference

$p\left(\theta^{\prime} \mid D\right)$

$$
\propto p\left(D \mid \theta^{\prime}\right) \pi_{0}\left(\theta^{\prime}\right)
$$

BFF $\quad 5 / 21$
Xiao-Li Meng

Choose Your Replication!

Basu Ex
Summary

Frequentist Inference

$p\left(D^{\prime} \mid \theta\right)$

Bayesian Inference

$p\left(\theta^{\prime} \mid D\right)$
$\propto p\left(D \mid \theta^{\prime}\right) \pi_{0}\left(\theta^{\prime}\right)$

Fiducial Inference

$$
p\left(D^{\prime}, \theta^{\prime} \mid A(U)\right)
$$

$$
=p\left(D^{\prime} \mid \theta^{\prime}, A(U)\right) \pi\left(\theta^{\prime}\right)
$$

Illustrate BFF for $X \sim N(\theta, 1)$

BFF $6 / 21$
 Frequentist

Choose Your
Replication!
Basu Ex
Summary

Illustrate BFF for $X \sim N(\theta, 1)$

BFF $6 / 21$

Xiao-Li Meng

Choose Your
Replication!
Basu Ex
Summary

Bayesian

Illustrate BFF for $X \sim N(\theta, 1)$

BFF $6 / 21$
Xiao-Li Meng

Choose Your Replication!

Basu Ex

Summary

Bayesian
Fiducial

Illustrate BFF for $X \sim N(\theta, 1)$

BFF $6 / 21$
Xiao-Li Meng
R
Sampling Dist.
$\underset{\text { Replicatio }}{\substack{\text { Choose } \\ \text { Red }}} \quad X \mid \theta \sim N(\theta, 1)$
Choose Y
Replicatio $X \mid \theta \sim N(\theta, 1)$

Illustrate BFF for $X \sim N(\theta, 1)$

Illustrate BFF for $X \sim N(\theta, 1)$

BFF $6 / 21$
Xiao-Li Meng

Choose Y
Replicatio

Frequentist
Sampling Dist. $X \mid \theta \sim N(\theta, 1)$

Bayesian

+ Prior Dist.
$\pi_{0}(\theta) \propto 1$

Fiducial
God's U Dist.
$X-\theta=U \sim N(0,1)$

Illustrate BFF for $X \sim N(\theta, 1)$

BFF $6 / 21$
Xiao-Li Meng

Choose Y
Sampling Dist. $X \mid \theta \sim N(\theta, 1)$

Bayesian

+ Prior Dist.
$\pi_{0}(\theta) \propto 1$

Fiducial
God's U Dist.
$X-\theta=U \sim N(0,1)$

Confidence Interval $\left(X-z_{p}, X+z_{p}\right)$

Illustrate BFF for $X \sim N(\theta, 1)$
BFF $6 / 21$

Xiao-Li Meng

Choose Y
Replicatio

Frequentist
Sampling Dist. $X \mid \theta \sim N(\theta, 1)$

Bayesian

+ Prior Dist.
$\pi_{0}(\theta) \propto 1$
Posterior Dist. $\theta \mid X \sim N(X, 1)$

Confidence Interval $\left(X-z_{p}, X+z_{p}\right)$

Illustrate BFF for $X \sim N(\theta, 1)$
BFF $6 / 21$

Xiao-Li Meng

Choose Y
Replicatio
Basu Ex
Summary
Sampling Dist. $X \mid \theta \sim N(\theta, 1)$

Bayesian

+ Prior Dist. $\pi_{0}(\theta) \propto 1$

Posterior Dist. $\theta \mid X \sim N(X, 1)$

Fiducial

God's U Dist.
$X-\theta=U \sim N(0,1)$
Fiducial Dist.
$\theta=X+U \sim N(X, 1)$

Confidence Interval $\left(X-z_{p}, X+z_{p}\right)$

Illustrate BFF for $X \sim N(\theta, 1)$
BFF $6 / 21$

Xiao-Li Meng

Choose Y
Replicatio

Sampling Dist. $X \mid \theta \sim N(\theta, 1)$

Bayesian

+ Prior Dist.
$\pi_{0}(\theta) \propto 1$
Posterior Dist. $\theta \mid X \sim N(X, 1)$

Fiducial

God's U Dist.
$X-\theta=U \sim N(0,1)$
Fiducial Dist.
$\theta=X+U \sim N(X, 1)$

> Confidence Interval $\left(X-z_{p}, X+z_{p}\right)$

Posterior Interval
 $\left(X-z_{p}, X+z_{p}\right)$

Illustrate BFF for $X \sim N(\theta, 1)$

Choose Yo
Replicatio

Frequentist
Sampling Dist. $X \mid \theta \sim N(\theta, 1)$
Basu Ex
Summary

Confidence Interval $\left(X-z_{p}, X+z_{p}\right)$

Bayesian

+ Prior Dist.
$\pi_{0}(\theta) \propto 1$
Posterior Dist. $\theta \mid X \sim N(X, 1)$

Posterior Interval
$\left(X-z_{p}, X+z_{p}\right)$

Fiducial

God's U Dist.
$X-\theta=U \sim N(0,1)$
Fiducial Dist.
$\theta=X+U \sim N(X, 1)$

Fiducial Interval
$\left(X-z_{p}, X+z_{p}\right)$

Illustrate BFF for $X \sim N(\theta, 1)$

BFF
6/21
Frequentist
Xiao-Li Meng

Choose Y Replicatio

Sampling Dist. $X \mid \theta \sim N(\theta, 1)$

Confidence Dist.
$N(X, 1)$

Confidence Interval $\left(X-z_{p}, X+z_{p}\right)$

Bayesian

+ Prior Dist.
$\pi_{0}(\theta) \propto 1$
Posterior Dist. $\theta \mid X \sim N(X, 1)$

Posterior Interval
$\left(X-z_{p}, X+z_{p}\right)$

Fiducial

God's U Dist.
$X-\theta=U \sim N(0,1)$
Fiducial Dist.
$\theta=X+U \sim N(X, 1)$

Fiducial Interval
$\left(X-z_{p}, X+z_{p}\right)$

Illustrate BFF for $X \sim N(\theta, 1)$

BFF
6/21
Frequentist

Xiao-Li Meng

Choose Replicatio

Sampling Dist. $X \mid \theta \sim N(\theta, 1)$

Confidence Dist.
$N(X, 1)$

Confidence Interval $\left(X-z_{p}, X+z_{p}\right)$

Bayesian

+ Prior Dist.
$\pi_{0}(\theta) \propto 1$
Posterior Dist. $\theta \mid X \sim N(X, 1)$

Posterior Interval
$\left(X-z_{p}, X+z_{p}\right)$

Fiducial

God's U Dist.
$X-\theta=U \sim N(0,1)$
Fiducial Dist.
$\theta=X+U \sim N(X, 1)$

Fiducial Interval
$\left(X-z_{p}, X+z_{p}\right)$

Generate for $i=1, \ldots$
$X_{i} \mid \theta \sim N(\theta, 1)$, then
$\left(X_{i}-1.96, X_{i}+1.96\right)$
covers $\theta 95 \%$ of times

Illustrate BFF for $X \sim N(\theta, 1)$

Choose Y Replicatio

Sampling Dist. $X \mid \theta \sim N(\theta, 1)$

Confidence Dist.
$N(X, 1)$

Confidence Interval $\left(X-z_{p}, X+z_{p}\right)$

Bayesian

+ Prior Dist.
$\pi_{0}(\theta) \propto 1$
Posterior Dist. $\theta \mid X \sim N(X, 1)$

Posterior Interval
$\left(X-z_{p}, X+z_{p}\right)$

Fiducial

God's U Dist.

$$
X-\theta=U \sim N(0,1)
$$

Fiducial Dist.
$\theta=X+U \sim N(X, 1)$

Fiducial Interval
$\left(X-z_{p}, X+z_{p}\right)$

Generate for $i=1, \ldots$ $X_{i} \mid \theta \sim N(\theta, 1)$, then
$\left(X_{i}-1.96, X_{i}+1.96\right)$ covers $\theta 95 \%$ of times

Generate for $i=1, \ldots$ $\theta_{i} \mid X \sim N(X, 1)$, then
$(X-1.96, X+1.96)$
covers $\theta_{i} 95 \%$ of times

Illustrate BFF for $X \sim N(\theta, 1)$

6/21

Frequentist

Xiao-Li Meng

Choose Y

 ReplicatioSampling Dist. $X \mid \theta \sim N(\theta, 1)$

Bayesian

+ Prior Dist.
$\pi_{0}(\theta) \propto 1$
Posterior Dist. $\theta \mid X \sim N(X, 1)$

Posterior Interval $\left(X-z_{p}, X+z_{p}\right)$

Fiducial

God's U Dist.

$$
X-\theta=U \sim N(0,1)
$$

Fiducial Dist.
$\theta=X+U \sim N(X, 1)$

Fiducial Interval

$$
\left(X-z_{p}, X+z_{p}\right)
$$

Generate for $i=1, \ldots$
$\theta_{i} \sim$ any $\pi(\theta)$, \&
$X_{i} \mid \theta_{i} \sim N\left(\theta_{i}, 1\right)$, then
$\left(X_{i}-1.96, X_{i}+1.96\right)$ covers $\theta_{i} 95 \%$ of times

Finding the Right "Control Population": Treating Data as Your Patient

BFF $\quad 7 / 21$

Xiao-Li Meng

Choose Your Replication!

Basu Ex
Summary

The Inevitable Statistical "Bootstrap": Creating Internal Replications

BFF $8 / 21$
Xiao-Li Meng

Choose Your Replication!

Basu Ex
Summary
(a) Deterministic Patterns

(b) Probabilistic Patterns

(probabilistic)

(ii)

(iii)

Relevant Controls/Replications are always needed

BFF
 9/21

Xiao-Li Meng

Choose Your Replication!

Summary

Error on Actual Problem Average Error over Relevant
Δ
$\mathrm{L}(\theta, \hat{\theta})$
Loss: Specify how "far" θ is from $\hat{\theta}$ via loss function.

$$
I(\theta \notin C(D)) \text { * }
$$

Coverage: Does our set contain the true value of θ ?

$$
\mathrm{I}(\hat{T} \neq T)
$$

Type I or II Error: Do we falsely reject or falsely accept H_{0} ?

Controls $\bar{\Delta}^{\prime}$

References

Robinson 1979b
Risk: The average loss of an estimator over control problems ($D^{\prime}, \theta^{\prime}$).

Non-Coverage Probability:

 Proportion of times a set estimate, e.g. interval estimate, fails to contain the true value of θ^{\prime}.Error Probability: The test's rates of false rejection and false acceptance when applied to control problems.

Rukhin 1988, Lu and Berger 1989, Fourdrinier and Wells 2012

Casella 1992, Goutis and Casella 1995,
Robinson 1979a, Berger 1988

Hypothesis Test
Goal: Should we reject a null hypothesis, H_{0}, based on evidence from data?

* I statement) denotes the indicator function: it equals 1 if the statement in parentheses is true and 0 otherwise.

Multi-resolution Replications

Statistics

BFF
10/21
Xiao-Li Meng

Choose Your Replication!

Basu Ex
Summary
(a) True Image at Varying Resolutions

High Resolution

(b) Pixels Sampled at Varying Densities

Low Density

(a) True lmage Varying Resolut

Low Resolution

The Problem Gets Easier
But My Intervals Get Longer ？！

BFF
 11／21

Xiao－Li Meng

Choose Your Replication！

Basu Ex
Summary

When Ancillary Statistics Are Not Enough For Uncertainty Quantification

Precision as Function of Multiple Features (Basu 1964)

(X_{i}, Y_{i}) bivariate standard normal with unknown correlation θ

Precision as Function of Multiple Features (Basu 1964)

(X_{i}, Y_{i}) bivariate standard normal with unknown correlation θ

- Fact 1: X_{i}, Y_{i} marginally ancillary, not jointly ancillary.

BFF

Precision as Function of Multiple Features (Basu 1964)

(X_{i}, Y_{i}) bivariate standard normal with unknown correlation θ

- Fact 1: X_{i}, Y_{i} marginally ancillary, not jointly ancillary.
- Fact 2: As $\|X\|$ or $\|Y\|$ increases, precision for θ increases.

BFF
12/21

Precision as Function of Multiple Features (Basu 1964)

$\left(X_{i}, Y_{i}\right)$ bivariate standard normal with unknown correlation θ

- Fact 1: X_{i}, Y_{i} marginally ancillary, not jointly ancillary.
- Fact 2: As $\|X\|$ or $\|Y\|$ increases, precision for θ increases.

Option 1: Evaluate uncertainty of $\hat{\theta}$ (MLE) unconditionally. Construct pivot (using inverse CDF) and invert into Cl .

BFF
12/21

Precision as Function of Multiple Features (Basu 1964)

$\left(X_{i}, Y_{i}\right)$ bivariate standard normal with unknown correlation θ

- Fact 1: X_{i}, Y_{i} marginally ancillary, not jointly ancillary.
- Fact 2: As $\|X\|$ or $\|Y\|$ increases, precision for θ increases.

Option 1: Evaluate uncertainty of $\hat{\theta}$ (MLE) unconditionally. Construct pivot (using inverse CDF) and invert into Cl .

- Achieves exact, unconditional coverage.

Quantification

Precision as Function of Multiple Features (Basu 1964)

(X_{i}, Y_{i}) bivariate standard normal with unknown correlation θ

- Fact 1: X_{i}, Y_{i} marginally ancillary, not jointly ancillary.
- Fact 2: As $\|X\|$ or $\|Y\|$ increases, precision for θ increases.

Option 1: Evaluate uncertainty of $\hat{\theta}$ (MLE) unconditionally. Construct pivot (using inverse CDF) and invert into Cl .

- Achieves exact, unconditional coverage.

Option 2: Evaluate uncertainty of $\hat{\theta}$ conditional on $\|X\|$.

- But what about the effect of $\|Y\|$ on precision?

A Heterogeneous Population of Datasets

BFF
13/21

Choose Your Replication!

Basu Ex
Summary

High ||X||

Low ||Y|

High ||Y||

Here's Where Resolution Helps Us Reason...

BFF

A Regression Perspective

- As $\|X\|$ increases, precision of $\hat{\theta}$ increases.

Here's Where Resolution Helps Us Reason...

BFF
14/21

Xiao-Li Meng

Choose Your Replication!

Basu Ex

A Regression Perspective

- As $\|X\|$ increases, precision of $\hat{\theta}$ increases.
- As $\|Y\|$ increases, precision of $\hat{\theta}$ increases.

Here's Where Resolution Helps Us Reason...

BFF

A Regression Perspective

- As $\|X\|$ increases, precision of $\hat{\theta}$ increases.
- As $\|Y\|$ increases, precision of $\hat{\theta}$ increases.
- The first order effects of $\|X\|$ and $|\mid Y \|$ on precision are robust to assumptions about θ.

Here's Where Resolution Helps Us Reason...

BFF
14/21

Xiao-Li Meng

A Regression Perspective

- As $\|X\|$ increases, precision of $\hat{\theta}$ increases.
- As $\|Y\|$ increases, precision of $\hat{\theta}$ increases.
- The first order effects of $\|X\|$ and $\|Y\|$ on precision are robust to assumptions about θ.

But when we condition on $\|X\|$ and $\|Y\| \ldots$

- We also model second order effect: how $\|X\|$ and $\|Y\|$ together affect data precision (their interaction).

Here's Where Resolution Helps Us Reason...

BFF
14/21

Xiao-Li Meng

A Regression Perspective

- As $\|X\|$ increases, precision of $\hat{\theta}$ increases.
- As $\|Y\|$ increases, precision of $\hat{\theta}$ increases.
- The first order effects of $\|X\|$ and $\|Y\|$ on precision are robust to assumptions about θ.

But when we condition on $\|X\|$ and $\|Y\| \ldots$

- We also model second order effect: how $\|X\|$ and $\|Y\|$ together affect data precision (their interaction).
- Second order effect (interaction term) is not robust to prior assumptions about θ.

A Regression Perspective

- As $\|X\|$ increases, precision of $\hat{\theta}$ increases.
- As $\|Y\|$ increases, precision of $\hat{\theta}$ increases.
- The first order effects of $\|X\|$ and $\|Y\|$ on precision are robust to assumptions about θ.

But when we condition on $\|X\|$ and $\|Y\| \ldots$

- We also model second order effect: how $\|X\|$ and $\|Y\|$ together affect data precision (their interaction).
- Second order effect (interaction term) is not robust to prior assumptions about θ.
- How to account for first order effects while ignoring second order effects and do so in a principled way?

Fiducial's Pivotal Idea (Fraser 68, Hannig 09)

God's U Always Exists

Represent data as $X=g(\theta ; U)$ where $U \sim p(U)$ is known.
Normal : $\quad X=\theta+U \quad U \sim N(0,1)$

Fiducial's Pivotal Idea (Fraser 68, Hannig 09)

God's U Always Exists

Represent data as $X=g(\theta ; U)$ where $U \sim p(U)$ is known.

$$
\text { Normal : } \quad X=\theta+U \quad U \sim N(0,1)
$$

Such representations even exist in cases where pivots do not:
Bernoulli : $\quad X=I(U<\theta) \quad U \sim \operatorname{Unif}[0,1]$.

God's U Always Exists

Represent data as $X=g(\theta ; U)$ where $U \sim p(U)$ is known.

$$
\text { Normal : } \quad X=\theta+U \quad U \sim N(0,1)
$$

Such representations even exist in cases where pivots do not:

$$
\text { Bernoulli : } \quad X=I(U<\theta) \quad U \sim \operatorname{Unif}[0,1] .
$$

Fiducial Procedure

1. Make a "post-data" inference for U without involving θ by ignoring a part or all data: e.g., pretend $U \mid X \sim N(0,1)$.

Fiducial's Pivotal Idea (Fraser 68, Hannig 09)

God's U Always Exists

Represent data as $X=g(\theta ; U)$ where $U \sim p(U)$ is known.

$$
\text { Normal : } \quad X=\theta+U \quad U \sim N(0,1)
$$

Such representations even exist in cases where pivots do not:

$$
\text { Bernoulli : } \quad X=I(U<\theta) \quad U \sim \operatorname{Unif}[0,1] .
$$

Fiducial Procedure

1. Make a "post-data" inference for U without involving θ by ignoring a part or all data: e.g., pretend $U \mid X \sim N(0,1)$.
2. Convert inference for U into inference for θ by inverting $X=g(\theta ; U)$ to obtain $\theta=h(U ; X)$:

$$
\text { E.g. : } \quad \theta=X-U \sim N(X, 1) \text {. }
$$

Fiducial Inference for Bivariate Normal

BFF
16/21

Xiao-Li Meng

Choose Your Replication!

Basu Ex
$\left(X_{i}, Y_{i}\right)$ bivariate normal with mean 0 , var 1 and correlation θ.

- Reduce to sufficient statistics: $S_{1}=\sum_{i}\left(X_{i}+Y_{i}\right)^{2}$ and $S_{2}=\sum_{i}\left(X_{i}-Y_{i}\right)^{2}$.

Fiducial Inference for Bivariate Normal

BFF
16/21

Xiao-Li Meng

Choose Your Replication!
$\left(X_{i}, Y_{i}\right)$ bivariate normal with mean 0 , var 1 and correlation θ.

- Reduce to sufficient statistics: $S_{1}=\sum_{i}\left(X_{i}+Y_{i}\right)^{2}$ and $S_{2}=\sum_{i}\left(X_{i}-Y_{i}\right)^{2}$.
- Representation: $S_{1}=4(1+\theta)^{2} Q_{1}$ and $S_{2}=4(1-\theta)^{2} Q_{2}$ where Q_{i} are i.i.d. $\chi_{(n)}^{2}$.

Fiducial Inference for Bivariate Normal

BFF
16/21

Xiao-Li Meng
$\left(X_{i}, Y_{i}\right)$ bivariate normal with mean 0 , var 1 and correlation θ.

- Reduce to sufficient statistics: $S_{1}=\sum_{i}\left(X_{i}+Y_{i}\right)^{2}$ and $S_{2}=\sum_{i}\left(X_{i}-Y_{i}\right)^{2}$.
- Representation: $S_{1}=4(1+\theta)^{2} Q_{1}$ and $S_{2}=4(1-\theta)^{2} Q_{2}$ where Q_{i} are i.i.d. $\chi_{(n)}^{2}$.
- Inference for Q_{1}, Q_{2} : Impute Q_{1} and Q_{2} conditional on

$$
\sqrt{\frac{S_{1}}{4 Q_{1}}}+\sqrt{\frac{S_{2}}{4 Q_{2}}}-2=0
$$

and $Q_{i} \geq S_{i} / 16$ for $i=1,2$.

Fiducial Inference for Bivariate Normal

BFF
$\left(X_{i}, Y_{i}\right)$ bivariate normal with mean 0 , var 1 and correlation θ.

- Reduce to sufficient statistics: $S_{1}=\sum_{i}\left(X_{i}+Y_{i}\right)^{2}$ and $S_{2}=\sum_{i}\left(X_{i}-Y_{i}\right)^{2}$.
- Representation: $S_{1}=4(1+\theta)^{2} Q_{1}$ and $S_{2}=4(1-\theta)^{2} Q_{2}$ where Q_{i} are i.i.d. $\chi_{(n)}^{2}$.
- Inference for Q_{1}, Q_{2} : Impute Q_{1} and Q_{2} conditional on

$$
\sqrt{\frac{S_{1}}{4 Q_{1}}}+\sqrt{\frac{S_{2}}{4 Q_{2}}}-2=0
$$

and $Q_{i} \geq S_{i} / 16$ for $i=1,2$.

- Inference for θ : Given Q_{1}, Q_{2}, let $\theta=\sqrt{\frac{S_{1}}{4 Q_{1}}}-1$.

A Fundamental Principle of Statistical Inference: Bias-Variance or Relevant-Robust Trade-off

Xiao-Li Meng

Choose Your Replication!

Basu Ex
Summary

A Unified Picture of BFF (and Inference)?

Let's be BFF, not merely FWB ...

BFF
21/21
Xiao-Li Meng

Choose Your Replication!

Basu Ex
Summary

