Neutrino Physics - a pragmatic introduction

Neutrino Physics - a pragmatic introduction

노눌

NOBEL 2015

"for the discovery of neutrino oscillations, which shows that neutrinos have mass"

SuperK

SNO

NOBEL 2015

SNO

Neutrino Nobel Prizes:

- 1988 Lederman, Schwartz and Steinberger
- 1995 Reines \& Perl
- 2002 Davies and Koshiba \& Giaconni
- 2015 Kajita and McDonald
- 20yx ???????

NOBEL 2015
"for the discovery of neutrino oscillations, which shows that neutrinos have mass"

NOBEL 2015
"for the discovery of neutrino oscillations, which shows that neutrinos have mass"

"for the discovery of neutrino flavor transformations, which shows that neutrinos have mass"
"for the discovery of neutrino oscillations, which shows that neutrinos have mass"

"for the discovery of neutrino flavor transformations, which shows that neutrinos have mass"
~ vacuum oscillations

NOBEL 2015
"for the discovery of neutrino oscillations, which shows that neutrinos have mass"

"for the discovery of neutrino flavor transformations, which shows that neutrinos have mass"
~ vacuum
oscillations

Wolfenstein matter effects dominant

NOBEL 2015
"for the discovery of neutrino oscillations, which shows that neutrinos have mass"

"for the discovery of neutrino flavor transformations, which shows that neutrinos have mass"
~ vacuum
oscillations

Wolfenstein matter effects dominant
See Smirnov arXiv:1609.02386

Flavor Change implies
 Mass \& Mixings

Key Experimental Neutrino Questions:

- Nature of Neutrino Mass:
- 2 comp \& L violation (Majorana)
- or 4 comp \& L conserved (Dirac)
- Neutrino Standard Model:
- Perform stringent tests 3 nu paradigm: check unitarity, ...
- Determine size and sign of CPV
- Determine atmospheric mass ordering
- Does nu_mu or nu_tau dominate nu_3 (theta_23 octant)
- Beyond 3 nus:
- Steriles, Non-Standard Interactions, Lorentz violation, nuBSM,

Flavor Content of Mass Eigenstates:

- Labeling massive neutrinos: $\left|U_{e 1}\right|^{2}>\left|U_{e 2}\right|^{2}>\left|U_{e 3}\right|^{2}$

Fractional Flavor Content

$$
\begin{aligned}
& \delta m_{s o l}^{2}=+7.6 \times 10^{-5} \mathrm{eV}^{2} \\
& \left|\delta m_{a t m}^{2}\right|=2.4 \times 10^{-3} \mathrm{eV}^{2}
\end{aligned}
$$

$\sin ^{2} \theta_{12} \sim \frac{1}{3}$
$\sin ^{2} \theta_{23} \sim \frac{1}{2}$
$0 \leq \delta<2 \pi$
$\sqrt{\delta m_{\text {atm }}^{2}}=0.05 \mathrm{eV}<\sum m_{\nu_{i}}<0.5 \mathrm{eV}$.
$\sin ^{2} \theta_{13} \sim 0.02$

Neutrino Masses:

$$
\begin{gathered}
\left|\delta m_{a t m}^{2}\right|=2.4 \times 10^{-3} \mathrm{eV}^{2} \\
500 \mathrm{~km} / \mathrm{GeV} \\
\delta m_{\text {sol }}^{2}=+7.6 \times 10^{-5} \mathrm{eV}^{2}
\end{gathered}
$$

$15 \mathrm{~km} / \mathrm{MeV}$

Neutrino Standard Model:

$$
\left(\begin{array}{l}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)
$$

Neutrino Standard Model:

$$
\left(\begin{array}{l}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)
$$

Neutrino Standard Model:

$$
\left(\begin{array}{l}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)
$$

$$
\left(\begin{array}{l}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right)
$$

Neutrino Standard Model:

$$
\left(\begin{array}{l}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)
$$

$$
\left(\begin{array}{l}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right)
$$

$$
\overbrace{\delta_{i j} e^{-i m_{i}^{2} L / 2 E}}^{\nu_{i}}
$$

v_{3}

Neutrino Standard Model:

$$
\left(\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=\left(\begin{array}{ccc}
\mathbf{U}_{e 1} & \mathbf{U}_{\mathrm{e} 2} & \mathbf{U}_{e 3} \\
U_{\mu 1} & U_{\mu 2} & \mathbf{U}_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & \mathbf{U}_{\tau 3}
\end{array}\right) \quad\left(\begin{array}{c}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right)
$$

Mixing Matrix

$$
\overbrace{\delta_{i j} e^{-i m_{i}^{2} L / 2 E}}^{\nu_{j}}
$$

Neutrino Standard Model:

$$
\left(\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=\left(\begin{array}{ccc}
\mathbf{U}_{e 1} & \mathbf{U}_{\mathrm{e} 2} & \mathbf{U}_{e 3} \\
U_{\mu 1} & U_{\mu 2} & \mathbf{U}_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & \mathbf{U}_{\tau 3}
\end{array}\right) \quad\left(\begin{array}{c}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right)
$$

Mixing Matrix

$$
\overbrace{\delta_{i j} e^{-i m_{i}^{2} L / 2 E}}^{\nu_{j}}
$$

$$
\left|U_{e 1}\right|^{2}>\left|U_{e 2}\right|^{2}>\left|U_{e 3}\right|^{2}
$$

Neutrino Standard Model:

$$
\left(\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=\left(\begin{array}{ccc}
\mathbf{U}_{e 1} & \mathbf{U}_{\mathrm{e} 2} & \mathbf{U}_{e 3} \\
U_{\mu 1} & U_{\mu 2} & \mathbf{U}_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & \mathbf{U}_{\tau 3}
\end{array}\right) \quad\left(\begin{array}{c}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right)
$$

$$
\left.\left|U_{e l}\right|^{2}>\left|U_{e 2}\right|^{2}\right\rangle\left|U_{e s}\right|^{2}
$$

Mixing Matrix

$$
\stackrel{\nu}{i} \delta_{i j} e^{-i m_{i}^{2} L / 2 E}
$$

Unitary

\square

M. Ross-Lonergan + SP arXiv:1508.05095

Quarks:

M. Ross-Lonergan + SP arXiv:1508.05095

Quarks:

M. Ross-Lonergan + SP arXiv:1508.05095

Unitarity Triangle Closures

Normalisations

M. Ross-Lonergan + SP arXiv:1508.05095

$$
\begin{array}{ccc}
1-\left(\left|U_{\alpha 1}\right|^{2}+\left|U_{\alpha 2}\right|^{2}+\left|U_{\alpha 3}\right|^{2}\right) & \text { or } & 1-\left(\left|U_{e i}\right|^{2}+\left|U_{\mu i}\right|^{2}+\left|U_{r i}\right|^{2}\right) \\
\text { Rows } & \text { Columns }
\end{array}
$$

ARE THERE LIGHT STERILE

ARE THERE LIGHT STERILE

$$
U_{\mathrm{PMNS}}^{\text {Extended }}=\left(\begin{array}{cccc}
(\overbrace{U_{e 1}}^{U_{e 1}} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\text {PM M S }} & U_{\tau 2} & U_{\tau 3}
\end{array}\right)\left(\begin{array}{cc}
U_{e n} \\
\cdots & U_{\mu n} \\
\vdots & \vdots
\end{array}\right.
$$

ARE THERE LIGHT STERILE

$$
\begin{aligned}
& \left|\sum_{i=1}^{3} U_{e i} U_{\mu i}\right|^{2} \leq\left(1-\sum_{i=1}^{3}\left|U_{e i}\right|^{2}\right)\left(1-\sum_{i=1}^{3}\left|U_{\mu i}\right|^{2}\right) \\
& \text { - } \nu_{\mu} \text { Disappearance } \\
& \text { - } \nu_{\mu} \text { Disappearance }
\end{aligned}
$$

MINOS+, NOvA, T2K, atmospheric neutrinos (SK and ICECUBE)

ARE THERE LIGHT STERILE

MINOS+, NOvA, T2K, atmospheric neutrinos (SK and ICECUBE)

- ν_{e} Disappearance

Daya Bay, RENO, many $\sim 10 \mathrm{~m}$ Reactor experiments \& source experiments.

ARE THERE LIGHT STERILE

- ν_{μ} Disappearance

MINOS+, NOvA, T2K, atmospheric neutrinos (SK and ICECUBE)

- ν_{e} Disappearance

Daya Bay, RENO, many $\sim 10 \mathrm{~m}$ Reactor experiments \& source experiments.

- $\nu_{\mu} \rightarrow \nu_{e}$ Appearance

Fermilab SBN Program, T2K and NOvA: DUNE \& HyperK

The Three-Detector SBN Program

Distance from Active

Detector	BNB Target	LAr Mass
SBND	110 m	112 ton
MicroBooNE	470 m	87 ton
ICARUS	600 m	476 ton

(collection plane view)

Assuming Unitary with 3 flavors:

$$
\left(\begin{array}{ccc}
\mathbf{U}_{e 1} & \mathbf{U}_{\mathbf{e} 2} & \mathbf{U}_{e 3} \\
U_{\mu 1} & U_{\mu 2} & \mathbf{U}_{\mu \mathbf{3}} \\
U_{\tau 1} & U_{\tau 2} & \mathbf{U}_{\tau 3}
\end{array}\right)
$$

$$
=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right)\left(\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{i \delta_{\mathrm{cp}}} \\
0 & 1 & 0 \\
-s_{13} e^{-i \delta_{\mathrm{cp}}} & 0 & c_{13}
\end{array}\right)\left(\begin{array}{ccc}
c_{21} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
e^{i \eta_{1}} & 0 & 0 \\
0 & e^{i \eta_{2}} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Disappearance:

$$
\begin{aligned}
& \nu_{\mu} \rightarrow \nu_{\mu} \\
& 500 \mathrm{~km} / \mathrm{GeV}
\end{aligned}
$$

$$
\begin{array}{ll}
\nu_{e} \rightarrow \nu_{e} & \nu_{e} \rightarrow \nu_{e} \\
500 \mathrm{~km} / \mathrm{GeV} & 15 \mathrm{~km} / \mathrm{MeV}
\end{array}
$$

Appearance:

$$
\nu_{\mu} \rightarrow \nu_{e}
$$

500 km/GeV

Oscillation Probabilities in Vacuum:

Oscillation Probabilities in Vacuum:

decompose flavor states into mass eigenstates
\Rightarrow then propagator
\Rightarrow decompose mass eigenstates into flavor states

Oscillation Probabilities in Vacuum:

decompose flavor states into mass eigenstates
\Rightarrow then propagator
\Rightarrow decompose mass eigenstates into flavor states

Oscillation Probabilities in Vacuum:

decompose flavor states into mass eigenstates
\Rightarrow then propagator
\Rightarrow decompose mass eigenstates into flavor states

$$
P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=\left|\sum_{i} U_{\alpha i}^{*} e^{-i m_{i}^{2} L / 2 E} U_{\beta i}\right|^{2}
$$

Oscillation Probabilities in Vacuum:

decompose flavor states into mass eigenstates
\Rightarrow then propagator
\Rightarrow decompose mass eigenstates into flavor states

$$
\begin{gathered}
P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=\left|\sum_{i} U_{\alpha i}^{*} e^{-i m_{i}^{2} L / 2 E} U_{\beta i}\right|^{2} \\
P\left(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}\right)=\left|\sum_{i} U_{\alpha i} e^{-i m_{i}^{2} L / 2 E} U_{\beta i}^{*}\right|^{2}
\end{gathered}
$$

Oscillation Probabilities in Vacuum:

decompose flavor states into mass eigenstates
\Rightarrow then propagator
\Rightarrow decompose mass eigenstates into flavor states

$$
\begin{aligned}
P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right) & =\left|\sum_{i} U_{\alpha i}^{*} e^{-i m_{i}^{2} L / 2 E} U_{\beta i}\right|^{2} \\
P\left(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta}\right) & =\left|\sum_{i} U_{\alpha i} e^{-i m_{i}^{2} L / 2 E} U_{\beta i}^{*}\right|^{2} \\
& =P\left(\nu_{\beta} \rightarrow \nu_{\alpha}\right) \quad C P T
\end{aligned}
$$

Disappearance: $\nu_{e} \rightarrow \nu_{e}$ and $\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}$
In vacuum the electron neutrino disappearance is

$$
\begin{aligned}
P= & 1-4\left|U_{e 2}\right|^{2}\left|U_{e 1}\right|^{2} \sin ^{2} \Delta_{21} \\
& -4\left|U_{e 3}\right|^{2}\left|U_{e 1}\right|^{2} \sin ^{2} \Delta_{31}-4\left|U_{e 3}\right|^{2}\left|U_{e 2}\right|^{2} \sin ^{2} \Delta_{32} \\
= & 1-\cos ^{4} \theta_{13} \sin ^{2} 2 \theta_{12} \sin ^{2} \Delta_{21} \\
& -\sin ^{2} 2 \theta_{13}\left(\cos ^{2} \theta_{12} \sin ^{2} \Delta_{31}+\sin ^{2} \theta_{12} \sin ^{2} \Delta_{32}\right)
\end{aligned}
$$

Disappearance: $\quad \boldsymbol{\nu}_{\boldsymbol{e}} \rightarrow \boldsymbol{\nu}_{\boldsymbol{e}}$ and $\overline{\boldsymbol{\nu}}_{\boldsymbol{e}} \rightarrow \overline{\boldsymbol{\nu}}_{\boldsymbol{e}}$
In vacuum the electron neutrino disappearance is

$$
\begin{aligned}
P= & 1-4\left|U_{e 2}\right|^{2}\left|U_{e 1}\right|^{2} \sin ^{2} \Delta_{21} \\
& -4\left|U_{e 3}\right|^{2}\left|U_{e 1}\right|^{2} \sin ^{2} \Delta_{31}-4\left|U_{e 3}\right|^{2}\left|U_{e 2}\right|^{2} \sin ^{2} \Delta_{32} \\
= & 1-\cos ^{4} \theta_{13} \sin ^{2} 2 \theta_{12} \sin ^{2} \Delta_{21} \\
& -\sin ^{2} 2 \theta_{13}\left(\cos ^{2} \theta_{12} \sin ^{2} \Delta_{31}+\sin ^{2} \theta_{12} \sin ^{2} \Delta_{32}\right)
\end{aligned}
$$

Disappearance: $\quad \boldsymbol{\nu}_{\boldsymbol{e}} \rightarrow \boldsymbol{\nu}_{\boldsymbol{e}}$ and $\overline{\boldsymbol{\nu}}_{\boldsymbol{e}} \rightarrow \overline{\boldsymbol{\nu}}_{\boldsymbol{e}}$
In vacuum the electron neutrino disappearance is

$$
\begin{aligned}
P= & 1-4\left|U_{e 2}\right|^{2}\left|U_{e 1}\right|^{2} \sin ^{2} \Delta_{21} \quad \Delta_{i j} \equiv \frac{\Delta m_{i j}^{2} L}{4 E} \\
& -4\left|U_{e 3}\right|^{2}\left|U_{e 1}\right|^{2} \sin ^{2} \Delta_{31}-4\left|U_{e 3}\right|^{2}\left|U_{e 2}\right|^{2} \sin ^{2} \Delta_{32} \\
= & 1-\cos ^{4} \theta_{13} \sin ^{2} 2 \theta_{12} \sin ^{2} \Delta_{21} \\
& -\sin ^{2} 2 \theta_{13}\left(\cos ^{2} \theta_{12} \sin ^{2} \Delta_{31}+\sin ^{2} \theta_{12} \sin ^{2} \Delta_{32}\right)
\end{aligned}
$$

Disappearance: $\quad \boldsymbol{\nu}_{\boldsymbol{e}} \rightarrow \boldsymbol{\nu}_{\boldsymbol{e}}$ and $\overline{\boldsymbol{\nu}}_{\boldsymbol{e}} \rightarrow \overline{\boldsymbol{\nu}}_{\boldsymbol{e}}$
In vacuum the electron neutrino disappearance is

$$
\begin{aligned}
& P=1-4\left|U_{e 2}\right|^{2}\left|U_{e 1}\right|^{2} \sin ^{2} \Delta_{21} \\
& \Delta_{i j} \equiv \frac{\Delta m_{i j}^{2} L}{4 E} \\
& -4\left|U_{e 3}\right|^{2}\left|U_{e 1}\right|^{2} \sin ^{2} \Delta_{31}-4\left|U_{e 3}\right|^{2}\left|U_{e 2}\right|^{2} \sin ^{2} \Delta_{32} \\
& =1-\cos ^{4} \theta_{13} \sin ^{2} 2 \theta_{12} \sin ^{2} \Delta_{21} \\
& -\sin ^{2} 2 \theta_{13}\left(\cos ^{2} \theta_{12} \sin ^{2} \Delta_{31}+\sin ^{2} \theta_{12} \sin ^{2} \Delta_{32}\right) \\
& \approx \sin ^{2} \Delta_{e e} \quad \text { with } \Delta m_{e e}^{2}=c_{21}^{2} \Delta m_{31}^{2}+s_{21}^{2} \Delta m_{32}^{2} \\
& \approx \sin ^{2} 2 \theta_{13}
\end{aligned}
$$

Disappearance: $\quad \nu_{e} \rightarrow \nu_{e}$ and $\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}$
In vacuum the electron neutrino disappearance is

$$
\begin{aligned}
& P=1-4\left|U_{e 2}\right|^{2}\left|U_{e 1}\right|^{2} \sin ^{2} \Delta_{21} \\
& \Delta_{i j} \equiv \frac{\Delta m_{i j}^{2} L}{4 E} \\
& -4\left|U_{e 3}\right|^{2}\left|U_{e 1}\right|^{2} \sin ^{2} \Delta_{31}-4\left|U_{e 3}\right|^{2}\left|U_{e 2}\right|^{2} \sin ^{2} \Delta_{32} \\
& =1-\cos ^{4} \theta_{13} \sin ^{2} 2 \theta_{12} \sin ^{2} \Delta_{21} \\
& -\sin ^{2} 2 \theta_{13}\left(\cos ^{2} \theta_{12} \sin ^{2} \Delta_{31}+\sin ^{2} \theta_{12} \sin ^{2} \Delta_{32}\right) \\
& \approx \sin ^{2} \Delta_{e e} \quad \text { with } \Delta m_{e e}^{2}=c_{21}^{2} \Delta m_{31}^{2}+s_{21}^{2} \Delta m_{32}^{2}
\end{aligned}
$$

Disappearance: $\quad \nu_{e} \rightarrow \nu_{e}$ and $\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}$
In vacuum the electron neutrino disappearance is

$$
\Delta_{i j} \equiv \frac{\Delta m_{i j}^{2} L}{4 E}
$$

$$
-4\left|U_{e 3}\right|^{2}\left|U_{e 1}\right|^{2} \sin ^{2} \Delta_{31}-4\left|U_{e 3}\right|^{2}\left|U_{e 2}\right|^{2} \sin ^{2} \Delta_{32}
$$

$$
=1-\cos ^{4} \theta_{13} \sin ^{2} 2 \theta_{12} \sin ^{2} \Delta_{21}
$$

$$
-\sin ^{2} 2 \theta_{13}\left(\cos ^{2} \theta_{12} \sin ^{2} \Delta_{31}+\sin ^{2} \theta_{12} \sin ^{2} \Delta_{32}\right)
$$

$$
\approx \sin ^{2} \Delta_{e e} \quad \text { with } \Delta m_{e e}^{2}=c_{21}^{2} \Delta m_{31}^{2}+s_{21}^{2} \Delta m_{32}^{2}
$$

KamLAND

$$
\begin{aligned}
& \begin{array}{r}
\text { Daya Bay } \\
\text { RENO }
\end{array}
\end{aligned}
$$

Disappearance: $\quad \nu_{e} \rightarrow \nu_{e}$ and $\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}$
In vacuum the electron neutrino disappearance is

$$
\begin{aligned}
& P=1-4\left|U_{e 2}\right|^{2}\left|U_{e 1}\right|^{2} \sin ^{2} \Delta_{21} \\
& \Delta_{i j} \equiv \frac{\Delta m_{i j}^{2} L}{4 E} \\
& -4\left|U_{e 3}\right|^{2}\left|U_{e 1}\right|^{2} \sin ^{2} \Delta_{31}-4\left|U_{e 3}\right|^{2}\left|U_{e 2}\right|^{2} \sin ^{2} \Delta_{32} \\
& =1-\cos ^{4} \theta_{13} \sin ^{2} 2 \theta_{12} \sin ^{2} \Delta_{21} \\
& -\sin ^{2} 2 \theta_{13}\left(\cos ^{2} \theta_{12} \sin ^{2} \Delta_{31}+\sin ^{2} \theta_{12} \sin ^{2} \Delta_{32}\right) \\
& \approx \sin ^{2} \Delta_{e e} \quad \text { with } \Delta m_{e e}^{2}=c_{21}^{2} \Delta m_{31}^{2}+s_{21}^{2} \Delta m_{32}^{2}
\end{aligned}
$$

> Daya Bay RENO
> D-Chooz
> RENO 50

KamLAND

Solar Neutrinos

\&

Matter Effects

Coherent Forward Scattering:

Wolfenstein ‘78

Identical Solar Twins:

Identical Solar Twins:

~ fractions are energy dependent

Identical Solar Twins:

~ fractions are energy dependent

\# of oscillation lengths in Solar radius is

Identical Solar Twins:

~ fractions are energy dependent
(䇇
\# of oscillation lengths in Solar radius is $2 \times 10(4 \pm 1)$

~vacuum

pp and ${ }^{7} \mathrm{Be}$

$$
\begin{aligned}
& f_{1} \sim 69 \% \\
& f_{2} \sim 31 \%
\end{aligned}
$$

~vacuum

pp and ${ }^{7} \mathrm{Be}$

$$
\begin{aligned}
& f_{1} \sim 69 \% \\
& f_{2} \sim 31 \%
\end{aligned}
$$

$f_{2} \sim 90 \%$
matter dominated

Life of a Boron-8 Solar Neutrino:

$\nu_{e} \approx \nu_{2}$ for ${ }^{8} B$

at birth

Solar Center

Life of a Boron-8 Solar Neutrino:

Once a ν_{2} always a ν_{2} !
at birth toddler

Solar Center

$$
v_{\mathrm{e}} \square \quad v_{\mu} \square \quad v_{\tau} \square
$$

Life of a Boron-8 Solar Neutrino:

at birth toddler teenager

Solar Center

Exit Core

$$
v_{\mathrm{e}} \square \quad v_{\mu} \square \quad v_{\tau} \square
$$

Life of a Boron-8 Solar Neutrino:

Life of a Boron-8 Solar Neutrino:

$$
\begin{array}{lll}
v_{\mathrm{e}} ■ \quad v_{\mu} & v_{\tau} \square
\end{array}
$$

$$
\nu ?+e \rightarrow \nu+e \quad \mathrm{CC}+\mathrm{NC}
$$

$$
\begin{aligned}
& \nu_{?}+e \rightarrow \nu+e \quad \mathrm{CC}+\mathrm{NC} \\
& \nu_{e}, \nu_{\mu}, \nu_{\tau}
\end{aligned}
$$

$$
\begin{aligned}
\nu ?+e & \rightarrow \nu+e \quad \mathrm{CC}+\mathrm{NC} \\
\nu_{e}, \nu_{\mu}, \nu_{\tau} & +\nu_{1}, \nu_{2}, \nu_{3}
\end{aligned}
$$

ν_{2}

$$
\begin{aligned}
\nu ?+e & \rightarrow \nu+e \quad \mathrm{CC}+\mathrm{NC} \\
\nu_{e}, \nu_{\mu}, \nu_{\tau} & +\nu_{1}, \nu_{2}, \nu_{3}
\end{aligned}
$$

Tension between KamLAND \& Solar Data

NuFIT 2.1 (2016)

Tension between KamLAND \& Solar Data

SNOs CC/NC measurement

$\sin ^{2} \theta_{13}$

Reactor θ_{13} Experiments

Daya Bay

RENO

Double Chooz

曼 from Daya Bay: arXiv:1505.03456

$$
\Delta m_{e e}^{2} \equiv c_{12}^{2} \Delta m_{31}^{2}+s_{12}^{2} \Delta m_{32}^{2} \quad \text { Double Chooz? }
$$

$\sin ^{2} \theta_{13}$

neutrino SM Physics Channels for LBL:

Disappearance: $\nu_{\mu} \rightarrow \nu_{\mu} \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}$

Appearance: $\quad \nu_{\mu} \rightarrow \nu_{e} \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$

neutrino SM Physics Channels for LBL:

Disappearance: $\boldsymbol{\nu}_{\mu} \rightarrow \nu_{\mu} \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}$

Appearance: $\quad \nu_{\mu} \rightarrow \nu_{e} \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$

- Perform Stringent tests of the 3 neutrino paradigm

\author{

- Is there CP Violation
}
- Atm Mass Ordering
(SNO solar ordering)
Dominant Flavor Content of $v _3$

Three nuSM Questions for LBL:

Is there CP Violation

O. Mena \& SP
hep-ph/0312131

- Atm Mass Ordering
(SNO solar ordering)
Dominant Flavor Content of $v _3$

Three nuSM Questions for LBL:

- Is there CP Violation

O. Mena \& SP
hep-ph/0312131
$\mathrm{CPT} \Rightarrow$ invariant $\delta \leftrightarrow-\delta$
- Atm Mass Ordering
(SNO solar ordering)

Dominant Flavor Content of $v _3$

Three nuSM Questions for LBL:

- Is there CP Violation

O. Mena \& SP
hep-ph/0312131
CPT \Rightarrow invariant $\delta \leftrightarrow-\delta$
- Atm Mass Ordering
(SNO solar ordering)
- Dominant Flavor Content of $v _3$

$\sin ^{2} \theta_{23}=$
θ_{23} octant?

- Disappearance:

$$
\nu_{\mu} \rightarrow \nu_{\mu} \quad \Leftrightarrow \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}
$$

$\Delta m_{\mu \mu}^{2}$ and $\left|U_{\mu 3}\right|^{2}=c_{13}^{2} s_{23}^{2}\left(\right.$ but degenerate with $\left.\left(1-\left|U_{\mu 3}\right|^{2}\right)\right)$

$$
\nu_{\mu} \rightarrow \nu_{\mu} \quad \Leftrightarrow \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}
$$

$\Delta m_{\mu \mu}^{2}$ and $\left|U_{\mu 3}\right|^{2}=c_{13}^{2} s_{23}^{2}$ (but degenerate with $\left(1-\left|U_{\mu 3}\right|^{2}\right)$)

$$
\nu_{\mu} \rightarrow \nu_{\mu} \quad \Leftrightarrow \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}
$$

$\Delta m_{\mu \mu}^{2}$ and $\left|U_{\mu 3}\right|^{2}=c_{13}^{2} s_{23}^{2}$ (but degenerate with $\left(1-\left|U_{\mu 3}\right|^{2}\right)$)

$$
\nu_{\mu} \rightarrow \nu_{\mu} \quad \Leftrightarrow \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}
$$

$\Delta m_{\mu \mu}^{2}$ and $\left|U_{\mu 3}\right|^{2}=c_{13}^{2} s_{23}^{2}$ (but degenerate with $\left(1-\left|U_{\mu 3}\right|^{2}\right)$)

$$
\nu_{\mu} \rightarrow \nu_{\mu} \quad \Leftrightarrow \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}
$$

$\Delta m_{\mu \mu}^{2}$ and $\left|U_{\mu 3}\right|^{2}=c_{13}^{2} s_{23}^{2}$ (but degenerate with $\left(1-\left|U_{\mu 3}\right|^{2}\right)$) difference

$$
\nu_{\mu} \rightarrow \nu_{\mu} \quad \Leftrightarrow \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}
$$

$\Delta m_{\mu \mu}^{2}$ and $\left|U_{\mu 3}\right|^{2}=c_{13}^{2} s_{23}^{2}$ (but degenerate with $\left(1-\left|U_{\mu 3}\right|^{2}\right)$) difference

$$
\begin{aligned}
\left|U_{\mu 3}\right|^{2}\left(1-\left|U_{\mu 3}\right|^{2}\right)=s_{23}^{2} c_{23}^{2}-s_{13}^{2} s_{23}^{2} & \cos 2 \theta_{23}-s_{13}^{4} s_{23}^{4} \\
& \approx 0
\end{aligned}
$$

$\sin ^{2} \theta_{23}$

T2K

NOvA

$$
\sin ^{2}\left(\theta_{23}\right)=0.40_{-0.02}^{+0.03}\left(0.63_{-0.03}^{+0.02}\right)
$$

$\sin ^{2} \theta_{23}$

	NH	IH	$\sin ^{2}\left(\theta_{23}\right)=0.40_{-0.02}^{+0.03}\left(0.63_{-0.03}^{+0.02}\right)$
$\sin ^{2} \theta_{23}$	$0.532_{-0.068}^{+0.046}$	$0.534_{-0.066}^{+0.043}$	$\sin ^{+0.02}$

$\sin ^{2} \theta_{23}$

NH	IH	$\sin ^{2}\left(\theta_{23}\right)=0.534_{-0.066}^{+0.043}$
$\sin ^{2} \theta_{23}$	$0.532_{-0.068}^{+0.046}$	$\sin _{-0.03}^{+0.03}\left(0.63_{-0.0}^{+0.02}\right.$

- $\Delta \chi^{2}$ flat

$\sin ^{2} \theta_{23}$

NuFIT 2.2 (2016)

Ve Appearance Channel:

$$
\begin{aligned}
& \\
& \nu_{\mu} \rightarrow \nu_{e}
\end{aligned} \stackrel{\mathrm{CP}}{\Longleftrightarrow} \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}
$$

Ve Appearance Channel:

ν_{e} Appearance Channel:

$$
\bar{\nu}_{\mu} \longrightarrow \bar{\nu}_{e}
$$

$$
V_{\mu} \longrightarrow V_{e}
$$

$$
\nu_{e} \rightarrow \nu_{\mu}
$$

$$
\begin{gathered}
\Uparrow \\
\bar{\nu}_{e} \rightarrow \bar{\nu}_{\mu}
\end{gathered}
$$

T
ν_{e} Appearance Channel:

Ve Appearance Channel:

> T2K (295km) and NOvA (810km)
ν Appearance Channel:

- Running experiments:

> T2K (295km) and NOvA (810km)

- Future experiments:

> DUNE (40 ktons LAr, 1300 km)
> HyperKamiokaNDE $\left(0.5 \mathrm{kMtons} \mathrm{H}_{2} \mathrm{O}, 295 \mathrm{~km}\right)$
ν Appearance Channel:

> T2K (295km) and NOvA (810km)

- Future experiments:

DUNE (40 ktons LAr, 1300km)
HyperKamiokaNDE ($0.5 \mathrm{kMtons} \mathrm{H}_{2} \mathrm{O}, 295 \mathrm{~km}$)

$$
\nu_{\mu} \rightarrow \nu_{e} \quad \Leftrightarrow \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}
$$

CPV / δ, mass ordering and dominant flavor of ν_{3}

$$
\begin{aligned}
A_{\mu e}=A_{31}+e^{i\left(\delta+\Delta_{32}\right)} A_{21} & \Delta_{i j}=\Delta m_{i j}^{2} L / 4 E \\
P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=A_{\mu e} A_{\mu e}^{*} &
\end{aligned}
$$

$$
\begin{gathered}
A_{\mu e}=A_{31}+\underbrace{e^{i\left(\delta+\Delta_{32}\right)}} A_{21} \quad \Delta_{i j}=\Delta m_{i j}^{2} L / 4 E \\
P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=A_{\mu e} A_{\mu e}^{*}
\end{gathered}
$$

$$
A_{\mu e}=A_{31}+e^{i\left(\delta+\Delta_{32}\right)} A_{21}
$$

$$
\Delta_{i j}=\Delta m_{i j}^{2} L / 4 E
$$

$$
A_{\mu e}=A_{31}+e^{i\left(\delta+\Delta_{32}\right)} A_{21}
$$

$$
\Delta_{i j}=\Delta m_{i j}^{2} L / 4 E
$$

$A_{31}=2 s_{23} s_{13} c_{13} \sin \Delta_{31}$

$$
A_{21}=2 c_{13} c_{23} s_{12} c_{12} \sin \Delta_{21}
$$

$$
A_{\mu e}=A_{31}+e^{i\left(\delta+\Delta_{32}\right)} A_{21}
$$

$$
\Delta_{i j}=\Delta m_{i j}^{2} L / 4 E
$$

$\delta=0.0 \pi$
$\Delta_{32}=0.40 \pi$

Denton \& Parke

$A_{31}=2 s_{23} s_{13} c_{13} \sin \Delta_{31}$

$$
A_{21}=2 c_{13} c_{23} s_{12} c_{12} \sin \Delta_{21}
$$

$$
A_{\mu e}=A_{31}+e^{i\left(\delta+\Delta_{32}\right)} A_{21}
$$

$$
\Delta_{i j}=\Delta m_{i j}^{2} L / 4 E
$$

$$
\begin{align*}
& \delta=0.0 \pi \\
& \Delta_{32}=0.40 \pi \\
& \begin{array}{ll}
-A_{31} \\
- & A_{21} \\
- & A_{\mu e} \\
- & \bar{A}_{\mu e}^{*}
\end{array} \quad \begin{array}{l}
P\left(\nu_{\mu} \rightarrow \nu_{e}\right)=A_{\mu e} A_{\mu e}^{*} \\
P\left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}\right)=\bar{A}_{\mu e}^{*} \bar{A}_{\mu e}
\end{array}
\end{align*}
$$

CPV:
$\nu_{\mu} \rightarrow \nu_{e}$

$$
\begin{aligned}
\Delta P & \equiv P\left(\nu_{\mu} \rightarrow \nu_{e}\right)-P\left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}\right) \\
& =\left|A_{31}+e^{i\left(\Delta_{32}+\delta\right)} A_{21}\right|^{2}-\left|A_{31}+e^{i\left(\Delta_{32}-\delta\right)} A_{21}\right|^{2} \\
& \uparrow \begin{array}{c}
\text { only difference }
\end{array}{ }^{2}
\end{aligned}
$$

CPV:

$$
\begin{aligned}
\Delta P & \equiv P\left(\nu_{\mu} \rightarrow \nu_{e}\right)-P\left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}\right) \\
& =\left|A_{31}+e^{i\left(\Delta_{32}+\delta\right)} A_{21}\right|^{2}-\left|A_{31}+e^{i\left(\Delta_{32}-\delta\right)} A_{21}\right|^{2}
\end{aligned}
$$

$$
=2 A_{31} A_{21}\left\{\cos \left(\Delta_{32}+\delta\right)-\cos \left(\Delta_{32}-\delta\right)\right\}
$$

$$
=-2 \cos \theta_{13} \sin 2 \theta_{13} \sin 2 \theta_{12} \sin 2 \theta_{23} \sin \delta \sin \Delta_{21} \sin \Delta_{31} \sin \Delta_{32}
$$

CPV:
$\nu_{\mu} \rightarrow \nu_{e}$

$$
\begin{aligned}
\Delta P & \equiv P\left(\nu_{\mu} \rightarrow \nu_{e}\right)-P\left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}\right) \\
& =\left|A_{31}+e^{i\left(\Delta_{32}+\delta\right)} A_{21}\right|^{2}-\left|A_{31}+e^{i\left(\Delta_{32}-\delta\right)} A_{21}\right|^{2}
\end{aligned}
$$

$$
=2 A_{31} A_{21}\left\{\cos \left(\Delta_{32}+\delta\right)-\cos \left(\Delta_{32}-\delta\right)\right\}
$$

$$
=-2 \cos \theta_{13} \sin 2 \theta_{13} \sin 2 \theta_{12} \sin 2 \theta_{23} \sin \delta \sin \Delta_{21} \sin \Delta_{31} \sin \Delta_{32}
$$

J=Jarlskog Invariant

CPV:
$\nu_{\mu} \rightarrow \nu_{e}$

$=2 A_{31} A_{21}\left\{\cos \left(\Delta_{32}+\delta\right)-\cos \left(\Delta_{32}-\delta\right)\right\}$
$=-2 \cos \theta_{13} \sin 2 \theta_{13} \sin 2 \theta_{12} \sin 2 \theta_{23} \sin \delta \sin \Delta_{21} \sin \Delta_{31} \sin \Delta_{32}$

J=Jarlskog Invariant
$4 \sin \Delta_{21} \sin \Delta_{31} \sin \Delta_{32}$ $=\sin \left(2 \Delta_{31}\right)-\sin \left(2 \Delta_{32}\right)-\sin \left(2 \Delta_{21}\right)$

CPV:
$\nu_{\mu} \rightarrow \nu_{e}$

$$
A_{21}=2 c_{13} c_{23} s_{12} c_{12} \sin \Delta_{21}
$$

$$
\begin{aligned}
\Delta P & \equiv P\left(\nu_{\mu} \rightarrow \nu_{e}\right)-P\left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}\right) \\
& =\left|A_{31}+e^{i\left(\Delta_{32}+\delta\right)} A_{21}\right|^{2}-\left|A_{31}+e^{i\left(\Delta_{32}-\delta\right)} A_{21}\right|^{2}
\end{aligned}
$$

$$
=2 A_{31} A_{21}\left\{\cos \left(\Delta_{32}+\delta\right)-\cos \left(\Delta_{32}-\delta\right)\right\}
$$

$$
=-2 \cos \theta_{13} \sin 2 \theta_{13} \sin 2 \theta_{12} \sin 2 \theta_{23} \sin \delta \sin \Delta_{21} \sin \Delta_{31} \sin \Delta_{32}
$$

J=Jarlskog Invariant

$$
\underset{\frac{L}{E} \rightarrow 0}{\sim} 2^{2}\left(\Pi \Delta m_{i j}^{2}\right)\left(\frac{L}{4 E}\right)^{3}
$$

$4 \sin \Delta_{21} \sin \Delta_{31} \sin \Delta_{32}$

$$
=\sin \left(2 \Delta_{31}\right)-\sin \left(2 \Delta_{32}\right)-\sin \left(2 \Delta_{21}\right)
$$

CPV:
$\nu_{\mu} \rightarrow \nu_{e}$

$$
\begin{aligned}
& \Delta P \equiv P\left(\nu_{\mu} \rightarrow \nu_{e}\right)-P\left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}\right) \\
&=\left|A_{31}+e^{i\left(\Delta_{32}+\delta\right)} A_{21}\right|^{2}-\left|A_{31}+e^{i\left(\Delta_{32}-\delta\right)} A_{21}\right|^{2} \\
& \uparrow
\end{aligned}
$$

$=2 A_{31} A_{21}\left\{\cos \left(\Delta_{32}+\delta\right)-\cos \left(\Delta_{32}-\delta\right)\right\}$
$=-2 \cos \theta_{13} \sin 2 \theta_{13} \sin 2 \theta_{12} \sin 2 \theta_{23} \sin \delta \sin \Delta_{21} \sin \Delta_{31} \sin \Delta_{32}$

J=Jarlskog Invariant
$4 \sin \Delta_{21} \sin \Delta_{31} \sin \Delta_{32}$

$$
=\sin \left(2 \Delta_{31}\right)-\sin \left(2 \Delta_{32}\right)-\sin \left(2 \Delta_{21}\right)
$$

$$
\underset{\frac{L}{E} \rightarrow 0}{\sim} 2_{J\left(\Pi \Delta m_{i j}^{2}\right)\left(\frac{L}{4 E}\right)^{3}}
$$

Depends on ALL θ 's, δ and Δm^{2} s !
This includes Δm_{21}^{2} !!!

Matter Effects:

$$
\begin{gathered}
A_{31}+e^{i\left(\Delta_{32} \pm \delta\right)} A_{21} \\
A_{31}=2 s_{23} s_{13} c_{13} \frac{\sin \left(\Delta_{31 \mp a L)}\right.}{\left(\Delta_{31 \mp a L)}\right.} \Delta_{31} \\
A_{21}=2 c_{13} c_{23} s_{12} c_{12} \frac{\sin (a L)}{(a L)} \Delta_{21} \\
\quad a=G_{F} N_{e} / \sqrt{2}=(4000 \mathrm{~km})^{-1},
\end{gathered}
$$

Matter Effects:

$$
\begin{gathered}
A_{31}+e^{i\left(\Delta_{32} \pm \delta\right)} A_{21} \\
A_{31}=2 s_{23} s_{13} c_{13} \frac{\sin \left(\Delta_{31 \mp a L)}\right.}{\left(\Delta_{31 \mp a L)}\right.} \Delta_{31} \\
A_{21}=2 c_{13} c_{23} s_{12} c_{12} \frac{\sin (a L)}{(a L)} \Delta_{21} \\
\quad a=G_{F} N_{e} / \sqrt{2}=(4000 \mathrm{~km})^{-1},
\end{gathered}
$$

Matter Effects:

$$
\begin{gathered}
A_{31}+e^{i\left(\Delta_{32} \pm \delta\right)} A_{21} \\
A_{31}=2 s_{23} s_{13} c_{13} \frac{\sin \left(\Delta_{31 \mp a L)}\right.}{\left(\Delta_{31 \mp a L)}\right.} \Delta_{31} \\
A_{21}=2 c_{13} c_{23} s_{12} c_{12} \frac{\sin (a L)}{(a L)} \Delta_{21} \\
\quad a=G_{F} N_{e} / \sqrt{2}=(4000 \mathrm{~km})^{-1},
\end{gathered}
$$

Matter Effects:

$$
\begin{gathered}
A_{31}+e^{i\left(\Delta_{32} \pm \delta\right)} A_{21} \\
A_{31}=2 s_{23} s_{13} c_{13} \frac{\sin \left(\Delta_{31 \mp a L)}\right.}{\left(\Delta_{31 \mp a L)}\right.} \Delta_{31} \\
A_{21}=2 c_{13} c_{23} s_{12} c_{12} \frac{\sin (a L)}{(a L)} \Delta_{21} \\
\quad a=G_{F} N_{e} / \sqrt{2}=(4000 \mathrm{~km})^{-1},
\end{gathered}
$$

Denton \& Parke

Matter Effects:

$$
\begin{gathered}
A_{31}+e^{i\left(\Delta_{32} \pm \delta\right)} A_{21} \\
A_{31}=2 s_{23} s_{13} c_{13} \frac{\sin \left(\Delta_{31 \mp a L)}\right.}{\left(\Delta_{31} \mp a L\right)} \Delta_{31} \\
A_{21}=2 c_{13} c_{23} s_{12} c_{12} \frac{\sin (a L)}{(a L)} \Delta_{21} \\
\quad a=G_{F} N_{e} / \sqrt{2}=(4000 \mathrm{~km})^{-1},
\end{gathered}
$$

$$
\delta=0.0 \pi
$$

$$
a=\frac{G_{F} N_{e}}{\sqrt{2}}
$$

$$
\approx(4000 \mathrm{~km})^{-1}
$$

$$
\begin{aligned}
& P_{\mu \rightarrow e} \approx\left|A_{31}+e^{i\left(\Delta_{32} \pm \delta\right)} A_{21}\right|^{2} \\
& \text { where } A_{31}=\sqrt{P_{a t m}}=2 s_{23} s_{13} c_{13} \frac{\sin \left(\Delta_{31} \mp a L\right)}{\left(\Delta_{31} \mp a L\right)} \Delta_{31} \\
& \text { and } \quad A_{21}=\sqrt{P_{\text {sol }}}=2 c_{13} c_{23} s_{12} c_{12} \frac{\sin (a L)}{(a L)} \Delta_{21}
\end{aligned}
$$

$$
P_{\mu \rightarrow e} \approx\left|A_{31}+e^{i\left(\Delta_{32} \pm \delta\right)} A_{21}\right|^{2}
$$

$$
\begin{gathered}
\text { where } \quad A_{31}=\sqrt{P_{a t m}}=2 s_{23} s_{13} c_{13} \frac{\sin \left(\Delta_{31} \mp a L\right)}{\left(\Delta_{31 \mp a L)}\right.} \Delta_{31} \\
\text { and } \quad A_{21}=\sqrt{P_{\text {sol }}}=2 c_{13} c_{23} s_{12} c_{12} \frac{\sin (a L)}{(a L)} \Delta_{21}
\end{gathered}
$$

$$
a=\frac{G_{F} N_{e}}{\sqrt{2}}
$$

$$
\approx(4000 \mathrm{~km})^{-1}
$$

$$
P_{\mu \rightarrow e} \approx\left|A_{31}+e^{i\left(\Delta_{32} \pm \delta\right)} A_{21}\right|^{2}
$$

$$
P_{\mu \rightarrow e} \approx P_{a t m}+2 \sqrt{P_{a t m} P_{s o l}} \cos \left(\Delta_{32} \pm \delta\right)+P_{\text {sol }}
$$

$$
\cos \left(\Delta_{32} \pm \delta\right)=\cos \Delta_{32} \cos \delta \mp \sin \Delta_{32} \sin \delta
$$

Correlations between $\nu_{\mu} \rightarrow \nu_{e} \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$

Normal Ordering - Inverted Ordering

$$
\boldsymbol{\nu}_{\boldsymbol{\mu}} \rightarrow \boldsymbol{\nu}_{\boldsymbol{\mu}} \text { gives: } \quad \sin ^{2} 2 \theta_{\mu \mu} \equiv 4\left|U_{\mu 3}\right|^{2}\left(1-\left|U_{\mu 3}\right|^{2}\right)=0.96-1.00
$$

T2K/HK

Correlations between $\nu_{\mu} \rightarrow \nu_{e} \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$

Normal Ordering - Inverted Ordering

$$
\begin{gathered}
\boldsymbol{\nu}_{\boldsymbol{\mu}} \rightarrow \boldsymbol{\nu}_{\boldsymbol{\mu}} \text { gives: } \quad \sin ^{2} 2 \theta_{\mu \mu} \equiv 4\left|U_{\mu 3}\right|^{2}\left(1-\left|U_{\mu 3}\right|^{2}\right)=0.96-1.00 \\
\left|U_{\mu 3}\right|^{2} \leftrightarrow\left(1-\left|U_{\mu 3}\right|^{2}\right) \text { degeneracy ! }
\end{gathered}
$$

T2K/HK

NOvA

Correlations between

$$
\nu_{\mu} \rightarrow \nu_{e} \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}
$$

Normal Ordering - Inverted Ordering

$$
\boldsymbol{\nu}_{\boldsymbol{\mu}} \rightarrow \boldsymbol{\nu}_{\boldsymbol{\mu}} \text { gives: }
$$

$$
\begin{gathered}
\sin ^{2} 2 \theta_{\mu \mu} \equiv 4\left|U_{\mu 3}\right|^{2}\left(1-\left|U_{\mu 3}\right|^{2}\right)=0.96-1.00 \\
\left|U_{\mu 3}\right|^{2} \leftrightarrow\left(1-\left|U_{\mu 3}\right|^{2}\right) \text { degeneracy ! }
\end{gathered}
$$

NOvA

DUNE
Same L/E as NO $/ \mathrm{A}$

Correlations between

$$
\nu_{\mu} \rightarrow \nu_{e} \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}
$$

Normal Ordering - Inverted Ordering

$$
\boldsymbol{\nu}_{\boldsymbol{\mu}} \rightarrow \boldsymbol{\nu}_{\boldsymbol{\mu}} \text { gives: }
$$

$$
\begin{gathered}
\sin ^{2} 2 \theta_{\mu \mu} \equiv 4\left|U_{\mu 3}\right|^{2}\left(1-\left|U_{\mu 3}\right|^{2}\right)=0.96-1.00 \\
\left|U_{\mu 3}\right|^{2} \leftrightarrow\left(1-\left|U_{\mu 3}\right|^{2}\right) \text { degeneracy ! }
\end{gathered}
$$

NOvA

DUNE
Same L/E as NO $\nu \mathrm{A}$

$\propto \rho L \sin ^{2} \theta_{23}$

Normal Ordering - Inverted Ordering

$$
\boldsymbol{\nu}_{\boldsymbol{\mu}} \rightarrow \boldsymbol{\nu}_{\boldsymbol{\mu}} \text { gives: }
$$

$$
\begin{gathered}
\sin ^{2} 2 \theta_{\mu \mu} \equiv 4\left|U_{\mu 3}\right|^{2}\left(1-\left|U_{\mu 3}\right|^{2}\right)=0.96-1.00 \\
\left|U_{\mu 3}\right|^{2} \leftrightarrow\left(1-\left|U_{\mu 3}\right|^{2}\right) \text { degeneracy ! }
\end{gathered}
$$

DUNE bi-Probability Diagrams:
Normal Ordering - Inverted Ordering

DUNE bi-Probability Diagrams:
Normal Ordering - Inverted Ordering

VOM

near Osc Min

2nd Osc Max: (vacuum)

DUNE 2 osc max , ESSnuSB

草

Where are we Today!

T2K \& NOvA:

1 sigma:
NO
IO
Appearance data

T2K \& NOvA:

1 sigma:

10

Appearance data

T2K \& NOvA:

1 sigma:

Appearance data

T2K \& NOvA:

1 sigma:
NO
IO
Appearance data

T2K \& NOvA:

1 sigma:
NO
IO

Appearance data

T2K \& NOvA:

1 sigma:

IO

Appearance data

Close-up of neutrino interaction in the Far Detector

NOvA

T2K \& NOvA:

1 sigma:

IO

Appearance data

T2K \& NOvA:

1 sigma:

IO

Appearance data

T2K \& NOvA:

1 sigma:

IO

Appearance data

Disappearance v Appearance for:
θ_{23}

Minakata, Parke 1303.6178; Coloma, Minakata, Parke 1406.2551

Surprises: Non-Standard Interactions

$$
i \frac{d}{d t}\left(\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=\left[U\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \Delta_{21} & 0 \\
0 & 0 & \Delta_{31}
\end{array}\right) U^{\dagger}+A\left(\begin{array}{ccc}
1+\varepsilon_{e e} & \varepsilon_{e \mu} & \varepsilon_{e \tau} \\
\varepsilon_{e \mu}^{*} & \varepsilon_{\mu \mu} & \varepsilon_{\mu \tau} \\
\varepsilon_{e \tau}^{*} & \varepsilon_{\mu \tau}^{*} & \varepsilon_{\tau \tau}
\end{array}\right)\right] \quad\left(\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)
$$

NSI

P.Coloma
arXiv:1511.06357

What is DUNE/LBNF?

- DUNE/LBNF will consist of
- An intense (1-2 MW) neutrino beam from Fermilab
- A massive (70 kton) deep underground LAr Detector South Dakota
- A large Near Detector at Fermilab
- A large International Collaboration (~1000 scientist)

1300 km

South Dakota

DUNE is a large (70 kton) LAr underground (1.5 km) detector exposed to an intense (1-2 MW) Neutrino beam from Fermilab (1300km)

DUNE is a large (70 kton) LAr underground (1.5 km) detector exposed to an intense (1-2 MW) Neutrino beam from Fermilab (1300 km)

Appearance: $\quad \nu_{\mu} \rightarrow \nu_{e} \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \quad$ Disappearance $\boldsymbol{\nu}_{\mu} \rightarrow \nu_{\mu} \quad \overline{\boldsymbol{\nu}}_{\mu} \rightarrow \bar{\nu}_{\mu}$

DUNE is a large (70 kton) LAr underground (1.5 km) detector exposed to an intense (1-2 MW) Neutrino beam from Fermilab (1300km)

Appearance: $\quad \nu_{\mu} \rightarrow \nu_{e} \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \quad$ Disappearance $\boldsymbol{\nu}_{\mu} \rightarrow \nu_{\mu} \quad \overline{\boldsymbol{\nu}}_{\mu} \rightarrow \bar{\nu}_{\mu}$

- Perform Stringent tests of the 3 neutrino paradigm

DUNE is a large (70 kton) LAr underground (1.5 km) detector exposed to an intense (1-2 MW) Neutrino beam from Fermilab (1300 km)

Appearance: $\quad \nu_{\mu} \rightarrow \nu_{e} \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \quad$ Disappearance $\boldsymbol{\nu}_{\mu} \rightarrow \nu_{\mu} \quad \overline{\boldsymbol{\nu}}_{\mu} \rightarrow \bar{\nu}_{\mu}$

- Perform Stringent tests of the 3 neutrino paradigm
- Determine the size and sign of CP Violation in Nu Sector

DUNE is a large (70 kton) LAr underground (1.5 km) detector exposed to an intense (1-2 MW) Neutrino beam from Fermilab (1300 km)

Appearance: $\quad \nu_{\mu} \rightarrow \nu_{e} \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \quad$ Disappearance $\boldsymbol{\nu}_{\mu} \rightarrow \nu_{\mu} \quad \overline{\boldsymbol{\nu}}_{\mu} \rightarrow \overline{\boldsymbol{\nu}}_{\mu}$

- Perform Stringent tests of the 3 neutrino paradigm
- Determine the size and sign of CP Violation in Nu Sector
- Complete the Mass Ordering ($m _1<m _2<m _3$ or $m _3<m _1<m _2$)

DUNE is a large (70 kton) LAr underground (1.5 km) detector exposed to an intense (1-2 MW) Neutrino beam from Fermilab (1300 km)

Appearance: $\quad \nu_{\mu} \rightarrow \nu_{e} \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \quad$ Disappearance $\boldsymbol{\nu}_{\mu} \rightarrow \nu_{\mu} \quad \overline{\boldsymbol{\nu}}_{\mu} \rightarrow \overline{\boldsymbol{\nu}}_{\mu}$

- Perform Stringent tests of the 3 neutrino paradigm
- Determine the size and sign of CP Violation in Nu Sector
- Complete the Mass Ordering $\left(m_{-} 1<m _2<m _3\right.$ or $\left.m _3<m _1<m _2\right)$
- Determine which flavor Dominates nu_3 (least nu_e neutrino mass state)

DUNE
DUNE is a large (70 kton) LAr underground (1.5 km) detector exposed to an intense (1-2 MW) Neutrino beam from Fermilab (1300km)

Appearance: $\quad \boldsymbol{\nu}_{\mu} \rightarrow \nu_{e} \quad \overline{\boldsymbol{\nu}}_{\mu} \rightarrow \overline{\boldsymbol{\nu}}_{e} \quad$ Disappearance: $\boldsymbol{\nu}_{\mu} \rightarrow \boldsymbol{\nu}_{\boldsymbol{\mu}} \quad \overline{\boldsymbol{\nu}}_{\boldsymbol{\mu}} \rightarrow \overline{\boldsymbol{\nu}}_{\boldsymbol{\mu}}$

- Perform Stringent tests of the 3 neutrino paradigm
- Determine the size and sign of CP Violation in Nu Sector
- Complete the Mass Ordering ($m _1<m _2<m _3$ or $m _3<m _1<m _2$)
- Determine which flavor Dominates nu_3 (least nu_e neutrino mass state)
- Broad Physics program including Nucleon Decay \& SuperNova Neutrinos

DUNE
DUNE is a large (70 kton) LAr underground (1.5 km) detector exposed to an intense (1-2 MW) Neutrino beam from Fermilab (1300km)

Appearance: $\quad \nu_{\mu} \rightarrow \nu_{e} \quad \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \quad$ Disappearance $\boldsymbol{\nu}_{\mu} \rightarrow \nu_{\mu} \quad \overline{\boldsymbol{\nu}}_{\mu} \rightarrow \overline{\boldsymbol{\nu}}_{\mu}$

- Perform Stringent tests of the 3 neutrino paradigm
- Determine the size and sign of CP Violation in Nu Sector
- Complete the Mass Ordering ($m _1<m _2<m _3$ or $m _3<m _1<m _2$)
- Determine which flavor Dominates nu_3 (least nu_e neutrino mass state)
- Broad Physics program including Nucleon Decay \& SuperNova Neutrinos
- Surprises: NSI, sterile neutrinos, Nu Decay, Decoherence, Lorentz Violatión,......

Possible Future
 Neutrino Prizes:

Possible Future
 Neutrino Prizes:

- Nature of the Neutrino (Majorana (2) v Dirac (4))

Possible Future
 Neutrino Prizes:

- Nature of the Neutrino
(Majorana (2) v Dirac (4))
- Observing CPV in Neutrino Sector $(\sin \delta \neq 0)$

Possible Future
 Neutrino Prizes:

- Nature of the Neutrino
(Majorana (2) v Dirac (4))
- Observing CPV in Neutrino Sector $(\sin \delta \neq 0)$
- Demonstrating the Existence of the Sterile Neutrinos

Possible Future
 Neutrino Prizes:

- Nature of the Neutrino (Majorana (2) v Dirac (4))
- Observing CPV in Neutrino Sector $(\sin \delta \neq 0)$
- Demonstrating the Existence of the Sterile Neutrinos
- Observation of New Physics in Neutrino Sector? Neutrino Decay, NonStandard Interactions,

Possible Future Neutrino Prizes:

- Nature of the Neutrino (Majorana (2) v Dirac (4))
- Observing CPV in Neutrino Sector $(\sin \delta \neq 0)$
- Demonstrating the Existence of the Sterile Neutrinos
- Observation of New Physics in Neutrino Sector? Neutrino Decay, NonStandard Interactions,
- A convincing Model of Neutrino Masses and Mixing with confirmed predictions.

Thank You!

extras

$\nu_{\boldsymbol{\tau}}$ appearance
$\nu_{\mu} \rightarrow \nu_{\tau}$

\boldsymbol{T} threshold

